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Abstract

We consider codes for space bounded channels. This is a model for communication under noise
that was studied by Guruswami and Smith (J. ACM 2016) and lies between the Shannon (random) and
Hamming (adversarial) models. In this model, a channel is a space bounded procedure that reads the
codeword in one pass, and modifies at most a p fraction of the bits of the codeword.

Guruswami and Smith, and later work by Shaltiel and Silbak (RANDOM 2016), gave constructions
of list-decodable codes with rate approaching 1 − H(p) against channels with space s = c log n, with
encoding/decoding time poly(2s) = poly(nc).

In this paper we show that for every constant 0 ≤ p < 1
2 , and every sufficiently small constant ε > 0,

there are codes with rate R ≥ 1−H(p)− ε, list size poly(1/ε), and furthermore:

• Our codes can handle channels with space s = nΩ(1), which is much larger thanO(log n) achieved
by previous work.

• We give encoding and decoding algorithms that run in time n ·polylog(n). Previous work achieved
large and unspecified poly(n) time (even for space s = 1 · log n channels).

• We can handle space bounded channels that read the codeword in any order, whereas previous
work considered channels that read the codeword in the standard order.

Our construction builds on the machinery of Guruswami and Smith (with some key modifications) re-
placing some nonconstructive codes and pseudorandom objects (that are found in exponential time by
brute force) with efficient explicit constructions. For this purpose we exploit recent results of Haramaty,
Lee and Viola (SICOMP 2018) on pseudorandom properties of “t-wise independence + low weight
noise” which we quantitatively improve using techniques by Forbes and Kelly (FOCS 2018).

To make use of such distributions, we give new explicit constructions of binary linear codes that have
dual distance of nΩ(1), and are also polynomial time list-decodable from relative distance 1

2 − ε, with list
size poly(1/ε). To the best of our knowledge, no such construction was previously known.

Somewhat surprisingly, we show that Reed-Solomon codes with dimension k <
√
n, have this prop-

erty if interpreted as binary codes (in some specific interpretation) which we term: “Raw Reed-Solomon
Codes”. A key idea is viewing Reed-Solomon codes as “bundles” of certain dual-BCH codewords.
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1 Introduction

A longstanding open problem in coding theory is to construct binary list-decodable codes that achieve list-
decoding capacity, with efficient encoding and list-decoding algorithms. We start with a definition of list-
decodable codes. Thinking ahead, the definition of codes below is stated in terms of algorithmic properties
of encoding and decoding (rather than combinatorial properties using distance and Hamming balls).

Definition 1.1 (Codes). For z ∈ {0, 1}n, let weight(z) denote the Hamming weight of z. Namely, weight(z) =
| {i ∈ [n] : zi 6= 0} |. We say that Enc : {0, 1}k → {0, 1}n is an encoding function for a code that is:

• decodable from t errors, if there exists a function Dec : {0, 1}n → {0, 1}k such that for every
m ∈ {0, 1}k and every e ∈ {0, 1}n with weight(e) ≤ t, Dec(Enc(m)⊕ e) = m.

• L-list-decodable from t errors, if the function Dec is allowed to output a list of size at most L, and
for every m ∈ {0, 1}k and every e ∈ {0, 1}n with weight(e) ≤ t, Dec(Enc(m)⊕ e) 3 m.

The rate of a code is R = k
n .

We will be interested in codes for t = pn errors, where 0 ≤ p < 1
2 is a constant, and n is sufficiently

large. The “list-decoding capacity” in this setup is R = 1 −H(p), meaning that for every constant ε > 0,
and sufficiently large n, there exist L-list decodable codes for pn errors, with rateR ≥ 1−H(p)−ε, and list
size L = poly(1/ε). Despite substantial effort, it is not known how to construct such codes with poly-time
encoding algorithms (even if one does not insist on poly-time list-decoding).

It is known that codes with rateR < 1−H(p) must have exponential size lists. The best known uniquely
decodable codes have rate R ≤ 1 − H(2p), and (unlike the case of list-decoding) the precise capacity of
unique decoding is not completely understood.

Hamming versus Shannon scenarios. The list-decoding task of Definition 1.1 is in the “Hamming sce-
nario” in which the codeword z = Enc(m) is corrupted by an “unbounded channel” C(·) which given z
produces an arbitrary “error pattern” e = C(z) ∈ {0, 1}n with weight(e) ≤ pn, and the decoding algorithm
is required to decode (or list-decode) given the “corrupted received word” z ⊕ C(z) = z ⊕ e.

The “Shannon scenario” considers a “restricted channel” C which prepares the “error pattern” e ∈
{0, 1}n without looking at the codeword z = Enc(m). The most well known example is a binary symmetric
channel (BSC), in which the error pattern e ∈ {0, 1}n is sampled from a distribution which we denote by
BSCnp , in which the bits e1, . . . , en are independent, and each ei is one with probability p. The capacity
of such a channel is R = 1 − H(p), and a long line of works give explicit codes matching capacity with
efficient (and in fact linear time) encoding and (unique) decoding algorithms [GI05].

Many other “channel distributions” are considered, and in some of them (like “bursts of errors”) the
individual bits of e are not chosen independently, but rather by a process with “small space”.

Computationally bounded channels. Note that in Shannon’s scenario, channels produce an error pattern
that does not depend on the codeword z = Enc(m), whereas in Hamming’s scenario there is no restriction,
and channels may choose the error pattern as an arbitrary function of the codeword z = Enc(m). A natural
intermediate scenario (considered by Lipton [Lip94]) is to allow the channel C(z) = e to choose the error
pattern as a function of z (while insisting that weight(e) ≤ pn), but restrict our attention to channels C from
some complexity class.

In this paper (following [GS16, SS16]) we will consider space bounded channels which read z =
Enc(m) in one pass, using limited space. In this scenario it is helpful to consider stochastic codes in
which encoding and decoding procedures are randomized.
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We now explain why randomization helps. If we insist on the standard notion of deterministic encoding
algorithms for codes, then the notion of codes for bounded channels coincides with the standard (combi-
natorial) notion of codes (and so we don’t gain by restricting to bounded channels). More specifically, Let
Enc : {0, 1}k → {0, 1}n be some function, and let m, e be the “worst message and error pattern” for Enc
in terms of “combinatorial list decoding”. That is, that for some number L, a Hamming ball of radius pn
around Enc(m) ⊕ e contains more than L codewords. This in particular means that the code is not L-list
decodable from pn errors. The constant function C(z) = e is a channel from which L-list decoding is im-
possible. This channel has low complexity in any nonuniform complexity class (as e depends on n, but not
on z). In other words, if encoding is deterministic, then the worse combinatorial attack has low complexity.
This argument does not apply if encoding algorithms are randomized, and decoding is only guaranteed to
succeed with high probability (as is the case in stochastic codes that are defined below).

1.1 Stochastic codes for space bounded channels

Guruswami and Smith [GS16] considered a notion of stochastic codes in which encoding is randomized.1 In
this framework, the encoding algorithm Enc also receives d random bits, and the encoding of a message m,
is a random variable X = Enc(m,Ud) (where Ud denote the uniform distribution on d bits). The channel C
receives the “codeword” X as input, and produces an error pattern e = C(X). The decoding algorithm Dec
receives the corrupted received word X ⊕ e = X ⊕ C(X), and needs to decode (or list decode) with high
probability (over the choice of the random coins of encoding and decoding algorithms). We stress that the
decoding algorithm does not need to receive the random coins of the encoder. A formal definition follows:

Definition 1.2 (Stochastic codes for bounded channels [GS16]). Let C be a class of functions from n bits to
n bits. We say that Enc : {0, 1}k × {0, 1}d → {0, 1}n is an encoding function for a stochastic code that is:

• decodable for “channel class” C, with success probability 1−ν, if there exists a (possibly randomized)
procedure Dec : {0, 1}n → {0, 1}k such that for every m ∈ {0, 1}k and every C ∈ C, setting
X = Enc(m,Ud), we have that Pr[Dec(X ⊕ C(X)) = m] ≥ 1 − ν, where the probability is over
coin tosses of the encoding and decoding procedures.

• L-list-decodable for “channel class” C, with success probability 1−ν, if the procedure Dec is allowed
to output a list of size at most L, and Pr[Dec(X ⊕ C(X)) 3 m] ≥ 1 − ν, where the probability is
over coin tosses of the encoding and decoding procedures.

The rate of a stochastic code is R = k
n .

Following [GS16, SS16] we will be interested in the class C of functions that are computable in one
pass using small space. This is captured by the model of oblivious read once branching programs (ROBP).
Loosely speaking, a space s ROBP, C : {0, 1}n → {0, 1}n is a model of computation that on input x ∈
{0, 1}n performs the following: The ROBP has an internal state q of s bits (initiated to zeros). At step i,
the ROBP reads xi and uses a “transition function” δi : {0, 1}s × {0, 1} → {0, 1}s × {0, 1} to update its
“internal state”, and output a bit. Overall, on input x ∈ {0, 1}n, C produces an output C(x) of n bits.
(We sometimes need to consider ROBPs that output a single bit, and in this case the ROBP “decides” on its
output bits as a function of its final state). A (more general) precise definition of ROBPs is given in Section
3.2.

1In the definition below we also allow the decoding algorithm to be randomized. This allows us to speed up decoding algorithms
in some cases. Previous work of [GS16, SS16] did not use randomized decoding algorithms, partly because the running time of
decoding was inherently large, and there was no gain in using randomness to speed it up.
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We will consider channels that induce pn errors and are computable by space s ROBPs that may choose
to read the bits of the codeword z in any order. This is captured by allowing the ROBP to permute the order
of the bits using some permutation σ : [n] → [n] prior to reading it. We also “un-permute” the output
bits, so that the output is presented in the standard order. The definition below is restated more formally in
Definition 3.2.

Definition 1.3 (Space bounded channels, informal). We say that a function C : {0, 1}n → {0, 1}n induces
t errors if for every z ∈ {0, 1}n, weight(C(z)) ≤ t.

The class of space s channels is the class of functions C : {0, 1}n → {0, 1}n computed by space s
ROBPs.

Let σ : [n] → [n] be a permutation, and for z ∈ {0, 1}n, let σ(z) denote the n bit string z′, in which
z′i = zσ(i). The class of any-order space s channels is the class of functions from n bits to n bits, of the form
eσC = σ−1 ◦ C ◦ σ where σ : [n]→ [n] is a permutation, and C : {0, 1}n → {0, 1}n is a space s ROBP.

1.2 Our Results

1.2.1 New constructions of stochastic codes for space bounded channels

Guruswami and Smith [GS16] (and later work by Shaltiel and Silbak [SS16]) gave constructions of stochas-
tic codes for space s = O(log n) channels with rate approaching 1−H(p). However, a significant drawback
of these works is that when set up against channels with space s = c log n for some constant c, the running
time of encoding and decoding in [GS16, SS16] is polynomial in n, for a polynomial that is significantly
larger than 2s = nc. This means that one has to pay severely in efficiency, even when considering channels
with moderate space.2

Guruswami and Smith [GS16] posed the open problem of removing this dependence, and coming up
with a code for space s = c log n channels that has encoding and decoding that run in time nc0 where c0 is a
universal constant, and does not grow with c. In this paper we solve this open problem, and in fact, go much
farther. Our techniques give explicit constructions of stochastic codes with rate approaching 1−H(p), and
the following additional improvements:

• Our codes can handle channels with space s = nΩ(1), which is much larger than O(log n) achieved
by previous work.

• We give encoding and decoding algorithms that run in time n · polylog(n). Previous work achieved
large and unspecified poly(n) time (even for space s = 1 · log n channels).

• Our success probability is 1 − ν for ν = 2− logO(1) n = n−ω(1), whereas previous works could only
achieve ν = n−O(1).

• We can handle any-order channels, whereas previous work considered channels that read the codeword
in the standard order.

2We remark that the construction of Guruswami and Smith [GS16] is a “Monte-Carlo construction”, meaning that it requires
a preprocessing stage, in which a random string of length poly(nc) is shared between the encoding and decoding algorithm. The
correctness of encoding and decoding algorithms is guaranteed w.h.p. over the choice of this string. (This string need not be kept
secret from the channel, but note that this string is longer than the “description length” of the channel). In the final version of
[GS16] it is observed that this Monte-Carlo approach can be extended to any class of channels where all channels have description
length poly(nc), like for example size nc circuits. Shaltiel and Silbak removed the need for a ”Monte-Carlo” construction, and
gave a construction that does not require this preprocessing step. However, their construction still suffers from running time of
encoding and decoding that is exponential in s = c logn. More details are given in Section 1.3.
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These improvements are summarized in the following theorem (which is our main result). A more gen-
eral version with more precise description of the dependencies between parameters is stated in Theorem 6.1.

Theorem 1.4 (quasilinear time codes for space nΩ(1) channels). For every constant 0 ≤ p < 1
2 and suffi-

ciently small constant ε > 0, there is an infinite family of stochastic codes with rate R ≥ 1−H(p)− ε, that
are (L = poly(1/ε))-list decodable for any-order space s = nΩ(1) channels that induce pn errors, with
success probability 1− 2− log2 n. Furthermore, encoding and decoding run in time n · polylog(n).

Our approach builds on the approach of [GS16] (and refinements of [SS16]) with some modifications
and simplifications. The key to our improvements is a better explicit construction of some component
that we call “control code” (for which [GS16, SS16] gave constructions based on showing existence by a
non-constructive argument, and then finding the object by brute force search). We replace these inefficient
arguments by an explicit construction. We give a detailed high level overview of the proof of Theorem 1.4
in Section 2.

We can also handle channels with space s = n/polylog(n), but we only know how to do this for small
values of p, and then, encoding and decoding run in polynomial time (rather than quasilinear time). A more
general version of the next theorem is stated in Theorem 6.3.

Theorem 1.5 (polynomial time codes for space n/polylog(n) channels). There exist constants p0 > 0 and
c0 ≥ 1 such that for every constant 0 ≤ p < p0 and sufficiently small constant ε > 0, there is an infinite
family of stochastic codes with rate R ≥ 1 − H(p) − ε that are (L = poly(1/ε))-list decodable for any-
order space s = n

(logn)c0 channels that induce pn errors, with success probability 1−2− log2 n. Furthermore,
encoding and decoding run in time poly(n).

Perspective. Our results clearly extend to any channel that is a convex combination of any-order space s
channels. Furthermore, with an additional log n space, a channel can count the number of error that it
induces, and avoid inducing more than pn errors. This means that our theorems handle any distribution over
any-order space s channels in which the probability of inducing significantly more than pn errors is small.

It was pointed out by Guruswami and Smith [GS16] that all the “stochastic channels” studied in Shan-
non’s scenario are captured by this framework. Consequently, Theorem 1.4 can be seen as providing a
unified solution that handles all such channels with rate approaching 1−H(p) and quasilinear time encod-
ing and decoding.

On a more philosophical level, one may postulate that the behavior of most conceivable channels that
are not “fully adversarial” is captured by this framework of Guruswami and Smith, which can now be
implemented in quasilinear time (without the severe penalty of the dependence of running time on the space
of the channel).

1.2.2 Raw Reed-Solomon Codes

One of the tools that we require in order to prove our main theorem, is a binary linear code Enc : Fk2 → Fn2
with the following properties.3

• Distance (1/2− o(1)) · n.

3In this section we use a more standard notation of coding theory. With our notation, a binary linear code is a code that has a
linear encoding function Enc : Fk2 → Fn2 . The image of this function is a subspace C of the vector space Fn2 . The dual code is the
dual subspace C⊥ = {v ∈ Fn2 : ∀c ∈ C,< v, c >= 0}. The dual distance is the minimum distance of C⊥. The precise standard
definitions are given in Section 3.5.2.
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• Large dual distance of at least nΩ(1). (In fact, we need a slightly stronger property to be explained
later).

• Polynomial time list-decoding with list size poly(1/ε) from (1
2 − ε) · n errors, for every sufficiently

small constant ε > 0. (This in particular implies poly-time unique decoding up (1
4 − ε) · n errors, by

pruning the list and keeping only the unique codeword that is closest to the received word).

To the best of our knowledge, no construction with these properties is known. In this paper we exhibit
such codes. Interestingly, we show that for some settings of parameters, Reed-Solomon codes have these
properties if interpreted as binary codes suitably. We call these resulting binary codes Raw Reed-Solomon
codes.

More specifically, letm be an integer, and nRS = 2m−1. We consider the field F2m , and Reed-Solomon
codes of degree≤ dwith nRS evaluation points given byD = F2m \{0}. That is, the encoding of a message
w ∈ Fd+1

2m , is Enc(w) = (
∑

0≤i≤dwi ·ti)(t∈S). This code has distance nRS−d, and alphabet size qRS = 2m.
It can be interpreted as a binary linear code by choosing some F2-linear bijection Φ : F2m → Fm2 (which
is used to interpret field elements as m bit vectors), and applying Φ on each of the nRS symbols of the
codeword. This gives a binary linear code VerySimpleRawRS with dimension k = (d + 1) ·m and block
length n = nRS ·m. It immediately follows that this standard construction has distance at least nRS − d,
but note that in terms of relative distance, this quite general argument does quite poorly, since it can never
show that the relative distance is more than:

nRS

n
=

1

m
= Θ

(
1

log n

)
= o(1).

In fact, this is the truth, and VerySimpleRawRS truly does have o(1) relative distance.
Nevertheless, we show that a slight modification of this code has extremely good distance (and keeps

the dual distance). Let SimpleRawRS be the subcode of VerySimpleRawRS which only includes codewords
that come from polynomials which have 0 constant term. Using deep algebraic tools (very specific to the
algebraic situation at hand) we show that if the degree bound d < n

o(1)
RS (so that the dimension k satisfies

k = no(1)), then SimpleRawRS has relative distance 1
2 − o(1). We also define another variant, OddRawRS,

which has the same relative distance but which can achieve any dimension that is o(n1/2). Finally, using the
powerful algorithmic decoding algorithms known for Reed-Solomon codes, we show that these codes are
also list-decodable.

A more detailed description of Raw Reed Solomon codes appears in Section 4. In particular we prove
the following theorem.

Theorem 1.6 (Codes with large distance and dual distance). For every constant 0 < α < 1/2, and every
sufficiently large m, setting n = (2m − 1) · m, and k = nα, there is a binary linear [n, k]2-code C that
satisfies:

• C has distance (1
2 −O(( logn

n )
1
2
−α))n = (1

2 − o(1)) · n.

• C has dual distance Ω( nα

logn).

• C has a linear encoding map Enc : Fk2 → Fn2 that runs in time poly(n).

• There exists a universal constant b, such that for every ε ≥ b
√
α, Enc is O( 1

ε2
)-list-decodable from

(1
2 − ε)n errors in time poly(n).
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A key property that we use in the analysis is that (modulo some caveats) a codeword of length nRS ·m
of the SimpleRawRS and OddRawRS codes can be viewed as the juxtaposition of m binary strings of length
nRS in a natural way. These m binary strings turn out to be (correlated) codewords of a dual-BCH code, and
our analysis of the distance exploits this. This is explained more precisely is Section 2.

Dual-BCH codes themselves satisfy the first three requirements above, but they are not known to have
efficient decoding. Curiously, our result shows that a code of correlated tuples of dual-BCH codewords can
be decoded efficiently, while retaining the other good properties of dual-BCH codes.

Reed Solomon codes have a lot of structure and many useful properties (in addition to their distance
properties) and so, we believe that the fact that Raw Reed-Solomon codes have the additional properties
listed above (when viewed as binary codes) is of independent interest, and may prove useful in other appli-
cations.

1.3 More related work on codes for bounded channels

1.3.1 Stochastic codes for other classes of channels

Additive channels. Guruswami and Smith [GS16] gave constructions of stochastic codes with rate ap-
proaching 1 − H(p) that are uniquely decodable for additive channels that induce pn errors, with success
probability 1− 2−Ω(n/ logn). In our notation these are the constant functions C(·) = e where e is a constant
string with weight at most pn. The encoding and decoding algorithms in [GS16] run in polynomial time.
Our approach can be used in this setup, and can speed up the encoding and decoding algorithms to run in
quasilinear time, if the success probability is reduced to 1− 2−polylog(n).

poly-size circuits and bounded space channels. In the same paper, Guruswami and Smith also gave
constructions of stochastic codes with rate approaching 1−H(p) that are list-decodable for space s = c log n
channels (or size nc circuits) that induce pn errors, with success probability n−c. As explained earlier in
Section 1.2.1, a significant drawback of these results is that the running time of the encoding algorithm was
polynomial in nc, for a large and unspecified polynomial (meaning that efficiency quickly deteriorates even
for conservative estimates on channel complexity). The construction of [GS16] is “Monte-Carlo”. Meaning
that it requires a preprocessing stage, in which a random string of length poly(nc) is shared between the
encoding and decoding algorithm. The correctness of encoding and decoding algorithms is guaranteed
w.h.p. over the choice of this string. (This string need not be kept secret from the channel).

Shaltiel and Silbak [SS16] removed the need for a preprocessing stage by slightly modifying the con-
struction of Guruswami and Smith, and providing explicit constructions for the modified components. They
give results for space s = c log n channels, and size nc circuits (here a complexity assumption that there
are functions in DTIME(2O(n)) that are hard for small circuits is used, and is necessary). Shaltiel and Sil-
bak also consider channels that are implementable by constant depth circuits, and provide constructions of
stochastic codes for this setup.

1.3.2 Other coding scenarios with randomized encoding/bounded channels

The notion of computationally bounded channels was also studied in other setups. We mention some of
these works below.

Shared private randomness. We start with the notion of codes with “shared private randomness”. While
this setup was considered before the notion of stochastic codes, in this paper, it is natural to view it as a
version of stochastic codes in which the decoding algorithm does receive the randomness S chosen by the
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encoding algorithm. This corresponds to a standard symmetric cryptography setup in which honest parties
(the encoder and decoder) share a uniform private key S, and the bad party (the channel) does not get the key.
Lipton [Lip94] and following work (see [Smi07] for more details) gave explicit constructions of uniquely
decodable codes against computationally bounded channels, in this setup, with rate approaching 1−H(p),
under cryptographic assumptions.

Note that the setup of stochastic codes is lighter. The encoder and decoder do not need to share a private
random key. Moreover, a fresh key can be chosen on the spot every time the encoder encodes a message.

A related notion of “private codes” was studied by Langberg [Lan04]. This is also in the setup of
shared private randomness. Here channels are computationally unbounded, codes are existential rather
than explicit, and have rate approaching 1−H(p). The focus is on minimizing the length of the shared key.
Langberg provides asymptotically matching upper and lower bounds of Θ(log n+log(1/ν)), on the amount
of randomness that needs to be shared for unique decoding in this setup, where ν is the error parameter.

Non malleable codes. Non-malleable codes (introduced by Dziembowski, Pietrzak, and Wichs [DPW18])
consider channels that are not restricted in the number of errors that they induce. Instead, channels are as-
sumed to come from some limited class of functions (or complexity class). Codes are stochastic (meaning
that the encoding procedure is randomized) and it is required that following the corruption by the channel,
the decoder either reproduces the encoded message, or an ”unrelated” message. The definition of ”unre-
lated” is given using the simulation paradigm from cryptography. Several classes have been considered, and
some of the constructions rely on cryptographic assumptions. The reader is referred to [DPW18] and the
references therein for precise definition and a survey of results in non-mallable codes.

Encoding a uniform message. Haviv and Langberg [HL11] consider a model where encoding and decod-
ing is deterministic, but the message to be encoded is chosen uniformly at random. They show the existence
of codes in this setup, that have unique decoding, and beat the Gilbert-Varshamov bound.

Public key setup. Micali et al. [MPSW10] considered computationally bounded channels, and a crypto-
graphic public key setup. Their focus is to use this setup to convert a given (standard) explicit list-decodable
code into an explicit uniquely decodable codes (in this specific public key setup).

1.4 Organization of the paper

In Section 2 we give a high level overview of the ideas and techniques in this paper. In Section 3 we give
definitions and past work on the tools and ingredients that are used in our construction. In Section 4 we
state and prove our results on raw Reed-Solomon codes. In Section 5 we use raw Reed-Solomon codes to
construct stochastic control codes. In Section 6 we give our main construction of stochastic codes for space
bounded channels (which relies on stochastic control codes). In Section 7 we prove the correctness of our
main construction.

2 Overview of the technique

In this section we give a high level overview of the ideas and techniques that we use. We allow ourselves to
be informal and imprecise (in order to highlight the main ideas). Complete definitions, theorem statements
and proofs, appear in later sections (which do not rely on the informal description given in this section).
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2.1 Stochastic control codes

The construction of codes for bounded channels of Guruswami and Smith [GS16], as well as later modifi-
cation by Shaltiel and Silbak [SS16] use a component which we call a “stochastic control code”.

Definition 2.1 (Stochastic control code, informal). A function Encctrl : {0, 1}k × {0, 1}d → {0, 1}n is a
stochastic control code that is:

• pseudorandom, if for every x ∈ {0, 1}k, Encctrl(x, Ud) is pseudorandom for small space ROBPs.

• List decodable, if for every sufficiently small constant ε > 0, there is an explicit list-decoding algo-
rithm Decctrl with constant size lists, such that for every x ∈ {0, 1}k, y ∈ {0, 1}d, and e ∈ {0, 1}n
with weight(e) ≤ (1

2 − ε) · n, list-decoding succeeds, that is, x ∈ Decctrl(Encctrl(x, y)⊕ e).

A more precise definition (with precise quantities) appears in Section 5. The construction of capacity
achieving stochastic codes for space bounded channels (Theorem 1.4) will rely on stochastic control codes
that are pseudorandom and list-decodable. Definition 2.1 requires recovery from adversarial errors (that
may be induced by an unbounded channel) while also requiring the additional pseudorandomness property.
This makes the requirements stronger than the codes for bounded space channels that we aim to construct.

A key idea is that in the final construction, the control code will be used to encode a short “control
string”, and so, the rate of this code does not need to approach 1−H(p), and we will be able to use control
codes in which k = nΩ(1) in our final stochastic codes for bounded channels, and still have rate approaching
1−H(p).

Theorem 2.2 (Control code, informal). There is an explicit control code Encctrl : {0, 1}nΩ(1)×{0, 1}O(n) →
{0, 1}n which satisfies Definition 2.1.

We start by explaining this construction, and later show how to use it to obtain stochastic codes for small
space channels with rate approaching 1−H(p).

2.1.1 Raw Reed-Solomon codes

The first step in our construction of control codes, are explicit (standard) binary linear codes with large dual
distance and poly-time list decoding. These are the codes stated in Theorem 1.6. For concreteness, let m be
an integer, and consider the field F2m . Let D = F2m \ {0}. We will consider evaluations of polynomials
of degree at most d with F2m coefficients at the points of D, and then convert these evaluations to binary
vectors of length m using an F2-linear bijection Φ : F2m → Fm2 . More generally, this conversion to binary
vectors can also be done using a different F2-linear bijection Φx at each point x ∈ D. Overall, this gives
us binary codewords of length n = m · (2m − 1). We call the codes obtained this way Raw Reed-Solomon
Codes, RawRS.

In this high level overview we will explain the analysis of a particular Raw Reed-Solomon code which
we call Odd Raw Reed-Solomon codes4, OddRawRS. This is an instance of the above RawRS family
of codes (for a particular choice of Φx), but it has a more direct description which we give next. Let
k = m · (d + 1) and n = m · (2m − 1). Given a message w ∈ Fk2 , we break it into d + 1 blocks of m
bits each, use these m-bit blocks to specify elements γ0, γ1, . . . , γd ∈ F2m , and consider the polynomial
P (X) =

∑d
j=0 γjX

2j+1 which has only odd degree monomials. The codeword c : D × [m] → F2

4A similar but more involved analysis applies to the more natural code SimpleRawRS.
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corresponding to this message w is then the n bit long string obtained by taking all the evaluations of P and
writing them in bits using Φ:

c(x, i) = Φ(P (x))i.

A key observation is that this interpretation is closely related to the dual-BCH code [MS77]. Dual-BCH
codes are known to satisfy the first three properties in Theorem 4.1. That is they have poly-time encoding,
large distance, and large dual distance. However, they are not known to have poly-time decoding or list-
decoding.

We show that OddRawRS codes satisfy all four requirements. First we elaborate on the connection to
dual-BCH codes. For each i ∈ [m], consider the function ci : D → F2 given by ci(x) = c(x, i) (this
is just a subset of the bits of c). Then each ci is a codeword of the dual-BCH code. More specifically,
the dual BCH codeword cdual−BCH : D → F2 that corresponds to w = (γ0, . . . , γd), can be defined
as cdual−BCH(x) = Tr(

∑d
j=0 γj · x2j+1), where Tr : F2m → F2 is the F2-linear map that is the field

trace. Furthermore, any bijective linear map Φ : F2m → Fm2 can be expressed as m F2-linear maps
Φi : F2m → F2, where each Φi is defined by Φi(x) = Tr(b · x), for some nonzero b ∈ F2m . It follows that
ci(x) = Tr(

∑d
j=0(b · γj) · x2j+1), which can be viewed as the dual-BCH encoding of the nonzero word

(b · γ0, . . . , b · γd).
Thus the codewords of OddRawRS are just a sequence of correlated nonzero dual-BCH codewords.

Using this connection to dual-BCH codes we get that OddRawRS codes have large distance.5 This part of
the argument does not work for general RawRS codes.

The remaining three properties hold for general RawRS codes. Efficient encoding is clear. The dual
distance of OddRawRS codes follows from the dual distance of a related Reed-Solomon code, and the fact
that Φ is a bijection.

Finally we come to the decodability. This is where we go beyond what is known for dual-BCH codes.
The crucial point here is the connection to Reed-Solomon codes, for which amazing decoding algorithms
are known [Sud97, GS99]. We show that the natural 2-stage list-decoding algorithm for OddRawRS (which
is naturally viewed as a concatenated code) indeed decodes from (1/2− ε)-fraction errors. The first stage is
list-decoding of the inner blocks, which leads to a huge list of candidate symbols for each coordinate (since
the inner blocks are all codes with minimum distance only 1). Then the efficient list-recovery algorithms
known for Reed-Solomon codes, which can handle huge lists and (1− o(1))-fraction error, enables us find
a large list that contains all nearby codewords. This implies the unique decodability from (1/4− ε)-fraction
errors. Finally, for list-decodability, using the fact that OddRawRS has relative distance 1/2 − o(1), the
Johnson bound [Joh62] implies that the list of (1/2− ε)-fraction close codewords is in fact poly(1/ε), and
we get the desired list-decoding algorithm.

2.1.2 From Raw Reed-Solomon codes to stochastic control codes.

We now explain how to prove Theorem 2.2 using OddRawRS codes (and specifically, the code stated in
Theorem 1.6). This approach is inspired by a related argument that was used by Shaltiel and Silbak [SS16]
to construct control codes against AC0 circuits.

We will construct the control code Encctrl : {0, 1}k/2 × {0, 1}d=k/2+n·log(1/η) → {0, 1}n as follows:
Given x ∈ {0, 1}k/2, r ∈ {0, 1}k/2 and v ∈ {0, 1}n·log(1/η). We use v as random coins to sample an element
from BSCn

η (that is n i.i.d. coins that evaluate to one with probability η) and define:

Encctrl(x; (r, v)) = EncOddRawRS(r ◦ x)⊕ BSCn
η .

5In the OddRawRS case it is almost immediate, in the SimpleRawRS case we need to understand the correlations between the
component dual-BCH codewords.
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That is, we use the linear code from the previous section to encode r ◦ x and xor the output with BSCn
η . By

Theorem 1.6 the OddRawRS code has dual distance t = nΩ(1), and this can be used to show that for every
x ∈ {0, 1}k/2, EncOddRawRS(Uk/2 ◦ x) is (t− 1)-wise independent.

Actually, for this to hold we need a stronger property, namely that if we consider the code Enctrunc :

Fk/22 → Fn2 defined by Enctrunc(r) = EncOddRawRS(r◦0k/2), then this linear code has dual distance t. (This
stronger property also holds for OddRawRS codes). Once we have that, by linearity, EncOddRawRS(Uk/2 ◦
x) = Enctrunc(Uk/2)⊕L(x) whereL is some linear function. Thus, it is enough to show that Enctrunc(Uk/2)
is (t−1)-wise independent. Note that encoding by Enctrunc is done by multiplying the message by the gener-
ator matrix of Enctrunc (which is the parity check matrix of the dual code). As the dual distance of Enctrunc

is at least t, every t − 1 columns of the latter matrix are linearly independent, and so Enctrunc(Uk/2) is
(t − 1)-wise independent. It follows that the output distribution Encctrl(x, Ud) is a “t-wise independent
distribution plus low weight BSC noise”.

2.1.3 t-wise independence + low weight BSC noise.

Haramaty, Lee and Viola [HLV18] studied the pseudorandomness of such distributions, and showed that
distributions of this form are pseudorandom for any-order small space ROBPs if t is sufficiently larger than
n2/3, and η is not too small (any constant η > 0 will do). Note that the list decoding property of Theorem
2.2 immediately follows for our construction (as OddRawRS codes have list decoding up to (1

2−ε)·n errors,
and so, if η is sufficiently small, the additional relative error of η can be “swallowed” in ε.

We now turn our attention to the pseudorandomness property of Theorem 2.2. Unfortunately, the dual
distance t of OddRawRS codes cannot be larger than

√
n. This means, that at best, EncOddRawRS(Uk/2 ◦ x)

is t-wise independent for t <
√
n, whereas the results of [HLV18] give nothing unless t� n2/3.

Recent work by Lee and Viola [LV17], and Forbes and Kelly [FK18], showed that “t-wise independence
+ large weight noise” is pseudorandom for small space any-order ROBPs even for small t (e.g., t = O(s+
log n)). However, these results use noise that is a conjunction of a t-wise independent distribution with a
uniform distribution, and such noise has relative weight roughly 1

4 . This will not do for our list-decoding
argument.

Fortunately, we can use the technique of Forbes and Kelly [FK18] to give a better analysis than Hara-
maty, Lee and Viola [HLV18] and show that Enc(x, Ud) is pseudorandom for any-order space s = Ω(t)
ROBPs even for t = nΩ(1). The precise statement appears in Theorem 5.6. This shows that Encctrl satisfies
the properties in Definition 2.1 and proves Theorem 2.2.

2.2 The construction of stochastic codes for space bounded channels

In this section we give a sketch of the construction of stochastic codes for any-order space bounded channels.
Our construction heavily builds on the machinery developed by Guruswami and Smith [GS16] (which in
turn relies on previous ideas by Lipton [Lip94] and Smith [Smi07]). We also use the refinements of Shaltiel
and Silbak [SS16], as well as several new modifications and simplification.

Recall that given a constant ε > 0, our goal is to design a stochastic code Enc : {0, 1}RN × {0, 1}d →
{0, 1}N that has rate R ≥ 1 − H(p) − ε, and is list-decodable for small space channels that induce pN
errors. Furthermore, we aim for quasilinear time encoding and list-decoding with constant sized lists.
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2.2.1 The encoding algorithm

To encode a message m ∈ {0, 1}RN the encoding algorithm will encode m by a code EncBSC for binary
symmetric channels BSCp. There are explicit constructions of such codes with rate approaching R =
1 − H(p) and linear time encoding and decoding [GI05]. Thinking ahead, we set the block length of
EncBSC to be Ndata = (1 − ε) · N , which we can do by choosing a smaller constant εBSC = ε/10 for
the BSC code. The encoding algorithm will also select random “seeds” to activate several “pseudorandom
components”. The seeds of all these components will be of length Nα for some small constant α > 0, and
so their length is negligible compared to N .

The first seed sπ will be used to generate an “almost t-wise independent permutation” π : [Ndata] →
[Ndata]. In this high level overview we will pretend that π is a random permutation. The encoding algorithm
computes x = EncBSC(m), and y = π−1(x) (recall that this means that the bits of x are “reordered”
according to π−1). Loosely speaking, this is done so that if the channel is an additive channel (namely one
that has a fixed error pattern e ∈ {0, 1}Ndata of weight pN ) and if the decoding algorithm has a copy of
sπ, then the decoding algorithm can apply π on the received word y ⊕ e and obtain Enc(m) ⊕ π(e). For
a random permutation π, the distribution π(e) is very similar to BSCp, and so the decoding algorithm can
decode by applying DecBSC.

The argument above (which was suggested by Lipton [Lip94]) crucially requires that the decoding algo-
rithm receives the seed sπ. The approach of Guruswami and Smith is to encode the seed sπ (as well as other
seeds that we introduce soon) by a “control code” and “merge” y and this “control encoding” together, in the
hope that the channel is not able to “wipe out” the control information, and furthermore, that the decoding
algorithm is able to identify and correctly decode the control information.

For this purpose, the encoding algorithm also chooses a random seed sPRG for a pseudorandom gen-
erator G that fools any-order small space ROBPs (we use the PRG of Forbes and Kelly [FK18]). When
preparing the data part, the encoding xors the string y = π−1(EncBSC(m)) with G(sPRG) to obtain the
“data codeword” cdata = π−1(EncBSC(m)) ⊕ G(sPRG). Loosely speaking, this means that cdata looks
random to the channel.

The encoding algorithm now prepares the control codeword. For this purpose, the encoding algorithm
divides the N output bits into n = N1−λ blocks of length b = Nλ, where λ > 0 is some small constant.
It chooses an additional random seed ssamp for an “averaging sampler”. This seed is used to specify ε · n
distinct indices i1, . . . , iε·n ∈ [n]. These blocks are called “control blocks”, and the remaining blocks
are called “data blocks”. In this high level overview we pretend that the indices of control blocks are
uniformly distributed in [n]. (Loosely speaking, the definition of averaging samplers allows us to make this
assumption).

The final codeword c ∈ {0, 1}N is prepared as follows: Note that the total length of data blocks isNdata,
and the encoding algorithm “places” the data codeword cdata in these blocks. The remaining εn blocks are
used to encode the “control information” s = (sπ, sPRG, ssamp). This is done as follows: for each control
block i, the encoding algorithm sets ci = Encctrl(s, Ud) with fresh randomness for each block (where
Encctrl is the stochastic control code of the previous section).6 Note that this indeed gives a codeword c of
length N .

6We mention that here we simplify previous work by [GS16, SS16] that also used an “outer control code” that was chosen to be
list-recoverable. This simplification allows us to speed up the encoding and decoding as explained later.
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2.2.2 The list decoding algorithm

In order to decode, the decoding algorithm first applies the list-decoding algorithm Decctrl on all the n
blocks of the received word. The decoding algorithm obtains ` = n

εc outcomes (where c = 2 is the exponent
of the list size of Decctrl), and it “passes on” each outcome that appears at least say ε2n times. (Note
that there are at most poly(1/ε) such outcomes). For each such candidate s′ for control information, the
decoding produces a message. Namely, it identifies the partition of blocks into control blocks and data
blocks according to s′samp. It then xors the data part with G(s′PRG), and applies the permutation π (defined
by seed s′π). Finally, it performs decoding by DecBSC. This process indeed produces a list of size poly(1/ε)
of candidate messages.

The analysis will show that for any small space channel, w.h.p. the “correct control information” s is
one of the candidates s′ considered by the decoding algorithm, and that with s′ = s, the correct message m
is decoded w.h.p.

2.2.3 Analyzing the construction

The analysis of the construction is quite involved and is presented in detail in Sections 6 and 7. On a high
level, the key observation is that from the point of view of a space bounded channel, the data part looks
random (as it is xored with the output of a pseudorandom generator) and each control block looks random
(by the pseudorandom property of Encctrl). This intuitively means that the channel cannot distinguish data
blocks from control blocks, and therefore, from its point of view, the position of control blocks is random (as
they were chosen by the sampler). It intuitively follows that the channel cannot hope to “wipe out” the short
control part. At best, it can place a p fraction of errors on the control part, and it is likely that an ε fraction
of the control blocks will be decoded correctly by Decctrl, meaning that the correct control information s is
one of the candidates s′ that is considered by the decoding algorithm.

The channel C chooses the error pattern e as a function of the codeword c. However, as c looks random
to the channel, the channel intuitively chooses e in a way that is independent of the seed sπ. Therefore,
the analysis used earlier for additive channels (in which e is fixed and π is random) can be applied, and the
correct message appears in the list.7

2.2.4 Achieving quasilinear time encoding and decoding.

In order to achieve quasilinear time encoding and decoding, we need to first verify that none of the compo-
nents we use, runs in larger polynomial time. In some cases (e.g., the PRG of Forbes and Kelly [FK18]) we
need to delve into the construction and analysis in order to implement it in a more efficient manner.

7This high level argument is an oversimplification and the actual proof is quite involved. We need to show that if the channel
is able to prevent the decoding algorithm from decoding, then it can be used to break one of the pseudorandom components. A
significant difficulty, is that the channel cannot run the decoding algorithm (which cannot be run by a small space ROBP) and
therefore, the channel “does not know” whether it succeeded in preventing the decoding algorithm from decoding correctly. This
is a problem as the distinguisher (for the PRG) that we aim to construct, will intuitively want to distinguish the output of the PRG
from random, by distinguishing between the case that decoding succeeded from the one where it doesn’t (and in particular, the
distinguisher will want to run decoding algorithms). The argument used to construct this distinguisher relies on additional specific
properties of the BSC code. Our approach to handling this issue, builds heavily on the previous arguments of [GS16, SS16] with
some modifications.

We also remark that a possible behavior of a channel is to inject “false control strings” in order to make the decoding algorithm
decode to incorrect values. Indeed, there are bounded space channels that can cause the decoding algorithm to have incorrect
messages in the list (in addition to the correct one).
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A key observation is that we don’t have to optimize the exponent of the polynomial in the time of
encoding and decoding Encctrl. This is crucial as for example, the time of the decoding algorithm that
we give for OddRawRS codes is inherently at least quadratic (just for writing all the large lists in the list
recovering stage).

We make the following observation: When encoding, we run Encctrl (which in turn runs the linear
code EncOddRawRS) many times. Therefore, we only care about amortized encoding time (rather than worst
case running time). Any linear function L : Fn0.1

2 → Fn2 can be computed in amortized time O(n · (log2 n))
(following a pre-processing step that prepares the matrix ofL). This is because making n such computations,
can be reduced to matrix multiplication of an n× n0.1 matrix by an n0.1 × n matrix (which can be done in
time O(n2 · log2 n) by Coppersmith [Cop82]. Recall that we have less than N1−λ applications of Encctrl

where each one is over block length Nλ, and so overall, all these applications take time O(N · log2N)
A second observation is that when list-decoding, the decoding algorithm doesn’t need to try all n =

N1−λ blocks. It can instead sample a polylogarithmic number of blocks in [n], and only try to decode the
control code on the sampled blocks. Each such block is of length b = Nλ, and so, even if applying Decctrl

takes time bc for a large constant c, by choosing the constant λ > 0 to be sufficiently small, this step takes
time polylog(N) ·Nλ·c ≤ N .

Finally, we mention that an obvious bottleneck that prevents our encoding and decoding to run in linear
time, is that computing a permutation π : [N ] → [N ] on all N inputs, requires time Ω(N · logN) just to
read the inputs and write the outputs.

3 Preliminaries, and ingredients used in the construction

In this section we give formal definitions of the notions and ingredients used in the construction. We also
cite previous results from coding theory and pseudorandomness that are used in the construction.

General notation. We use Un to define the uniform distribution on n bits. The statistical distance be-
tween two distributions P,Q over Ω is maxA⊆Ω |P (A)−Q(A)|. Random variables R1, . . . , Rn are t-wise
independent if for every i1, . . . , it ∈ [n], Ri1 , . . . , Rit are uniform and independent.

The Hamming weight of x ∈ [q]n is weight(x) = | {i : xi 6= 0} |. The Hamming distance between
x, y ∈ [q]n is | {i : xi 6= yi} | and the relative Hamming distance is the Hamming distance divided by n.

3.1 Permuting strings

We will use a permutation π : [n] → [n] to “reorder” the bits of a string x ∈ {0, 1}n: The i’th bit in the
rearranged string will be π(i)’th bit in x. This is captured in the definition below.

Definition 3.1 (Permuting strings). Given a string x ∈ {0, 1}n and a permutation π : [n] → [n]. Let π(x)
denote the string x′ ∈ {0, 1}n with x′i = xπ(i).

3.2 Read once branching program (in any order)

3.2.1 Formal definition of ROBPs and bounded space channels

We give a more formal definition of bounded space computation and channels, restating Definition 1.3 in
a more formal notation. The model that we consider is that of oblivious read once branching programs
(ROBP). In the definition below, we will consider several variants depending on whether the ROBP outputs
a single bit, or one bit per any input bit (which is the case for channels that are function C : {0, 1}n →
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{0, 1}n). We will also consider ROBPs that are allowed to choose the order in which they read the input
bits.

Definition 3.2 (Read Once Branching Programs (ROBP)). A space s ROBP C which receives input in
{0, 1}n is defined by picking n transition functions δ1, . . . , δn where for each i, δi : {0, 1}s × {0, 1} →
{0, 1}s. On input x ∈ {0, 1}n, the computation path of C is the sequence r0, . . . , rn of states defined by
r0 = 0s and for i ≥ 1, ri = δi(ri−1, xi). We distinguish between two types of ROBPs:

• If C : {0, 1}n → {0, 1} is an ROBP that outputs a single bit, then C also has an output function
o : {0, 1}s → {0, 1} and C(x) is defined to be o(rn).

• IfC : {0, 1}n → {0, 1}n is an ROBP that outputs n bits, thenC also has n output functions o1, . . . , on
where for each i, oi : {0, 1}s → {0, 1} and C(x) is defined by the n bit string o1(r1), . . . , on(rn).

We are stating this definition in the terminology of “transition functions” and “output functions” which
is more convenient when discussing ROBPs that output more than one bit. However, we stress that this
definition is equivalent to the more common definition of width w = 2s ROBPs in terms of a layered graph
with n + 1 layers, where the i’th transition function specifics the edges from the (i − 1)’th level to the i’th
level.

Another remark is that the definition above forces an ROBP that outputs many bits to output its i’th bit
before seeing the (i+ 1)’th bit. This is done in order to have a simple definition of ROBPs that output many
bits. However, all our results hold for a more general model in which the ROBP can delay outputting the
i’th bit to a later stage and look ahead at the next input bits.8

We now define any-order ROBPs that are allowed to reorder their input bits using a permutation σ :
[n]→ [n] prior to reading the input. The next claim immediately follows from the definition.

Definition 3.3 (any-order ROBPs). Given an ROBP C over n bits, and a permutation σ : [n] → [n] we
define Cσ to be the function Cσ(x) = C(σ(x)). (Here σ(x) is the function from Definition 3.1). The class
of any-order space s ROBPs is the class of all functions Cσ where C is a space s ROBP and σ : [n]→ [n]
is a permutation.

We now observe that if we restrict the input of an any-order space s ROBP, then we obtain an any-order
space s ROBP.

Claim 3.4 (Restrictions of any-order ROBPs). Given a space s ROBP C : {0, 1}n → {0, 1}, a permutation
σ : [n] → [n], T ⊆ [n] of size t, and v ∈ {0, 1}t, the function f : {0, 1}n−t → {0, 1} defined by
f(y) = Cσ(x) where xT = v and x[n]\T = y, is computable by an any-order space s ROBP. That is,
there exists a permutation τ : [n − t] → [n − t] and a space s ROBP D : {0, 1}n−t → {0, 1} such that
Dτ (y) = f(y).

Definition 3.3 applies also to ROBPs that output n bits. Note that in that case, the output of the ROBP is
also ordered by σ. When considering channels, it is more convenient to reorder the bits back to the natural
order. This is done in the next definition.

8To make this statement more concrete, a space s ROBP that wants to look ahead and read t additional bits before outputing the
i’th output bit, can store these additional t bits, and the number of bits it outputted so far, in its memory, and this can be done in
space s+ t+ logn. Our results on space s channels also apply to these kind of channels, namely channels that use space Ω(s) and
look ahead at the next Ω(s) input bits. More generally, our results apply to any “reasonable” model of ROBPs that output many
bits, in which if C1, C2 : {0, 1}n → {0, 1}n are space s ROBPs, then the composition C1 ◦C2 can be computed by an ROBP with
space, say O(s).
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Definition 3.5 (any-order bounded space channels). The class of any-order space s channels is the class of
all functions eσC : {0, 1}n → {0, 1}n, where C : {0, 1}n → {0, 1}n is a space s ROBP, σ : [n] → [n] is a
permutation, and eσC(x) = σ−1(C(σ(x))).

It should be noted that the “reordered function” eσC is not necessarily computable by a small space ROBP.
However, when applying channels eσC on a codeword, it is more natural to reorder the bits in the order used
by the codeword.

Using this notation, the bounded space channel model considered in [GS16, SS16] (which was called
“online space s channels”) corresponds to space s channels with the identity permutation (namely, channels
that read their input bits in the standard order).

3.2.2 PRGs for any-order ROBPs

We need the following standard definition of pseudorandom distributions and generators.

Definition 3.6 (Pseudorandom generators). A distribution X on n bits is ε-pseudorandom for a class C of
functions from n bits to one bit, if for every C ∈ C, |Pr[C(X) = 1] − Pr[C(Un)] = 1| ≤ ε. A function
G : {0, 1}d → {0, 1}n is an ε-PRG for C if G(Ud) is ε-pseudorandom for C.

We will use the following PRG by Forbes and Kelly [FK18]

Theorem 3.7. [FK18] For every log n ≤ s ≤ n, there exists an ε-PRGG : {0, 1}d → {0, 1}n for any-order
space s ROBPs that output one bit, with d = O((s + log 1

ε ) · log2 n). Furthermore, G can be computed in
time O(n · polylog(n)).

Forbes and Kelly [FK18] do not carefully estimate the running time of their pseudorandom generator,
and only claim that it runs in polynomial time. The proof below, will prove the “furthermore” clause in the
theorem above.

Proof. (of the “furthermore” clause in Theorem 3.7) The construction of Forbes and Kelly works as follows:
Let k be a parameter to be chosen later. The generatorG is constructed iteratively, by settingG0 to be a 320k-
wise independent distribution, and Gi+1 = Di ⊕ (Ti ∧Gi) where Di is a 2k-wise independent distribution,
and Ti is a k-wise independent distribution. (Different copies of Di’s and Ti’s are sampled independently).
The final distribution is G = Gr where r is a parameter chosen by the construction.

Note that sampling a k-wise independent distribution X on n bits can be done by a deterministic pro-
cedure that receives a seed of length k log n, in time n · polylog(n). This can be done by the standard
Reed-Solomon based construction. Namely, encoding the k log n bit seed as k elements a0, . . . , ak−1 ∈ Fn
(here we assume w.l.o.g. that n is a power of 2) and for α ∈ [n] (which can be interpreted as α ∈ Fn)
setting Xα to be (the first bit of)

∑
0≤i<k aiα

i. This gives a k-wise independent distribution and can be
computed in time n · polylog(n), using univariate multipoint evaluation, that can be done with O(n log n)
field operations.

Forbes and Kelly show that taking r = O(log n) and k = O(s+ log n+ log(1/ε)) gives an ε-PRG for
any-order space s ROBPs. This gives total running time of r · n · polylog(n) = n · polylog(n).

This follows by the proof of [FK18, Lemma 4.2] which proves the correctness of the PRG with a slightly
different construction, but also applies to the construction described above.
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3.3 Averaging Samplers

The reader is referred to Goldreich’s survey [Gol97] on averaging samplers.

Definition 3.8 (Averaging Samplers). A function Samp : {0, 1}n → ({0, 1}m)t is an (ε, δ)-Sampler if
for every f : {0, 1}m → [0, 1], Pr(z1,...,zt)←Samp(Un)[|1t

∑
i∈[t] f(zi) − 1

2m
∑

x∈{0,1}m f(x)| > ε] ≤ δ. A
sampler has distinct samples if for every x ∈ {0, 1}n, the t elements in Samp(x) are distinct.

The next theorem follows from the “expander sampler”. This particular form can be found (for example)
in [Vad04].

Theorem 3.9. For every sufficiently large m and every ε ≥ δ > 0 such that m ≤ log(1/δ) there is an
(ε, δ)-sampler with distinct samples, Samp : {0, 1}O(log(1/δ)·poly(1/ε)) → ({0, 1}m)t for any t ≤ 2m such
that t ≥ poly(1/ε) · log(1/δ). Furthermore, Samp is computable in time t · poly(1/ε, log(1/δ)) and has
distinct samples.

3.4 Almost t-wise permutations

We also need the following notion of almost t-wise permutations.

Definition 3.10 (Almost t-wise independent permutations). A function π : {0, 1}d × [n]→ [n] is an (ε, t)-
wise independent permutation if:

• For every s ∈ {0, 1}d the function πs(i) = π(s, i) is a permutation over [n].

• For every distinct i1, . . . , it ∈ [n], the random variableR = (R1, . . . , Rt) defined byRj = π(s, ij) : s←
Ud, is ε-close to t uniform samples without repetition from [n].

Theorem 3.11. [KNR09] For every t and every sufficiently large n, there exists an (ε, t)-wise independent
permutation with d = O(t · log n + log(1/ε)). Furthermore, computing π(s, i) on inputs s ∈ {0, 1}d and
i ∈ [n] can be done in time poly(d, log n).9

We will use (ε, t)-wise independent permutations to permute strings. Consider the following example:
Let e ∈ {0, 1}n be a string with Hamming weight pn, and let π : {0, 1}d × [n] → [n] be an (ε, t)-
wise independent permutation. We will be interested in the distribution X = πUd(e) (here, π(e) is the
“permuted string” defined in Definition 3.1). We would like to apply “Chernoff style bounds for t-wise
independence” [BR94, SSS95] on X1, . . . , Xn. A technical issue is that it is not true that X1, . . . , Xn are
t-wise independent (even in the case that ε = 0). What is true is that for every t-tuple of distinct indices
i1, . . . , it ∈ [n], Pr[Xi1 = . . . = Xit = 1] ≤ pt + ε. The latter condition is sufficient to obtain Chernoff
style behavior (at least when ε is sufficiently small compared to pt) by the following lemma.

Lemma 3.12 (tail bounds for almost t-wise independent permuted strings). LetX1, ..., Xn be binary random
variables, such that for every set of distinct t indices i1, · · · , it ∈ [n], Pr[Xi1 = . . . = Xit = 1] ≤ µt. If
0 < δ ≤ 1 and t ≤ δ·µ·n

2 then

Pr[
n∑
j=1

Xj ≥ (1 + δ) · µ · n] ≤ e−Ω(δt)

9We will be interested in the time it takes to compute the permutation on all i ∈ [n] (namely given s, we want to compute
(π(s, i))i∈[n]) and will use n ·poly(d) as a bound on the time for this task. Note that this also gives that computing (π−1(s, i))i∈[n]

can be done within the same time bound.
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This type of lemma follows by using the approach of [SSS95]. It was applied for t-wise independent
permutations (in a related setup) in [DHRS07]. For completeness we provide a proof.

Proof. (of Lemma 3.12) We useX to denote the n bit long random variable composed of (X1, . . . , Xn). For
every t-tuple y = (i1, . . . , it) of indices in [n], letAy be the eventAy = {Xi1 = . . . , Xit = 1}. Let Y be an
independent, uniformly chosen t-tuple of indices in [n]. We have that Pr[AY ] ≤ µt. Let ` = (1 + δ) · µ · n.
Note that for every x ∈ {0, 1}n such that

∑
j∈[n] xj ≥ `, we have that:

Pr[AY |X = x] ≥
(
`
t

)(
n
t

) =
` · . . . · (`− t+ 1)

n · . . . · (n− t+ 1)
≥ (`− t+ 1)t

nt
≥ µt · (1 +

δ

2
)t.

This gives that,

Pr[AY ] ≥ Pr[AY ∩ {X ≥ `}] ≥ Pr[X ≥ `] · Pr[AY |X ≥ `] ≥ Pr[X ≥ `] · µt · (1 +
δ

2
)t.

Rearranging, we get that:

Pr[X ≥ `] ≤ Pr[AY ]

µt · (1 + δ
2)t
≤ µt

µt · (1 + δ
2)t

= e−Ω(δ·t).

3.5 Error-Correcting Codes

In this section we give definitions of the various notions of error correcting codes used in this paper. We
also state some previous constructions that will be used in this paper.

3.5.1 The standard notion of error correcting codes

We give a more general version of Definition 1.1 that discusses codes over non-binary alphabets, as well
as codes in Shannon’s scenario. For our purposes it is more natural to define codes in terms of a pair
(Enc,Dec) of encoding and decoding algorithms. Different variants are obtained by considering different
properties required by the encoding and decoding algorithms and different types of error patterns.

Definition 3.13 (Codes). Let k, n, q be parameters and let Enc : {0, 1}k → ({0, 1}log q)n be a function. We
say that Enc is an encoding function for a code that is:

• decodable from t errors, if t ∈ [n], and there exists a function Dec : ({0, 1}log q)n → {0, 1}k such that
for every m ∈ {0, 1}k and every e ∈ ({0, 1}log q)n with Hamming weight at most t, Dec(Enc(m) ⊕
e) = m.

• L-list-decodable from t errors, if the function Dec is allowed to output a list of size at most L, and for
every m ∈ {0, 1}k and every e ∈ ({0, 1}log q)n with Hamming weight at most t, Dec(Enc(m)⊕ e) 3
m.

• decodable from P , with success probability 1 − ν, if P is a distribution over ({0, 1}log q)n, 0 ≤
ν ≤ 1, and there exists a function Dec : ({0, 1}log q)n → {0, 1}k such that for every m ∈ {0, 1}k,
Pre←P [Dec(Enc(m)⊕ e) = m] ≥ 1− ν.
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A code has encoding time [resp. decoding time] T (·), if Enc [resp. Dec] can be computed in time
T (n log q). The code is explicit if both encoding and decoding run in polynomial time. (Naturally, this
makes sense only for a family of encoding and decoding functions with varying block length n, message
length k(n), and alphabet size q(n)).

The rate of the code is the ratio of the message length and output length of Enc, where both lengths are
measured in bits. That is the rate R = k

n·log q .

3.5.2 Linear Codes and Dual Distance

We also define the standard notion of linear codes.

Definition 3.14 (Linear codes and dual codes). Let q be a prime power, and let Fq denote the field with q
element. An [n, k]q linear code is a linear subspace of C ⊆ Fnq of dimension k. We say that C has distance
d, if the Hamming weight of every nonzero vector in C is at least d. Such codes are called [n, k, d]q codes.
A linear map Enc : Fkq → Fnq is an encoding function for C, if Enc(Fkq ) = C. For a code C, we use C⊥ to
denote the dual vector space. We say that C has dual distance d if C⊥ has distance d.

It is standard that C is an [n, k, 2t+ 1]q code iff C has a linear encoding function Enc : Fkq → Fnq that is
decodable from t errors. We will use the standard fact that encoding functions for codes with dual distance
r yield (r − 1)-wise dual independent distributions.

Lemma 3.15 ((t − 1)-wise independence from linear codes with dual distance t). Let Enc : Fkq → Fnq be
an encoding function for a linear [n, k]q-code C with dual distance t. Applying Enc on a uniformly chosen
message m← Fkq yields a distribution (Z1, . . . , Zn) over Fnq that is (t− 1)-wise independent, and every Zi
is uniformly distributed over Fq.

Proof. Applying Enc on some v ∈ Fk, can be seen as multiplying v by a generator matrix of C (which is a
transposed parity check matrix of C⊥). As C⊥ has distance t, every t − 1 columns of the generator matrix
of C are linearly independent, and the lemma follows.

3.5.3 Stochastic Codes

We restate Definition 1.2 using slightly more precise notation.

Definition 3.16 (Stochastic codes for channels). Let k, n, d be parameters and let Enc : {0, 1}k×{0, 1}d →
{0, 1}n be a function. Let C be a class of functions from n bits to n bits. We say that Enc is an encoding
function for a stochastic code that is:

• decodable for “channel class” C, with success probability 1−ν, if there exists a (possibly randomized)
procedure Dec : {0, 1}n → {0, 1}k such that for every m ∈ {0, 1}k and every C ∈ C, setting
X = Enc(m,Ud), we have that Pr[Dec(X ⊕ C(X)) = m] ≥ 1 − ν, where the probability is over
coin tosses of the encoding and decoding procedures.

• L-list-decodable for “channel class” C, with success probability 1−ν, if the procedure Dec is allowed
to output a list of size at most L, and Pr[Dec(X ⊕ C(X)) 3 m] ≥ 1 − ν, where the probability is
over coin tosses of the encoding and decoding procedures.

A code has encoding time [resp. decoding time] T (·), if Enc [resp. Dec] can be computed in time T (k +
n + d). The code is explicit if both encoding and decoding run in polynomial time. (Naturally, this makes
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sense only for a family of encoding and decoding functions with varying block length n, message length
k(n) and seed length d(n)).

The rate of the code is the ratio of the message length and output length of Enc, where both lengths are
measured in bits. That is the rate R = k

n .

3.5.4 Codes for binary-symmetric channels and related variants

We will make use of known constructions of codes for binary symmetric channels.

Definition 3.17 (Binary symmetric channel). Let BSCn
p denote the distribution over n bit strings in which

individual bits are i.i.d. and each is one with probability p.

There are constructions of codes with rate approaching 1 −H(p) that are decodable from BSCnp with
very high suvcess probability, and have linear time encoding and decoding [GI05].

We are interested in codes for an intuitively similar (but more general) scenario in which the error
distribution is obtained by taking a string e ∈ {0, 1}n of weight pn, an (ε, t)-wise independent permutation
π : {0, 1}d × [n]→ [n] and considering the error distribution e′ = πUd(e).

This distribution is somewhat similar to BSCp in the sense that if we project both distributions to a
“not too large” tuple of indices, the distributions are statistically close. More precisely, for every choice of
t distinct indices I = (i1, . . . , it), the distribution (BSCp)I and (πUd(e))I are (ε+ t2/n)-close in statistical
distance. This can be used to argue that current constructions for BSCp also work for πUd(e) (for certain
parameters).

However, for technical reasons, this isn’t sufficient for our purposes, and we will require that the code
has some additional structure (which we will use in our construction). We now explain the additional
structure that we need: The known codes for BSCp are constructed by code concatenation, and for technical
reasons, we will be interested in some properties of the inner and outer codes (and not just properties of the
concatenated code). We first give the following standard definition of code concatenation.

Definition 3.18 (Concatenated code). Given functions:

• Encout : {0, 1}kout → ({0, 1}log qout)nout , and

• Encin : {0, 1}kin → ({0, 1}log qin)nin ,

such that log qout = kin we define the concatenated encoding function Enc : {0, 1}kout → ({0, 1}log qin)nout·nin

denoted by Encout ◦Encin as follows: For iout ∈ [nout], iin ∈ [nin], and i = (iout − 1) · nin + iin we define
Enc(m)i = Encin(Encout(m)iout)iin .

Concatenated codes can be decoded by “concatenated decoding”.

Definition 3.19 (Concatenated decoding). Let Enc = Encout ◦ Encin be a concatenated code, and let
Decout : ({0, 1}log qout)nout → {0, 1}kout , Decin : ({0, 1}log qin)nin → {0, 1}kin be functions. For i ∈ [nout]
we define Deciin : ({0, 1}log qin)nout·nin → {0, 1}kin by:

Deciin(z) = (z(i−1)·nin+1, . . . , zi·nin).

The concatenated decoding function Dec : ({0, 1}log qin)nout·nin → {0, 1}kout is defined by:

Dec(z) = Decout(Dec1
in(z), . . . ,Decnout

in (z)).
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In the following theorem we revisit the code construction of [GI05] for BSCn
p , and observe that the

constructed concatenated code has some properties that we will use later on.

Theorem 3.20. For every constant 0 < p < 1/2, and every sufficiently small constant ε > 0, there exist
integer constants kin, nin, qout and real constants λ1, λ2, λ3 > 0 such that kin = log qout ≤ 1

ε7
, and for

infinitely many choices of nout there exist functions:

• Encout : {0, 1}kout → ({0, 1}log qout)nout ,

• Encin : {0, 1}kin → {0, 1}nin ,

such that:

• Rout = kout
nout·log qout

≥ 1 − ε
10 , and Encout is decodable from w = λ1 · nout errors with linear time

encoding and decoding.

• Rin = kin
nin
≥ 1 −H(p) − ε/10, and Encin is decodable from BSCnin

p with probability 1 − 2−λ2·nin .
This decoding is achieved by a function Decin that implements “maximum likelihood decoding”.

• Consequently, setting n = nout · nin, and qin = 2, the concatenated code Enc = Encout ◦ Encin :
{0, 1}kout → {0, 1}n is well defined, has rate R = kout

n ≥ 1 − H(p) − ε, and is encodable in time
O(n) (where the constant c hidden in the O(·) depends on ε, and c = c(ε) = 2poly(1/ε)).

• Let t ≤ n0.1, and let π : {0, 1}d × [n] → [n] be a (2−10·t, t)-wise independent permutation. Let
m ∈ {0, 1}kout , and let Am : {0, 1}n → {0, 1} be the function that on input e′ ∈ {0, 1}n, outputs one
iff

|
{
i ∈ [nout] : Deciin(Enc(m)⊕ e′) 6= Encout(m)i

}
| ≤ w

10
.

(Note that Am(e′) = 1 implies that concatenated decoding that is applied on Enc(m) ⊕ e′ indeed
recovers m).

For every e ∈ {0, 1}n of Hamming weight at most pn,

Pr[Am(πUd(e)) = 1] ≥ 1− 2−λ3·t.

• Consequently, for every e ∈ {0, 1}n of Hamming weight at most pn, the code Enc is decodable from
πUd(e) with probability 1 − 2−λ3·t. Furthermore, the concatenated decoding algorithm runs in time
O(n) (where the constant c hidden in the O(·) depends on ε, and c = c(ε) = 2poly(1/ε)).

The final item in Theorem 3.20 follows from the penultimate item. However, for our purposes, the final
item will not be sufficiently strong, and we will need to use the penultimate item (as well as the previous
items). The advantage of the penultimate item is that we get that for every m, there exists a space O(log n)
ROBP which implements the function Am, in contrast to the entire concatenated decoding algorithm that
does not seem to be implemented by small space ROBPs.

Theorem 3.20 follows by noticing that the proofs of known construction of codes for binary symmetric
channels (see e.g., [For65]) are achieved by code concatenation of codes with the properties listed above.
The fourth item follows by using Lemma 3.12 to analyze the behavior of this concatenated code on errors
from the distribution πUd(e). The proof appears in Appendix A.

Very similar arguments to the proof of Theorem 3.20 were made by Smith [Smi07] and in an early
version of [GS16].
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4 Raw Reed-Solomon Codes

For our intended application, we need linear binary [n, k]2 codes with:

• Relative distance (1/2− o(1)).

• Large dual distance of at least nΩ(1). (In fact, we need a slightly stronger property to be explained
below).

• Polynomial time encoding.

• Polynomial time unique decoding from p-fraction errors for every p < 1
4 .

• Polynomial time list-decoding with list size poly(1/ε) from (1
2− ε)-fraction errors, for every constant

ε > 0.

In this paper, we construct binary codes with the properties above. To the best of our knowledge, this is
the first construction of such codes.

First a slight abuse of notation: for this section only, we will use the word distance to denote relative
distance, as opposed to absolute distance. This helps with the exposition.

Reed Solomon codes exhibit all the properties above (in addition to constant rate, and larger dual dis-
tance) but only for large alphabets. As far as we are aware, there are only two known families of codes
over the binary alphabet which have Ω(1) distance and nΩ(1) absolute dual distance. The first family is
dual-BCH codes, but we do not know decoding algorithms for these codes from Ω(1)-fraction errors for
this setting of parameters (it is known [KS07, KS13] how to decode from Ω(1)-fraction errors only when
the absolute dual distance is O(log n)). The second family is based on Algebraic-Geometric codes (see the
appendix to [Shp09] for a detailed exposition). AG codes are generalizations of Reed-Solomon codes, and
retain many of the good features of Reed-Solomon codes while having the advantage of being realizable
over constant size alphabets. An AG code with suitable parameters over a constant size alphabet F2t has
Ω(1) distance and Ω(1) dual distance. To bring the alphabet down to binary, one can do code concatena-
tion. However, typically concatenation destroys dual distance. But not always! If we concatenate with a
trivial code,10 that maps F2t to t-bit strings, the absolute dual distance is preserved under concatenation.
On the other hand, using the trivial code makes the distance shrink by a factor t. This yields codes with
Ω(1) distance and dual distance with efficient decoding algorithms (these are the codes that we use to prove
Theorem 1.5). However the lower bound on the distance that follows is nowhere near11 1/2.

The binary codes that we construct here are obtained by concatenating Reed-Solomon codes (over a
large alphabet) with a different trivial code for each coordinate of the Reed-Solomon code. We call the
general class of such codes Raw Reed-Solomon codes. In the positive direction, concatenating with trivial
codes preserves the absolute dual distance, and we get the required dual-distance property. On the other
hand, since the outer Reed-Solomon code is over a large alphabet, the trivial codes must have superconstant
block-length, and thus o(1) distance. By default, concatenating with inner codes of o(1) distance leads to
the final codes having o(1) distance (O(1/ log n) to be precise). However, for special choices of the trivial
codes, we use some deep algebraic tools12 to give a direct analysis of the distance of these codes, which
miraculously turns out to be 1/2 − o(1). Finally, using the powerful list-decoding machinery available for

10In this paper, “trivial code” will always refer to bijective F2-linear maps Φ : F2m → Fm2 for some m. They are trivial
because their absolute minimum distance equals 1. Note that for any given m, there are many different choices of trivial codes
(corresponding to invertible m×m matrices over F2).

11The lower bound obtained on the distance of the resulting codes is always at most 5
84
< 0.06.

12The Weil bounds, which are also used to analyze the distance of dual-BCH codes.
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Reed-Solomon codes, we show that Raw Reed-Solomon codes can be list-decoded from nearly (1/2 − ε)-
fraction errors.

Reed Solomon codes have a lot of structure and many useful properties (in addition to their distance
properties) and so, we believe that the fact that Reed-Solomon codes have the additional properties listed
above (when viewed as binary codes appropriately) is of independent interest and may prove useful in other
applications.

In the theorem below, we focus on codes with the parameters that we require for our application. The
theorem below will follow from a more general result on Raw Reed-Solomon codes stated later.

Theorem 4.1 (Codes with large distance and dual distance). For every constant 0 < α < 1/2, and every
sufficiently large m, setting n = (2m − 1) · m, and k = nα, there is a binary linear [n, k]2-code C that
satisfies:

• C has a linear encoding map Enc : Fk2 → Fn2 that runs in time poly(n).

• C has relative distance (1
2 −O(( logn

n )
1
2
−α)) = (1

2 − o(1)).

• For every constant p < 1/4, Enc is decodable from p-fraction errors in time poly(n).

• There exists a universal constant b such that for every ε ≥ b
√
α, Enc is O( 1

ε2
)-list-decodable from

(1
2 − ε)-fraction errors in time poly(n).13

• C has absolute dual distance Ω( nα

logn).

• Moreover, define Enctrunc : Fk/22 → Fn2 by Enctrunc(x) = Enc(x ◦ 0k/2), and consider the linear
code C ′ = Enctrunc(Fk/22 ). It holds that C ′ has absolute dual distance Ω( nα

logn).

In the remainder of the section we introduce Raw Reed-Solomon codes, study their properties, and use
them to prove Theorem 4.1.

4.1 General Raw Reed-Solomon codes

Let q = 2m. We will discuss a family of binary codes that are derived from Reed-Solomon codes over Fq.
Start with an evaluation domain D ⊆ Fq and a degree bound d, and consider the Reed-Solomon code of

evaluations on D of polynomials of degree at most d over Fq. In order to convert this code to a binary code,
we also choose a sequence Φ = (Φx)x∈D, where each Φx is an F2-linear bijection between Fq and Fm2 .

In terms of this data, we define the Raw Reed-Solomon code RawRS[Fq, d,D,Φ] as follows. The
coordinates of the code are indexed by pairs (x, i) ∈ D×[m], and the codewords are indexed by polynomials
P (X) ∈ Fq[X] of degree at most d. The codeword corresponding to P (X) is c : D × [m]→ F2 given by:

c(x, i) = Φx(P (x))i.

This can also be expressed as the Reed-Solomon code concatenated with a different trivial code Φx : Fq →
Fm2 in each coordinate (in the spirit of Justesen [Jus72] and Thommesen [Tho83]).

A lot, but not all, of requirements for the code we desire are already satisfied by arbitrary Raw Reed-
Solomon codes. We now pick out two special codes in this family, SimpleRawRS and OddRawRS which do
satisfy all the requirements (and whose analysis will be more specialized).

13We remark that the constant hidden in the notation poly(n) here (and in the previous item) is universal and does not depend
on α. However, the choice of which m is sufficiently large, does depend on α.
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• SimpleRawRS: Let Φ be an F2-linear bijection from Fq to Fm2 . Let D = Fq \ {0}. For each x ∈ D,
define14 Φx(y) = Φ(xy) for all y, and take Φ = (Φx)x∈D. The Simple Raw Reed-Solomon code
SimpleRawRS[Fq, d,Φ] is defined to be RawRS[Fq, d,D,Φ].

In this code, the codeword corresponding to polynomial P (X) is obtained by writing down, for each
x ∈ D, the m bits of Φ(xP (x)). Observe that XP (X) is a polynomial of degree at most d+ 1 with 0
constant term. Thus, the codewords are obtained by taking a polynomial of degree at most d+ 1 with
0 constant term and writing down all its values using Φ. This is the way these codes are described in
the introduction.

• OddRawRS: Let Φ be an F2-linear bijection from Fq to Fm2 . Let D = Fq \ {0}. For each x ∈ D,
define15 Φx(y) = Φ(xy2) for all y, and take Φ = (Φx)x∈D. The Odd Raw Reed-Solomon code
OddRawRS[Fq, d,Φ] is defined to be RawRS[Fq, d,D,Φ].

In this code, the codeword corresponding to polynomial P (X) is obtained by writing down, for each
x ∈ D, the m bits of Φ(xP (x)2). Observe that XP (X)2 is a polynomial of degree at most 2d + 1
with only odd degree monomials. Thus, the codewords are obtained by taking a polynomial of degree
at most 2d + 1 with only odd degree monomials and writing down all its values using Φ. This is the
way these codes are described in the introduction.

Our results for OddRawRS are technically simpler and quantitatively stronger, but SimpleRawRS is arguably
a more natural code whose parameters are not far behind, so we feel it is interesting to see that too.

For contrast, it is also worth keeping in mind the following example:

• VerySimpleRawRS: Let Φ be an F2-linear bijection from Fq to Fm2 . Let D = Fq \ {0}. For each
x ∈ D, define Φx = Φ, and take Φ = (Φx)x∈D. The Very Simple Raw Reed-Solomon code
VerySimpleRawRS[Fq, d,Φ] is defined to be RawRS[Fq, d,D,Φ].

In this code, the codeword corresponding to polynomial P (X) is obtained by writing down, for each
x ∈ D, the m bits of Φ(P (x)). Thus, the codewords are obtained by taking a polynomial of degree at
most d and writing down all its values using Φ.

Note that this code is the usual concatenation of Reed-Solomon codes with the trivial code given by
the map Φ. Also note that this code is very closely related to SimpleRawRS: it is obtained by adding
the constant functions to a suitable SimpleRawRS.

Our plan now is as follows. First we study some properties of all Raw Reed-Solomon codes, including
the rate and dual-distance. Next we prove the list-decodability of all Raw Reed-Solomon codes: this is more
sophisticated, but still works in full generality.

Finally, we give a specialized analysis to show that SimpleRawRS and OddRawRS have good dis-
tance (nearly 1/2 for the setting of interest). This is in contrast to VerySimpleRawRS which has distance
O(1/ log n).

Lemma 4.2 (Easy Properties of Raw Reed-Solomon codes). Let Fq, d,D,m,Φ be as above, and let C =
RawRS[Fq, d,D,Φ]. Then:

1. The block-length of C is m · |D|.
2. The dimension of C is m · (d+ 1).

14Note that for x ∈ D, y 7→ xy is a linear bijection of Fq .
15Note that y 7→ y2 is a linear bijection of Fq .
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3. C has absolute dual distance at least (d+ 2).

Proof. The first two items are trivial.
To show the final item, we use an alternate characterization of the dual distance: a linear code has

absolute dual distance at least b if and only if the uniform distribution on the codewords of the code is
(b− 1)-wise independent.

Let P (X) ∈ Fq[X] be a uniformly random polynomial of degree at most d. We need to show that for
any set S ⊆ D × [m], the random variables (Φx(P (x))i)(x,i)∈S are independent.

To see this, first note that for

A = {x ∈ D | ∃i ∈ [m] with (x, i) ∈ S},

we have that the random variables (P (x))x∈A are uniform and independent. This is because |A| ≤ |S| ≤ d+
1, and the evaluations of uniformly random degree d polynomials are uniform and (d+1)-wise independent.

Next, we observe that for any x, setting Sx = {i ∈ [m] | (x, i) ∈ S}, the random variables (Φ(P (x))i)i∈Sx
are independent. This is because P (x) is uniformly distributed over Fq, and since Φ is a bijection, the image
under Φ of a uniformly random element of Fq is uniform on Fm2 .

Combining these facts, we get the desired (d+ 1)-wise independence.

4.2 List-decoding algorithm

We now give a list-decoding algorithm for (general) Raw Reed-Solomon codes, which is interesting in the
setting of polynomially small rate and where |D| = Ω(q).

Lemma 4.3 (Decodability of Raw Reed-Solomon codes). Let Fq, d,m,D,Φ be as above, and let C =
SimpleRawRS[Fq, d,Φ]. Let η > 0, and suppose

d ≤ η2 · q
O(η2)

q
· |D|.

(If |D| = Ω(q), this is roughly the same as d ≤ η2 · |D|O(η2).) Let n = m · |D| be the block-length of C.
Then C is list-decodable from 1/2− η fraction errors in time poly(n) with list size O(n2).

Proof. We use the natural 2-stage list-decoding strategy for concatenated codes. This will reduce our prob-
lem to list-recovery of Reed-Solomon codes, for which we have the following fundamental result.

Theorem 4.4 (List-recovery of Reed-Solomon codes [Sud97, GS99]). Suppose we are given, for each x ∈
D, an “input list” Lx ⊆ Fq with |Lx| ≤ `. Then we can find, in poly(q) time, the list of all polynomials
P (X) of degree at most d such that:

Pr
x∈D

[P (x) ∈ Lx] ≥ α,

provided:

α ≥

√
d`

|D|
.

Furthermore, the output list size is at most O(q2).
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Let w : D×m→ F2 be a given received word. For x ∈ D, let w(x) ∈ Fm2 denote the vector whose ith
coordinate is w(x, i).

For each x ∈ D, we define the input-list Lx ⊆ Fq as follows:

Lx = {u ∈ Fq | ∆(Φx(u), w(x)) ≤ 1/2− η/2}.

Then for any c ∈ C with ∆(w, c) < 1/2− η, we have that:

Pr
x∈D

[c(x) ∈ Lx] ≥ η/2.

This is because Ex∈D[∆(w(x), c(x))] = ∆(w, c) < 1/2− η, and so by Markov’s inequality,

Pr
x∈D

[∆(w(x), c(x)) < 1/2− η/2] > η/2. (1)

We have that each Lx has size

` = V ol(Ball of radius (1/2− η/2) in Fm2 ) ≤ 2(1−Ω(η2))m = q1−Ω(η2).

Thus we have that √
d`

|D|
≤

√
dq1−Ω(η2)

|D|
≤ η/2.

Thus the list-recovery algorithm of Theorem 4.4 will find all P (X) ∈ Fq[X] of degree at most d such
that

Pr
x∈D

[P (x) ∈ Lx] ≥ η/2.

By Equation (1), all the codewords we are interested in will be recovered by this procedure.
We summarize the algorithm below:

• Create, for each x ∈ D, an input list Lx ⊆ Fq.
• Use the Reed-Solomon list-recovery algorithm to find all polynomials P (X) for which P (x) ∈ Lx

for a noticeable fraction of x ∈ D.

• For each such polynomial P (X), include the corresponding codeword c : Fq × [m] → F2 in the
output list.

4.3 Explicit RawRS codes with good distance

Now we come to the most delicate part: the minimum distance.
In general, a Raw Reed-Solomon code could have minimum distance as small as 1/m = O(1/ log n).

Indeed VerySimpleRawRS does have small distance. If we take some α ∈ Fq for which Φ(α) has abso-
lute weight equal to 1, then the codeword of a VerySimpleRawRS code which corresponds to the constant
polynomial α has minimum distance O(1/ log n).

Nevertheless, the following results shows that OddRawRS and SimpleRawRS have good minimum dis-
tance. Our first result shows that OddRawRS has distance 1/2 − o(1) for d = o(q1/2). Our second result
shows that SimpleRawRS has distance about 1−ε

2 when d < qε for any ε < 1/2 (and in particular the
distance is 1/2− o(1) for d = qo(1)).
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Lemma 4.5 (Distance of OddRawRS). Let Fq, d,m,Φ be as above, and let C = OddRawRS[Fq, d,Φ].
Then C has minimum distance at least (

1

2
− 2d
√
q

)
.

Proof. The key ingredient in the proof is the Weil bound on additive character sums.
First we recall the field trace function Tr : Fq → F2. This is an F2-linear function given by:

Tr(x) = x+ x2 + x4 + . . .+ x2i + . . .+ x2m−1
.

Theorem 4.6 ([Wei48]). Let Tr : Fq → F2 denote the finite field trace. Let R(X) ∈ Fq[X] be a nonzero
polynomial of degree at most d with only odd degree monomials. Then:∣∣∣∣∣∣

∑
x∈Fq

(−1)Tr(R(x))

∣∣∣∣∣∣ ≤ (d− 1)
√
q.

It says that for low degree polynomials R with only odd degree monomials, Tr(R(x)) is approximately
uniformly distributed over F2. The hypothesis about odd degree is needed to avoid pathological situations
where Tr(R(x)) is constant (for example, Tr(x + x2) = 0 for all x). The statement above can be found
in [Sch06, Chapter II.2, Theorem 2E]. Elementary proofs were given by Stepanov, Schmidt and Bombieri
(see [Sch06, Mor93, Kop10] for expositions).

We also need some simple facts about Tr.

• Every F2-linear function g : Fq → F2 is of the form g(x) = Tr(βx) for some β ∈ Fq.
• Tr(y) = Tr(y2) for all y ∈ Fq.

By the first fact above, there are β1, . . . , βm ∈ Fq such that Φ : Fq → Fm2 is given by:

Φ(y) = (Tr(β1y),Tr(β2y), . . . ,Tr(βmy)).

Since Φ is injective, we get that β1, . . . , βm are linearly independent over F2, and thus are a basis for Fq
over F2.

Let c : Fq × [m] → F2 be a nonzero codeword. We break it into m functions c1, c2, . . . , cm : Fq → F2

given by:
ci(x) = c(x, i).

It will turn out that each ci is a nonzero codeword of a dual-BCH code.
Let P (X) be the polynomial underlying c. We have deg(P (X)) ≤ d. Let P (X) =

∑d
j=0 γjX

j .
By definition of OddRawRS, we have Φx(y)i = Tr(βixy

2) = Tr(βixP (x)2). The crucial point is that

ci(x) = Φx(P (x))i = Tr(βixP (x)2)

= Tr

βix
∑
j≤d

γ2
j x

2j


= Tr

βi ∑
`≤2d+1,` odd

γ2
(`−1)/2x

`


= Tr(Ri(x)),
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where:
Ri(X) =

∑
`≤2d+1,` odd

βiγ
2
(`−1)/2X

`

is a nonzero polynomial of degree at most 2d+ 1 with only odd degree monomials. This allows us to apply
the Weil bound (Theorem 4.6) directly. It tells us that for all i ∈ [m],∣∣∣Pr

x
[Tr(Ri(x)) = 0]− Pr

x
[Tr(Ri(x)) = 1]

∣∣∣ ≤ 2d
√
q

+
1

q
.

So, using wt to denote the relative weight,

wt(ci) = Pr
x∈D

[Tr(Ri(x)) 6= 0] ≥
(

1/2− d
√
q
− 1

2q

)
.

Averaging over all i, we get that

wt(c) = Ei∈[m][wt(ci)] ≥
(

1/2− d
√
q
− 1

2q

)
.

Thus the minimum distance of C is at least that quantity, as desired.

Lemma 4.7 (Distance of SimpleRawRS). Let Fq, d,m,Φ be as above, and let C = SimpleRawRS[Fq, d,Φ].
Then C has minimum distance at least(

1− log(d+ 1)

log q

)(
1

2
− d
√
q

)
.

Proof. The proof is very similar to the previous one.
Again we have a basis β1, . . . , βm of Fq over F2 such that

Φ(y) = (Tr(β1y),Tr(β2y), . . . ,Tr(βmy)).

Let c be a nonzero codeword. We define c1, . . . , cm : D → F2 as before:

ci(x) = c(x, i).

Here again we will get that the ci are codewords of the dual-BCH code. However, unlike the previous
proof, here it might be the case that some ci is identically 0. We will show that at most log2(d+ 1) of these
ci are identically 0, and the remaining ci have weight at least

(
1
2 −

d√
q

)
. This will imply that:

wt(c) ≥ Ei∈[m][wt(ci)] ≥
(

1− log(d+ 1)

log q

)(
1

2
− d
√
q

)
,

and thus the minimum distance of C is at least that quantity, completing the proof.
Let P (X) be the polynomial underlying c. We have deg(P (X)) ≤ d. Let P (X) =

∑d
j=0 γjX

j . By
construction, ci(x) = Tr(βixP (x)). The polynomial βiXP (X) may have monomials of even degree, and
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so we cannot directly apply Theorem 4.6 to it. Instead we will reduce the even degree monomials using the
identity Tr(y2) = Tr(y), and then hope that the reduction does not leave us with the zero polynomial.

βiXP (X) = βi

d+1∑
j=1

γj−1X
j


=

d+1∑
j=1

βiγj−1X
j

=
∑

`≤d+1,` odd

 ∑
r≥0,2r`≤d+1

βiγ(`·2r−1)X
`·2r

 ,

where in the last equality, we grouped all the powers ofX according to the largest odd factor of the exponent
(for example, X3, X6, X12, X24, . . . are all in the same group).

Thus for every x ∈ Fq, we have:

Tr(βixP (x)) =
∑

`≤d+1,` odd

 ∑
r≥0,2r`≤d+1

Tr(βiγ(`·2r−1)x
`·2r)


=

∑
`≤d+1,` odd

 ∑
r≥0,2r`≤d+1

Tr

((
β

1/2r

i γ
1/2r

(`·2r−1)x
`
)2r
)

=
∑

`≤d+1,` odd

 ∑
r≥0,2r`≤d+1

Tr
(
β

1/2r

i γ
1/2r

(`·2r−1)x
`
) Since Tr(y2r) = Tr(y)

= Tr

 ∑
`≤d+1,` odd

 ∑
r≥0,2r`≤d+1

β
1/2r

i γ
1/2r

(`·2r−1)

x`


= Tr

 ∑
`≤d+1,` odd

E`(βi)x
`

 ,

where E` : Fq → Fq is the function

E`(y) =
∑

r≥0,2r`≤d+1·
y1/2rγ

1/2r

(`·2r−1).

Let Ri(X) ∈ Fq[X] be given by:

Ri(X) =
∑

`≤d+1,` odd
E`(βi)X

`.

Summarizing, we have
ci(x) = Tr(Ri(x)).

Since P (X) is a nonzero polynomial, some coefficient γj0 6= 0. Let j0 = `0 · 2r0 − 1, where `0 is odd.
Observe that E`0 satisfies:
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1. E`0 is F2-linear,

2. E`0(y) = A(y1/2ρ) for some nonnegative integer ρ and some polynomial A(Z) ∈ Fq[Z] of degree at
most d+ 1,

3. A(Z) has some power of γj0 as a coefficient of some monomial, and is thus a nonzero polynomial.

These three facts imply that E`0 can vanish on at most log2(d+1) of the βi. Indeed, since the βi are linearly
independent, if E`0 vanishes on t of them, then by linearity we get that E`0 vanishes on their span, which
has 2t points. However E`0 cannot have more than d + 1 roots (since A has degree at most d + 1). Thus
t ≤ log2(d+ 1).

In particular, this means that at most log2(d+ 1) of the Ri(X) are identically zero.
Fix an i where Ri(X) is not identically 0. We have that Ri(X) is a nonzero polynomial of degree at

most d+ 1 with only monomials of odd degree. Thus Theorem 4.6 applies. It tells us that∣∣∣∣ Pr
x∈D

[Tr(Ri(x)) = 0]− Pr
x∈D

[Tr(Ri(x)) = 1]

∣∣∣∣ ≤ d+ 1
√
q

+
1

q
.

Then we get:

wt(ci) = Pr
x∈D

[Tr(Ri(x)) 6= 0] ≥
(

1

2
− d+ 1

2
√
q
− 1

q

)
.

Since there are at least log2 q − log2(d+ 1) such i, we get the desired claim about the weight of c. This
completes the proof of the minimum distance of SimpleRawRS codes.

4.4 Discussion

1. Consider (general) Raw Reed-Solomon codes with D = Fq and d ≤ q0.01. Somewhat surprisingly,
even though these codes need not have Ω(1) distance, they all have polynomial list-size for list-
decoding upto radius almost 1/2.

Indeed, since the linear bijections Φx are completely arbitrary, we can choose them so that some
particular polynomial P (X) has the property that Φx(P (x)) has Hamming weight ≤ 1 for all x ∈ D.
The codeword of C corresponding to P (X) will have relative Hamming weight 1/m = Θ(1/ log n).
However, as the list-decodability implies, the underlying algebraic structure somehow forces that one
cannot choose the (Φx)x∈Fq so that this happens for many other P (X).

2. Thommesen [Tho83] showed that if we choose the entries of Φ = (Φx)x∈Fq independently and
uniformly at random (i.e., each Φx is an independently chosen uniformly random F2-linear bijection
from Fq to Fm2 ), then for all d the resulting Raw Reed-Solomon code C = RawRS(Fq, d,D,Φ),
for arbitrary D, meets the Gilbert-Varshamov bound16 with high probability. In particular, even for
d = Ω(|D|) (when the rate is Ω(1)), there are Raw Reed-Solomon codes that have distance Ω(1). It
is easy to see that no Simple Raw Reed-Solomon code has this property.

Finding an explicit such code seems like a deep and very interesting open question.

3. VerySimpleRawRS and SimpleRawRS are closely related, yet have very different minimum distances.
The results about SimpleRawRS explain the structure of VerySimpleRawRS. VerySimpleRawRS is

16The Gilbert-Varshamov bound R = 1 − H(δ) is the best known rate for codes with relative distance δ. This result is not
constructive - deterministically constructing codes that meet this bound is a central open question.
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the space spanned by SimpleRawRS along with codewords corresponding to the constant polynomi-
als. SimpleRawRS has good minimum distance, it is only the small dimensional space of constant
polynomials that spoils the minimum distance. This also explains why VerySimpleRawRS has good
list-decodability despite having bad distance.

4. An important fact underlying our analysis of the distance of SimpleRawRS and OddRawRS is that
Raw Reed-Solomon codes are just a bunch of (correlated) dual-BCH codewords written together.
We don’t know how to decode dual-BCH codes efficiently, but if we take about log n dual-BCH
codewords together, then this resulting code magically can be decoded, while still retaining the good
distance and dual distance of dual-BCH codes.

4.5 Proof of Theorem 4.1

We can now put everything together and prove Theorem 4.1.

Proof. Take q = 2m, and let d = qα be an even number. Let Φ : Fq → Fm2 be an arbitrary F2-linear
bijection. Take C = OddRawRS[Fq, d,Φ]. Recall that this code is the Raw Reed-Solomon code with
evaluation domain D = Fq \ {0} with certain special Φx : Fq → Fm2 .

We now specify a linear encoding map for C. We take the encoding map Enc : Fk2 → Fn2 to be
the one which partitions the k input bits into blocks of size m, interprets the ith block as specifying (in
an F2-linear way) the coefficient of the Xi monomial in a polynomial P (X), and outputs the codeword
c of C corresponding to the polynomial P (X). Then clearly Enctrunc is simply the encoding map of
C ′ = OddRawRS[Fq, d/2,Φ].

Since OddRawRS is an instance of RawRS, we can apply Lemma 4.2. It gives us the following basic
properties of C:

1. The blocklength n of C equals m · (2m − 1).

2. The dimension k of C equals m · (d+ 1) ≥ m · qα ≥ m1−α · nα.

3. The absolute dual distance of C is at least d+ 2 ≥ qα ≥
(

n
logn

)α
.

Apply the same lemma toC ′ tells us that the absolute dual distance ofC ′ is at least d/2+2 ≥ Ω
((

n
logn

)α)
.

Next we invoke Lemma 4.5. This is the place where we use the specific structure of Odd Raw Reed-
Solomon codes. We get that C has distance at least:

δ =
1

2
−O

(
qα

q

)
≥ 1

2
− n−Ω(1).

Next we invoke Lemma 4.3. Set η = b
√
α for some absolute constant b. Since |D| = q − 1, we get that

d = qα ≤ η2qO(η2) ≤ η2qO(η2) · |D|
q
.

Thus C can be list-decoded from 1/2 − η fraction errors in time poly(q) ≤ poly(n). As an immediate
consequence, since 1/2 − η > δ/2, we get that C can be unique decoded from δ/2 > 1/4 − o(1) > p
fraction errors in polynomial time: we simply run the list-decoder and find the unique (if any) element of
the output list which is within distance p from the received word.

The list-size guaranteed by Lemma 4.3 only implies that the list-size is at most poly(n), which is weaker
than what we want. However now we only seek a combinatorial bound on the list-size, and this follows
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immediately from the Johnson bound [Joh62], which states that binary codes with minimum distance ≥
1/2− o(1) have list-size at most O(1/ε2) for list-decoding from (1/2− ε)-fraction errors.

This completes the proof of the theorem.

5 Stochastic control codes

In this section we consider a more stringent notion of stochastic codes that are decodable from t errors.
We will also require that such codes have an additional “pseudorandom property”, namely that for every
message m ∈ {0, 1}k, Enc(m,Ud) is pseudorandom for small space ROBPs.

Definition 5.1 (Pseudorandom stochastic Codes decodable from errors). Let k, n, d be parameters and let
Enc : {0, 1}k × {0, 1}d → {0, 1}n be a function. We say that Enc is an encoding function for a stochastic
code that is:

• ε-pseudorandom for a class C of functions from n bits to one bit, if for everym ∈ {0, 1}k, Enc(m,Ud)
is ε-pseudorandom for C.

• decodable from t errors, if t ∈ [n], and there exists a function Dec : {0, 1}n → {0, 1}k such that for
every m ∈ {0, 1}k, s ∈ {0, 1}d, and e ∈ {0, 1}n with Hamming weight at most t, Dec(Enc(m, s)⊕
e) = m.

• L-list-decodable from t-errors, if the function Dec is allowed to output a list of size at most L, and for
every m ∈ {0, 1}k, s ∈ {0, 1}d, and e ∈ {0, 1}n with Hamming weight at most t, Dec(Enc(m, s)⊕
e) 3 m.

A code has encoding time [resp. decoding time] T (·), if Enc [resp. Dec] can be computed in time T (k +
n+d). (Naturally, this makes sense only for a family of encoding and decoding functions with varying block
length n, message length k(n) and seed length d(n)).

Remark 5.2 (This notion is only interesting for pseudorandom codes). We remark that the notion of stochas-
tic codes decodable (or list-decodable) from t-errors is not interesting by itself. This is because for any such
code Enc(m, s), we can define a standard (not stochastic) code Enc′(m) = Enc(m, s′) for some fixed seed
s′, and this code will be decodable (or list decodable) from t-errors.

This means that designing stochastic codes that are decodable from t errors is a harder task than de-
signing standard codes that are decodable from errors, and we don’t gain (and in fact make our task more
difficult) by allowing Enc to receive a seed.

This notion of codes decodable from errors becomes interesting when it is coupled with the pseudoran-
domness requirement. Loosely speaking, one can think of such codes as “standard codes” with an additional
pseudorandomness property.

Remark 5.3 (The use of this notion in past work). Similar notions appear in [GS16, SS16]. Specifically,
Guruswami and Smith [GS16] considered a notion similar to “list-decodable from errors” with the stronger
requirement that the decoding function needs to produce the randomness s, in addition to the message m.

Shaltiel and Silbak [SS16] referred to this stronger requirement as “strongly list-decodable” and to the
weaker notion defined here as “weakly list-decodable”. The fact that the weaker notion (in which decoding
does not need to produce the randomness) suffices for the intended application of stochastic codes for
bounded channels, was key in [SS16] (as this weaker codes are easier to construct). The same also holds for
this paper, as the list-decoding algorithms that we construct will not be able to reproduce the randomness s
used by the encoding.
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The main result of this section (that is stated in the theorem below) is a construction of stochastic codes
that are pseudorandom for small space ROBPs. We plan to use these codes to encode very short strings, and
so, their rate is not that important to us. The construction uses the OddRawRS of Section 4.

The theorem below gives a construction of a stochastic code that will be used as a “control code” in the
construction of Section 6. We will use this “control code” in the proof of Theorem 1.4, which is our main
construction for bounded channels.

Theorem 5.4 (Stochastic control codes for space nΩ(1), with list-decoding up to 1
2 ). For every constant

β > 0 there exists a constant 0 < α ≤ 0.1 such that for every sufficiently large m, setting n = (2m−1) ·m,
k = nα, d = n log n, and s = nα

log3 n
, there is a stochastic code Enc : {0, 1}k × {0, 1}d → {0, 1}n that is:

• 2−s-pseudorandom for any-order space s ROBPs.

• For every constant p < 1/4, Enc is decodable from pn errors in time poly(n).

• For every constant ε > β, Enc is O(1/ε2)-list decodable from (1
2 − ε) · n errors in time poly(n).

• There exists a constant c, such that Enc can be computed in time nc. Furthermore, encoding nc inputs
takes “amortized time”O(n · log2 n), namely, for every (m1, s1), . . . , (mnc , snc) ∈ {0, 1}k×{0, 1}d,
computing (Enc(mi, Si))(i∈[nc]) takes time nc ·O(n · log2 n).

In the construction proving Theorem 1.4 we will apply the stochastic control code many times, and
this is why we care about amortized encoding time (that can be made quasilinear) rather than the time of
encoding one message.

We can also get a different tradeoff that gives pseudorandomness for larger space. However, this comes
with a cost of decoding only from p0 · n errors for some small constant p0 > 0 (rather than a number of
errors that approaches 1

2 · n). The encoding algorithm for this code is also less efficient than the one in
Theorem 5.4, and we don’t get encoding in amortized linear time. The theorem below will be used in the
proof of Theorem 1.5.

Theorem 5.5 (Stochastic control codes for space n/polylog(n), that decode from few errors). There exist
constants pmax > 0, and R > 0 such that for every sufficiently large m, setting n = 8m − 8, k = Rn,
d = n log n, and s = n/ log2 n there is a stochastic code Enc : {0, 1}k × {0, 1}d → {0, 1}n that is:

• 2−s-pseudorandom for any-order space s ROBPs.

• Enc is decodable from pmax · n errors in time poly(n).

• Enc is encodable in time poly(n).

In the remainder of the section we prove Theorem 5.4 and Theorem 5.5. In Section 5.1 we revisit the idea
of “bounded independence plus noise” of [HLV18, LV17, FK18]. We state and prove a quantitative variant
of this approach that will be used in our proof. In Section 5.2 we use the method of “bounded independence
plus noise” to transform linear codes with certain additional properties into stochastic control codes that are
pseudorandom for ROBPs. Finally, in Section 5.3 we prove Theorem 5.4 (by relying on the OddRawRS of
Section 4) and Theorem 5.5 (by relying on algebraic geometric codes of Garcia and Stichtenoth [GS96]).

5.1 Bounded independence plus low weight noise fools ROBPs

Haramaty, Lee and Viola [HLV18] showed that “k-wise independence plus low weight noise” is pseudoran-
dom for certain classes of distinguishers. Specifically, they consider xoring a k-wise independent distribu-
tion Dn

k on n bits, with low weight noise, chosen according to BSCn
η for some small η > 0. They show

32



that this distribution, namely Dn
k ⊕ BSCn

η (where the two distributions are independent) is pseudorandom
for small space ROBPs if k is sufficiently larger than n2/3, and η > 0 is a positive constant (that can be
arbitrarily small).

This result is specifically appealing as this gives a distribution that is pseudorandom for ROBPs, regard-
less of the order in which they read the n bits. However, it requires a very large seed length, of at least n2/3,
(even for generating the distribution Dn

k ).
We are interested in constructing stochastic control codes (which combine requirements from coding

theory and pseudorandomness) and will make use of the particular structure of the distribution of [HLV18]
(in addition to their pseudorandomness properties). More specifically, the fact that w.h.p. BSCη has low
hamming weight, will be important in our intended application.

Unfortunately, for our intended application, taking k > n2/3 is too large, and we need k to be smaller.
Subsequent work [LV17, FK18], gives pseudorandom distribution in which k is much smaller, but they use
a different distribution in which the “noise distribution” BSCη is replaced by distributions which have large
hamming weight of ≈ n

4 ). Such large weight is not useful for our application.17

In this paper we observe that the ideas and technique use by Forbes and Kelly [FK18] to reduce the
amount of independence for “high weight noise”, can also be applied in the case of noise with low hamming
weight. This is stated precisely in the following theorem.

Theorem 5.6 (Improved analysis for [HLV18]). For every integers n, s and ε, η > 0, the distribution Dn
k ⊕

BSCn
η whereDn

k is independent of BSCn
η , and is k-wise independent over {0, 1}n, for k = O( s+logn+log(1/ε)

η ),
is ε-pseudorandom for any-order space s ROBPs.

Note that Theorem 5.6 kicks in, whenever k > log n whereas the previous analysis by [HLV18] only
kicked in if k ≥ n2/3.

Proof. Forbes and Kelly [FK18, Lemma 6.3] show that the distribution Dn
2k ⊕ (Tnk ∧ Un) where the three

distributions are independent, and:

• Dn
2k is 2k-wise independent over {0, 1}n.

• Tnk is k-wise independent over {0, 1}n.

is ε-pseudorandom for width w = 2s ROBPs, with ε = nw
2k/2

. We first note that BSCn
η = BSCn

2η ∧Un. Thus,
if we change Dn

k to Dn
2k (which we can do because of the O(·) notation in our statement) we can think of

our target distribution Dn
2k⊕BSCn

η as Dn
2k⊕ (BSCn

2·η ∧Un). Consequently, in order to prove our result, we
need to show that the analysis of [FK18] can be carried out in case Tnk is replaced by BSC2η. This is indeed
the case, and the analysis gives ε = nw · (1− 2η)k/2 under this modification. This is sufficient to derive our
result.

On an intuitive level, this follows because the distribution Tnk is only used to argue that if α ∈ {0, 1}n is
a “Fourier coefficient” with weight k, then Pr[Tnk ∧α = 0] = (1

2)k. The distribution BSCn
2η (which plays the

role of Tnk in our case) gives the similar (though slightly weaker) bound of Pr[BSCn
2η∧α = 0] = (1−2η)k,

and this suffices for the argument.
More precisely, inspecting the proof of [FK18, Lemma 6.3], one can observe that the only place where

a specific property of the distribution Tnk is used is at the final equality in the proof of Lemma 6.2, and that

17Lee and Viola [LV17] and Forbes and Kelly [FK18] consider the noise distribution Tnk ∧Un (where Tnk is a k-wise independent
distribution). Their motivation is that using this approach, one can think of Tnk as selecting approximately n/2 of the n indices,
and then placing uniform bits on these n/2 indices. This view enables a recursive construction in which the n/2 uniform bits are
replaced with pseudorandom bits, and this approach can yield pseudorandom generators with polylogarithmic seed [FK18].
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replacing Tnk with BSCn
2η yields a version of Lemma 6.2. in which the term (1

2)k. is replaced by (1− 2η)k.
Finally, Lemma 6.2 is used to derive the last inequality in Lemma 6.3. and substituting the modified quantity
gives the final result. (The rest of the proof goes through unchanged).

5.2 Linear codes with large dual distance yield pseudorandom stochastic codes

In this section we show that linear codes with large dual distance can be used to construct stochastic control
codes.

In the definition below we define a function BSCn
η (·) which when given uniform input, generates the

distribution BSCn
η . We then consider a truncated version BSCn,trunc

η (·) which evaluates to 0n if the gener-
ated string has hamming weight larger than 2η · n. This is done to guarantee that with probability one, over
a uniform input, BSCn,trunc

η produces a string with hamming weight ≤ 2η · n.

Definition 5.7 (Generating and truncating BSC). For an integer k, η = 1
2k

, and an integer n, we define the
function BSCn

η : {0, 1}n·log(1/η) → {0, 1}n by BSC(s)i = 1 iff s(i−1)·log(1/η)+1, . . . , si·log(1/η) = 1, so that
BSCn

η (Un·log(1/η)) is the distribution BSCn
η .

The truncated version BSCn,trunc
η : {0, 1}n·log(1/η) → {0, 1}n is defined as follows: Given s ∈

{0, 1}n·log(1/η), if BSCn
η (s) has hamming weight larger than 2η · n, then BSCn,trunc

η (s) is set to 0n, and
otherwise, it is set to BSCn

η (s).

Note that by a multiplicative Chernoff bound, the statistical distance between BSCn
η (Un·log(1/η)) and

BSCn,trunc
η (Un·log(1/η)) is 2−Ω(n). (This will allow us to replace the former by the latter).

The next definition shows how to convert a linear code Enc into a stochastic code Encη (and we soon
show that Encη is pseudorandom for any-order small space ROBPs).

Definition 5.8 (stochastic control codes from linear codes). Given a function Enc : {0, 1}k → {0, 1}n, we
define Enctrunc : {0, 1}k/2 → {0, 1}n by Enctrunc(x) = Enc(x ◦ 0k/2).

Given a function Enc : {0, 1}k → {0, 1}n and η > 0, we define d = k/2 + n · log(1/η), and the
function Encη : {0, 1}k/2×{0, 1}d → {0, 1}n as follows: Given inputs m ∈ {0, 1}k/2 and s ∈ {0, 1}d, we
interpret s as a pair s = (s1, s2) where s1 ∈ {0, 1}k/2 and s2 ∈ {0, 1}n·log(1/η), and define:

Encη(m, s) = Enc(s1 ◦m)⊕ BSCn,trunc
η (s2)

The following lemma shows that if Enc is a linear encoding map for a code with large dual distance,
then Encη is a stochastic code which is pseudorandom, and inherits the decoding capabilities of Enc.

We plan to apply the stochastic code on many inputs, and are therefore interested in the amortized
encoding time. The last item of the following lemma says that if k is sufficiently small compared to n,
encoding Encη takes amortized quasilinear time even if one evaluation of Enc takes polynomial (but not
necessarily quasilinear) time.

Lemma 5.9. Let Enc : Fk2 → Fn2 be a linear function. Let η > 0, and d = k/2 + n · log(1/η).

• If the linear code C ′ = Enctrunc(Fk/22 ) has dual distance r ≥ 10 logn
η , then Encη : {0, 1}k/2×{0, 1}d

is 2−s-pseudorandom for any-order, space s ROBPs, for s = Ω(r · η).

• If Enc is decodable [resp. L-list decodable] from pn errors, then Encη is decodable [resp. L-list
decodable] from (p− 2η) · n errors. Furthermore, the decoding time for Encη is the same as that of
Enc.
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• Computing Encη takes time O(n · log(1/η)) plus the time it takes to compute Enc.18

• If k ≤ n0.1 and Enc can be computed in time nc for some constant c, then computing Encη on nc

pairs (m1, s1), . . . , (mnc , snc) ∈ {0, 1}k/2×{0, 1}d, takes time nc ·O(n · (log2 n+ log(1/η))) (that
is amortized time O(n · (log2 n+ log(1/η)))).

Proof. We start with the first item. By Lemma 3.15 we have that Enctrunc(Uk/2) is (r−1)-wise independent.

Let Encsuf : Fk/22 → Fn2 be the function Encsuf(x) = Enc(0k/2◦x). We first observe that using the linearity
of Enc:

Enc(s1 ◦m) = Enctrunc(s1)⊕ Encsuf(m)

It follows that for every m ∈ {0, 1}k/2, Enc(Uk/2 ◦m) = Enctrunc(Uk/2)⊕Encsuf(m) is also (r−1)-wise
independent. Therefore,

Encη(m,Ud) = Enc(Uk/2 ◦m)⊕ BSCn,trunc
η (Un·log(1/η)),

is 2−Ω(n)-close to a distribution of the form Dn
r−1 ⊕BSCn

η , for some (r − 1)-wise independent distribution
Dn
r−1. Therefore, Encη(m,Ud) is a distribution that is very close to “(r − 1)-wise independent plus low

weight noise”. By Theorem 5.6 with ε = 2−2s, Dn
r−1 ⊕BSCn

η is 2−2s-pseudorandom for any-order ROBPs
with space Ω(r · η)− log n− 2s ≥ s for our choice of parameters.

The distribution Encη(m,Ud) is therefore ε′-pseudorrandom for any-order ROBPs with space s, for
ε′ = 2−2s + 2−Ω(n) ≤ 2−s by noting that s ≤ r ≤ n and choosing the constant hidden in the definition of s
to be sufficiently small.

For the second item, note that if we encode a messagem, by Encη(m, s) = Enc(s1◦m)⊕BSCn,trunc
η (s2)

and xor it with an error vector e ∈ {0, 1}n is of hamming weight (p−2η)·n, then (as the hamming weight of
BSCn,trunc

η (s2) is at most 2η ·n) we obtain a string that is within hamming distance (p−2η) ·n+2η ·n = pn
from Enc(s1 ◦m). Consequently, decoding (or list decoding) is guaranteed to decode (or list decode) the
message s1 ◦m from which we can recover m.

The third item follows directly by construction.
For the fourth item, we note that by the previous item, we only need to show how given x1, . . . , xnc ∈

{0, 1}k, we can compute Enc(x1), . . . ,Enc(xnc) in time nc ·O(n · log2 n). Using the fact that Enc can be
computed in time nc, gives that in time nc+1 we can compute the k × n generator matrix G of Enc.

We will use fast matrix multiplication. Specifically, that multiplying an n× n0.1 matrix by an n0.1 × n
matrix can be performed in time O(n2 · log2 n) [Cop82] (See [Wil14] for more details on this algorithm).
For i ∈ [nc−1], let A(i) be the n × k matrix in which the j’th row is x(i−1)n+j . Note that the outputs
Enc(x1), . . . ,Enc(xnc) that we want to compute are the rows of the matrices A(i) · G where i ranges over
[nc−1]. Each multiplication of A(i) ·G takes time O(n2 · log2 n) and therefore nc−1 such computations take
time O(nc+1 · log2 n). Overall, the entire computation takes time O(nc+1 · log2 n), which gives amortized
O(n · log2 n) time.

5.3 Proof of Theorem 5.4 and Theorem 5.5

In this section, we put everything together and prove Theorem 5.4 and Theorem 5.5.
18We will use η which is only slightly smaller than constant, and so the term log(1/η) is immaterial. We could have been more

careful and reduce the running time from n · log(1/η) to expected running time 2n by observing that determining whether log(1/η)
uniform bits are all one, can be done by querying only two of the bits (in expectation).
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Proof of Theorem 5.4. We use the linear code of Theorem 4.1, and apply Lemma 5.9, choosing η = 1
2·logn ,

so that k/2 + n log(1/η) ≤ n · log n. The properties in Theorem 5.4 follow directly from Theorem 4.1 and
Lemma 5.9, and the fact that η = o(n).

The proof of Theorem 5.5 follows in the same way, by using the following construction of error correct-
ing codes, due to Garcia and Stichtenoth [GS96].

Theorem 5.10. [GS96] There exist constants pmax > 0, δ > 0 and R > 0 such that for every sufficiently
large m, setting n = 8m − 8, k = Rn, there is a binary linear [n, k]2-code that satisfies:

• C has a linear encoding map Enc : Fk2 → Fn2 that runs in time poly(n).

• Enc is decodable from pmax · n errors in time poly(n).

• C has dual distance δ · n.

• Moreover, define Enctrunc : Fk/22 → Fn2 by Enctrunc(x) = Enc(x ◦ 0k/2), and consider the linear
code C ′ = Enctrunc(Fk/22 ). It holds that C ′ has dual distance δ · n.

The code of Garcia and Stichtenoth is not a binary code, but rather a code over constant size alphabet.
The statement above is obtained by interpreting the code as a binary code. The reader is referred to the
appendix of [Shp09] (which was written by Venkat Guruswami) for a precise description of this code and a
proof of Theorem 5.10.

6 Stochastic codes for space bounded channels

In this section we state our main construction of stochastic codes for any-order bounded space channels. We
start by restating Theorem 1.4 more precisely. The statements below allow a wider range of parameters, and
also give a more precise dependence of the parameters on each other.

Theorem 6.1. There exists a universal constant c0, such that for every constant 0 ≤ p < 1
2 , there exists a

constant δ > 0, such that for every constant cν ≥ 1, and every sufficiently small constant ε > 0, there exists
a constant L = poly(1/ε), such that for infinitely many N , there is a stochastic code Enc : {0, 1}RN ×
{0, 1}O(N ·logN) → {0, 1}N that satisfies the following properties:

• Enc has rate R ≥ 1−H(p)− ε.
• There is a list-decoding algorithm Dec showing that Enc is L-list decodable for any-order space
s = N δ channels that induce at most pN errors, with probability 1− ν, for ν = 2−(logN)cν .

• Enc can be computed in time N · (logN)c0·cν .

• Dec can be computed in time N · (logN)c0·cν .

Remark 6.2 (Dependence on constants). In this remark we give more details on the dependence of the
parameters on the chosen constants.

• The list size achieved in the proof of Theorem 6.1 is L = O( 1
ε4

). However, if p is sufficiently smaller
than 1/2 (say p < 0.49) then the list size can be reduced to L = O( 1

ε2
) by a more careful argument,

and if p is sufficiently smaller than 1/4 (say p < 0.24) then it can be further reduced to L = O(1/ε).
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• The running time of encoding and decoding depends on ε as follows: For every ε > 0 there exists a
constant cε = 2poly(1/ε) such that the running time is cε ·N ·(logN)c0·cν . This dependence is inherited
from the use of explicit codes for binary symmetric channels [For65, GI05]. All other ingredients
allow cε = poly(1/ε). Polar codes [GX15, HAU14] achieve running time cεn log n, where cε =
poly(1/ε). It is plausible that using polar codes (and some other modifications) the dependence on ε
can be reduced to poly(1/ε).

• The theorem statement does not explicitly state which choices of infinitely manyN are possible. Again,
the reason that we don’t get “for every sufficiently large N” is solely because linear time codes
for binary symmetric channels [For65, GI05] are stated for infinitely many N . We remark that an
inspection of these results reveals that (in the very least) there exists a universal polynomial q(·) such
that for every ε > 0, there is a constant c′ε such that for every sufficiently large m, a suitable N can
be found between c′ε · q(m) and c′ε · q(m+ 1). The same property is inherited by our construction. We
remark that we are less picky and can allow quasilinear time codes for binary symmetric channels,
which can be constructed more easily using code concatenation and yield a denser family of N ’s.

We can also achieve a different tradeoff where the channel has space N/polylog(N), for small p, in
polynomial time. The following theorem is the more formal restatement of Theorem 1.5.

Theorem 6.3. There exist universal constants pmax > 0 and c1, such that for every constants 0 ≤ p ≤ pmax,
and cν ≥ 1, and every sufficiently small constant ε > 0, there exists a constant L = poly(1/ε), such that
for infinitely many N , there is a stochastic code Enc : {0, 1}RN ×{0, 1}O(N ·logN) → {0, 1}N that satisfies
the following properties:

• Enc has rate R ≥ 1−H(p)− ε.
• There is a list-decoding algorithm Dec showing that Enc is L-list decodable for any-order space
s = N

(logN)c1+cν channels that induce at most pN error, with probability 1− ν, for ν = 2−(logN)cν .

• Enc can be computed in time poly(N).

• Dec can be computed in time poly(N).

In Section 6.1 we present our construction. The construction expects to receive a stochastic control
codes with certain properties. In Section 6.2 we plug in the specific control codes of Section 5 to obtain our
main results. The correction of the construction is proven in Section 7.

6.1 The construction

In this section we present our construction of stochastic codes for bounded channels. The construction is
detailed in three figures. Figure 1 lists parameters and ingredients, Figure 2 which describes the encoding al-
gorithm, and Figure 3 which describes the decoding algorithm. We start with some notation and definitions.
We remark that an intuitive explanation of the construction appears in Section 2.2.

Partitioning codewords into control blocks and data blocks. The construction will think of codewords
c ∈ {0, 1}N as being composed of n = nctrl + ndata blocks of length b = N/n. Given a subset I ⊆ [n] of
nctrl distinct indices, we can decompose c into its data part cdata ∈ {0, 1}Ndata=ndata·b and its control part
cctrl ∈ {0, 1}Nctrl=nctrl·b. Similarly, given strings cdata and cctrl we can prepare the codeword c (which we
denote by (cdata, cctrl)

I by the reverse operation. This is stated formally in the definition below.

Definition 6.4. Let I = {i1, . . . , inctrl
} ⊆ [n] be a subset of indices of size nctrl.
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Figure 1: Parameters and ingredients for stochastic code

Constants:

• p > 0 - The fraction of errors we need to recover from.
• ε > 0 - The final code will have rate R ≥ 1−H(p)− ε. We assume that ε > 0 is sufficiently small compared to p.
• cν ≥ 1 - We are shooting for a code with success probability 1− ν for ν = 2−(logN)cν .

Parameters that are allowed to vary with N :

• N - The length (in bits) of the codeword. Throughout, we assume that N is sufficiently large, and that other
parameters are chosen as a function of N . Later choices will also restrict N to be a number of a special form.

• b - We divide the N output bits to n := N/b blocks of length b.
• ` - This is the total length of a “control seed”. Let `′ = `/3. This will be the length of individual “seeds”.
• s′ - The code will work for any-order space s channels, for s = s′ − (logN)2cν+3.

Stochastic control code: The construction receives as a component a stochastic code Encctrl : {0, 1}` × {0, 1}d →
{0, 1}b such that:

• Encctrl is (2−s
′
)-pseudorandom for any-order space s′ ROBPs.

• Encctrl is Lctrl-list-decodable from (p+ ε) · b errors (for some parameter Lctrl to be chosen later) with decoding
Decctrl : {0, 1}b → ({0, 1}`)Lctrl .

Requirements: (logN)cν+10 ≤ b ≤ N
(logN)cν+10 , s′ ≥ (logN)cν+3, and ` ≥ s′ · (logN)3.

Some more parameters:

• ε′ = ε/3 will be the fraction of “control blocks”, and set nctrl = ε′ · n, ndata = n− nctrl.
• Let Nctrl = b · nctrl and Ndata = b · ndata. (Note that: n = nctrl + ndata, N = Nctrl +Ndata).

Other ingredients that are used:

• Let α = ε
10 log 1

p

, pBSC = p+α, andRBSC = 1−H(pBSC)−ε/3. We apply Theorem 3.20 using pBSC, ε/3, Ndata

as choices for p, ε, n, respectively. Theorem 3.20 only guarantees the code for infinitely many block lengths, and
so we require that Ndata = (1− ε′) ·N is one of these block lengths. This translates into a restriction on N (which
is satisfied for infinitely many N ). (See Remark 6.2 for a discussion on the “density” of the block lengths). We
obtain an encoding function EncBSC : {0, 1}RBSC·Ndata → {0, 1}Ndata .

• Let t = (logN)cν+2. We use the (2−10·t, t)-wise permutation π : {0, 1}`′ × [Ndata] → [Ndata]. By Theorem
3.11 we have an explicit construction with seed length O(t · logN) ≤ `′.

• We use Theorem 3.9 to obtain an ( α
100 ,

ν
N3 )-sampler with distinct samples Samp : {0, 1}`′ → [n]nctrl . By

Theorem 3.9 we have an explicit construction with seed length O(log N3

ν ) = O((logN)cν+1) ≤ `′. We use nctrl

samples, and indeed nctrl = ε′ · n ≥ ε′ · (logN)cν+10 � log N3

ν (as required in Theorem 3.9).

• Let G : {0, 1}`′ → {0, 1}Ndata be the (2−s
′
)-PRG for any-order space s′ ROBPs, provided by Theorem 3.7.

We verify that for the constant c hidden in the statmement of Theorem 3.7, for sufficiently large N , `′ ≥ c · s′ ·
(logNdata)2.

• Given strings cdata ∈ {0, 1}Ndata and cctrl ∈ {0, 1}Nctrl we define an N bit string c denoted by
(cdata, cctrl)

I as follows: We think of cdata, cctrl, c as being composed of blocks of length b (that is
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cdata ∈ ({0, 1}b)ndata , cctrl ∈ ({0, 1}b)nctrl and c ∈ ({0, 1}b)n). We enumerate the indices in [n] \ I

by j1, . . . , jndata
and set c` =

{
(cctrl)k if ` = ik for some k;
(cdata)k if ` = jk for some k

• Given a string c ∈ {0, 1}N (which we think of as c ∈ ({0, 1}b)n) we define strings cIdata, c
I
ctrl by

cIctrl = c|I and cIdata = c|[n]\I , (namely the strings restricted to the indices in I , [n] \ I , respectively).

We omit the superscript I when it is clear from the context.

Figure 2: Encoding algorithm for stochastic code

Input:

• A message m ∈ {0, 1}RBSC·Ndata . (This gives R = RBSC·Ndata

N ).
• A “random part” for the stochastic encoding that consists of: a string s = (ssamp, sπ, sPRG) where
ssamp, sπ, sPRG ∈ {0, 1}`

′
so that s ∈ {0, 1}`, and r1, . . . , rnctrl

∈ {0, 1}d.

Output: A codeword c = Enc(m; (s, r1, . . . , rnctrl
)) of length N .

Operation:

Determine control blocks: Apply Samp(ssamp) to generate I = {i1, . . . , inctrl
} ⊆ [n]. These blocks

will be called “control blocks”, and the remaining ndata blocks will be called “data blocks”.
Prepare data part: We prepare a string cdata of length Ndata as follows:

• Encode m by x = EncBSC(m).
• Generate anNdata bit string y by reordering the Ndata bits of the encoding using the (inverse of)

the permutation πsπ (·) = π(sπ, ·). More precisely, y = π−1
sπ (x) = π−1

sπ (EncBSC(m)).
• Mask y using PRG. That is, cdata = y ⊕G(sPRG) = π−1

sπ (EncBSC(m))⊕G(sPRG).

Prepare control part: We prepare a string cctrl of length Nctrl (which we view as nctrl blocks of length
b) as follows:

• (cctrl)j = Encctrl(s, rj).

Merge data and control parts: We prepare the final output codeword c ∈ {0, 1}N by merging cdata and
cctrl. That is, c = (cdata, cctrl)

I .

Theorem 6.5 (correctness of the construction). There exists a universal constant c0 such that for every
constants 0 ≤ p < 1

2 , cν ≥ 1, and every sufficiently small constant ε > 0, for infinitely many N we
have that: for every b, `, s′, and stochastic code Encctrl : {0, 1}` × {0, 1}d → {0, 1}b that satisfy the
requirements in Figure 1. The encoding and decoding functions Enc : {0, 1}Rn×{0, 1}`+nctrl·d → {0, 1}N

and Dec : {0, 1}N → ({0, 1}RN )
100·Lctrl

ε2 specified in Figures 2 and 3 using the ingredients and parameter
choices in Figure 1 satisfy the following properties:

• Enc has rate R ≥ 1−H(p)− ε.
• Dec is a list-decoding algorithm showing that Enc is O(Lctrl

ε2
)-list decodable for any-order space s

channels that induce at most pN error, with probability 1 − ν, for s = s′ − sA, sA ≤ (logN)2cν+3,
and ν = 2−(logN)cν .
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Figure 3: List-decoding algorithm for stochastic code

Input: A “received word” c′ ∈ {0, 1}N .
Output: A list of messages m ∈ {0, 1}RN , where the list is of size at most 100·Lctrl

ε2 .
Operation:

Determine candidates for control information:
Decode control code: Generate n′ = (logN)cν+2 lists of size Lctrl as follows: choose uniformly

distributed and independent n′ indices i1, . . . , in′ ∈ [n], and for every j ∈ [n′] apply the list
decoding algorithm, Decctrl on c′ij (here, c′i is the i’th block of c′). This gives a size Lctrl list,
Listi = Decctrl(c

′
ij

).

Prune list of candidates: Let Listctrl consist of all s ∈ {0, 1}` such that s ∈ Listi for at least ε
2·n′

100

of i ∈ [n′]. Note that Listctrl is of size at most 100·Lctrl

ε2 .

Use each control candidate to decode data: For each s = (ssamp, sπ, sPRG) ∈ Listctrl we produce a
candidate messages ms ∈ {0, 1}RN .

Determine control blocks: Apply Samp(ssamp) to generate I = {i1, . . . , inctrl
}. Compute c′data =

(c′)Idata.
Unmask PRG: Compute y′data = c′data ⊕G(sPRG).
Reverse permutation: Let x′ be the Ndata bit string obtained by “undoing” the permutation. More

precisely, let πsπ (·) = π(sπ, ·), and let x′ = πsπ (y′data) = πsπ (c′data ⊕G(sPRG)).
Decode data: Compute ms = DecBSC(x′).
Prepare output list: The final output is List = {ms : s ∈ Listctrl}.

• Enc can be computed in time N · (logN)c0·cν +T , where T is a bound on the time it takes to perform
the following task: Given n pairs (m1, s1), . . . , (mn, sn) ∈ {0, 1}` × {0, 1}d output
Encctrl(m1, s1), . . . ,Encctrl(mn, sn).

• Dec can be computed in time Lctrl ·N · (logN)c0·cν + n′ · T ′, where n′ = (logN)cν+2 and T ′ is the
running time of Decctrl on input in {0, 1}b.

We prove Theorem 6.5 in Section 7. In the next section, we plug in our control codes from Section 5 to
get specific constructions.

6.2 Deriving the main theorems

In this section we use specific stochastic control codes to derive our main results. We first use the control
code of Theorem 5.4 to prove Theorem 6.1.

Proof. (of Theorem 6.1) We want to choose parameters b, `, s′ and a control code to plug into Theorem
6.5. Our plan is to use Theorem 5.4 as a control code. Let β = 1

2 − p − 2ε and note that β is a positive
constant as p < 1

2 is a constant, and ε > 0 is sufficiently small. Given β > 0, Theorem 5.4 provides a
constant 0 < α < 0.1. The running time of encoding and decoding algorithms in Theorem 5.4 is nc for
some universal constant c. Let λ = 1

2(c+1) . We want to choose b = Nλ and use it as a block length in
Theorem 5.4. However, we must verify that b is of the form (2m− 1) ·m in Theorem 5.4, and so we choose
a number b of this form such that Nλ ≤ b ≤ N2λ (and such a number exists). We apply Theorem 5.4 to
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obtain a code Enc : {0, 1}bα × {0, 1}d → {0, 1}b that is 2−ŝ-pseudorandom for any order space ŝ ROBPs
with ŝ = bα

log3 b
. We also obtain that this code is O(1/ε̂2)-list decodable from (1

2 − ε̂)b errors in time bc for
every constant ε̂ > β.

We choose ` = bα and s′ = `
log3N

≤ ŝ. It follows that Enc is 2−s
′
-pseudorandom for any-order space

s′ ROBPs. It also follows that Enc is Lctrl-list decodable from (p+ ε) ·b errors for Lctrl = O( 1
( 1

2
−(p+ε))2 ) in

time bc. This follows because p+ε < p+2ε = 1
2−β. This means that Encctrl : {0, 1}`×{0, 1}d → {0, 1}b

satisfies the requirements from a control code in Figure 1.
Furthermore, the requirements in Figure 1 are met by our choices of b, ` and s′. Specifically:

(logN)cν+10 ≤ Nλ ≤ b ≤ N2λ ≤ N

(logN)cν+10
,

s′ =
`

log3N
=

bα

log3N
≥ Nλ·α

log3N
≥ (logN)cν+3,

and we chose s′ = `
log3N

so that the requirement ` ≥ s′ · (logN)3 is met. It follows that we meet all the
conditions of Theorem 6.5 and obtain that:

• Enc has rate R ≥ 1−H(p)− ε.
• Let L = O(Lctrl

ε2
) = O( 1

( 1
2
−(p+ε))2·ε2 ) = O( 1

ε4
). There is a list-decoding algorithm Dec showing that

Enc is L-list decodable for any-order space s = s′− sA ≥ N
α·λ
2 channels, with probability 1− ν. In

other words, we can have δ = α·λ
2 .

• Enc can be computed in time N · (logN)c0·cν + T where T is the time it takes to perform n = N/b
encodings of Encctrl. By Theorem 5.4 there exists a constant c such that performing bc encodings
takes time O(bc+1 · log2 b). We can break the n = N

b ≥ bc encodings into n/bc groups of size bc.
Each such group takes time O(bc+1 log2 b) and so,

T = O(
n · bc+1 · log2 b

bc
) = O(n · b · log2 b) ≤ O(N · log2N).

• As ε is constant, Dec can be computed in time N · (logN)c0·cν +n′ · T ′ where n′ = (logN)cν+2 and
T ′ ≤ bc ≤ N2λc ≤ N .

This completes the proof of Theorem 6.1

We use the control code of Theorem 5.5 to prove Theorem 6.3.

Proof. (of Theorem 6.3) We want to choose parameters b, `, s′ and a control code to plug into Theorem 6.5.
Our plan is to use Theorem 5.5 as a control code. We want to choose b = N

(logN)c1+cν and use it as a block
length in Theorem 5.5. However, we must verify that b is of the form 8m − 8 in Theorem 5.4, and so we
choose a number b of this form such that N

(logN)c1+cν ≤ b ≤ N
(logN)c1+cν−1 (and such a number exists). We

apply Theorem 5.5 to obtain a code Enc : {0, 1}R·b × {0, 1}d → {0, 1}b that is 2−ŝ-pseudorandom for any
order space ŝ ROBPs with ŝ = b

log2 b
. We also obtain that this code is decodable from pmax · b errors, where

pmax > 0 is the constant from Theorem 5.5.
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We choose ` = R · b and s′ = `
log3 N

≤ ŝ. It follows that Enc is 2−s
′
-pseudorandom for any-order space

s′ ROBPs. This means that Encctrl : {0, 1}` × {0, 1}d → {0, 1}b satisfies the requirements from a control
code in Figure 1.

Furthermore, the requirements in Figure 1 are met by our choices of b, ` and s′. Specifically, for a
sufficiently large constant c1:

(logN)cν+10 ≤ N

(logN)c1+cν
≤ b ≤ N

(logN)c1+cν−1
≤ N

(logN)cν+10
,

s′ =
`

log3N
=

R · b
log3N

≥ N

(logN)c1+cν · log3N
≥ (logN)cν+3,

and we chose s′ = `
log3N

so that the requirement ` ≥ s′ · (logN)3 is met. It follows that we meet all the
conditions of Theorem 6.5 and obtain that:

• Enc has rate R ≥ 1−H(p)− ε.
• Let L = O(Lctrl

ε2
) = O( 1

ε2
). There is a list-decoding algorithm Dec showing that Enc is L-list

decodable for any-order space s = s′ − sA ≥ N
(logN)c1+cν ·log3 N

channels, with probability 1− ν.

• Enc can be computed in time poly(N).

• As ε is constant, Dec can be computed in time poly(N).

This completes the proof of Theorem 6.3

7 Analyzing the construction

This section is devoted to proving Theorem 6.5, and show the correctness of the main construction.

The setup: Throughout the remainder of the section, we fix the setup of Theorem 6.5. Specifically, let
0 ≤ p < 1

2 , cν ≥ 1 be constants, and let ε > 0 be a sufficiently small constant. Let N be sufficiently large,
such thatNdata = (1−ε′)N is one of the infinitely many block lengths that are guaranteed in Theorem 3.20,
as explained in Figure 1. Let b, `, s′, be parameters that may depend onN . We also receive a stochastic code
Encctrl : {0, 1}` × {0, 1}d → {0, 1}b, and we assume that all requirements in Figure 1 are satisfied.

Let Enc : {0, 1}Rn × {0, 1}`+nctrl·d → {0, 1}N and Dec : {0, 1}N → ({0, 1}RN )
100·Lctrl

ε2 be the
functions specified in Figures 2 and 3 using the ingredients and parameter choices in Figure 1.

The rate of Enc. The rate R of Enc is given by:

R =
RBSC ·Ndata

N
=

(1−H(pBSC)− ε/3) · (1− ε′) ·N
N

= (1−H(p+ α)− ε/3) · (1− ε/3).

We chose α = ε
10 log 1

p

, so that H(p + α) ≤ H(p) + ε/10. This holds because the derivative H ′(p) is

decreasing in the interval (0, 1) and H ′(p) ≤ log(1/p). This means that H(p+ α) ≤ H(p) + α ·H ′(p) ≤
H(p) + ε/10. Consequently, we can continue and get:

R ≥ (1−H(p)− ε/3− ε/10) · (1− ε/3) ≥ 1−H(p)− ε.

This proves the first item of Theorem 6.5
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The running time of encoding. The encoding algorithm Enc of Figure 2 performs the following tasks:

• It applies the sampler of Theorem 3.9, to get nctrl ≤ n samples. This takes time n ·poly(log(N)cν ) ≤
N · poly(log(N)cν ).

• It applies the encoding of of EncBSC from Theorem 3.20. This takes time O(Ndata) = O(N).

• It applies the (2−10t, t)-wise independent permutation π from Theorem 3.11, Ndata ≤ N times for
t = poly((logN)cν ). Each such application takes time poly(t · logN) = poly((logN)cν ), and
overall, this takes time N · poly((logN)cν ).

• It applies the PRG of Theorem 3.7 to obtain a pseudorandom string of length Ndata ≤ N that is
(2−s

′
)-pseudorandom for any-order space s′ ROBPs. This takes time N · poly(logN).

• It applies Encctrl on nctrl ≤ n pairs (s, r1), . . . , (s, rnctrl
) ∈ {0, 1}` × {0, 1}d. This Takes time T .

Overall, for a sufficiently large universal constant c0, the total running time of Enc is bounded by N ·
(logN)c0·cν + T . This proves the third item of Theorem 6.5.

The running time of decoding. The decoding algorithm Dec of Figure 3 performs the following tasks:

• It applies the decoding algorithm Decctrl on n′ strings. This takes time n′ · T ′.
• It computes a list of O(Lctrl/ε

2) = O(Lctrl) candidate control strings. This takes time n′ · Lctrl ≤
N · Lctrl.

• For each of the O(Lctrl) candidates:

– It applies the sampler of Theorem 3.9 (with the same parameter used in the encoding) to get t
samples where t = nctrl ≤ n. This takes time n · poly(log(N)cν ) ≤ N · poly(log(N)cν ).

– It applies the (2−10t, t)-wise independent permutation π from Theorem 3.11 Ndata ≤ N times
for t = poly((logN)cν ) (same parameters as in encoding). Each such application takes time
poly(t · logN) = poly((logN)cν ), and overall, this takes time N · poly((logN)cν ).

– It applies the PRG of Theorem 3.7 to obtain a pseudorandom string of length Ndata ≤ N that
is (2−s

′
)-pseudorandom for any-order space s′ ROBPs (same parameters as in encoding). This

takes time N · poly(logN).
– It applies the decoding of DecBSC from Theorem 3.20. This takes time O(Ndata) = O(N).

Overall, for a sufficiently large universal constant c0, the total running time of Enc is bounded by Lctrl ·N ·
(logN)c0·cν + n′ · T ′. This proves the fourth item of Theorem 6.5.

Milestones for correct decoding. We need to show that for any bounded space channel, the output list
of the decoding algorithm contains the encoded message with high probability. Following Guruswami and
Smith [GS16], and Shaltiel and Silbak [SS16] we will analyze the construction in two steps:

• We first consider the case that the channel eσC is an “additive channel”, namely that eσC(z) = e for
some fixed error vector e.

• At the second step we extend to general channels that can choose the error pattern as a function of z.
The second step is done using a reduction to the first step.
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The high level idea is to show that for certain events “that we will call milestones”, we can use the pseudo-
randomness properties of the construction to show that these milestones “do not distinguish” between the
first setup and the second setup.

Following [SS16], we present the following abstraction of this method: We will define “milestones” (as
a function of m, sπ, ssamp and e) and will require that:

1. If the milestones occur, then the decoding algorithm succeeds w.h.p.

2. If Sπ, Ssamp are random and e is fixed (that is, if the channel is additive) then the milestones occur
with probability close to one.

3. Checking whether the milestones occur is feasible for small space ROBPs.

We will state a general lemma showing that if such milestones exist, then the correctness of the decoding
holds even against general any-order small space channels (that are not necessarily additive).

Before proceeding with the formal definition, let us give some high level intuition for why this approach
works: We start by considering an additive channel eσC(z) = e which chooses the error pattern e without
looking at the codeword z. The second property says that in this setting, the milestones occur with proba-
bility close to one. The first property says that that whenever the milestone occur, decoding is successful.
Thus, the milestones establish the correctness of the construction for an additive channel. Now, let us con-
sider a general channel eσC(z) = e that chooses its error pattern e as a function of the transmitted codeword
z. We have set up the construction so that we can argue that for every fixing of m, sπ, ssamp, the transmitted
codeword z is pseudorandom for the channel. Thus, when the milestones function is applied on the error
pattern e, it cannot distinguish the case where the channel sees the real codeword z, from the case where it
sees an independent uniform string. In the latter case, the behavior of the channel is additive, as it chooses
its errors in a way that is independent of the codeword, and we have already argued that decoding succeeds
in this scenario. It follows that decoding succeeds w.h.p. even in the general scenario where the channel
chooses its error as a function of the codeword.19

The precise properties of a milestones functions are stated formally in the definition and theorem below.
In the definition we will allow the milestones function to also toss random coins (denoted by y).

Definition 7.1 (Milestones function). Let A : {0, 1}RN ×{0, 1}`′ ×{0, 1}`′ ×{0, 1}N ×{0, 1}N → {0, 1}
be a function that receives as input:

• A message m ∈ {0, 1}RN .

• A sampler seed ssamp ∈ {0, 1}`
′
.

• A permutation seed sπ ∈ {0, 1}`
′
.

• An error vector e ∈ {0, 1}N of hamming weight at most pN .

• A choice for “random coins” y ∈ {0, 1}N .

We say that A is a milestones function if it has all the following properties: (the probability space for
the statements below is choosing the randomness of the encoder S = (Ssamp, Sπ, SPRG) ∈ {0, 1}`, R =
(R1, . . . , Rnctrl

) ∈ ({0, 1}d)nctrl and Y (the coins of A) uniformly and independently.)

19We stress that the third requirement from a milestones function is that checking whether the event occurred can be done by
bounded space ROBPs. This is a very stringent requirement, as the steps run by the decoding algorithm (like decoding using Decctrl

or DecBSC) are not computable by small space ROBPs. We need to come up with an event that on the one hand is easy to check,
and on the other hand implies that decoding succeeds. This means that there is an inherent conflict between the first and third
requirements of a milestones function, and indeed the choice of our final milestones function is somewhat delicate.
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1. For every m ∈ {0, 1}RN , s ∈ {0, 1}`, r ∈ ({0, 1}d)nctrl and e ∈ {0, 1}n of Hamming weight at most
pN : If Pr[A(m, ssamp, sπ, e, Y ) = 1] ≥ 1

2 then the probability (over the random coins of Dec) that
m ∈ Dec(Enc(m; (s, r))⊕ e) is at least 1− ν

20 .

2. For everym ∈ {0, 1}RN and e ∈ {0, 1}n of Hamming weight at most pN , Pr[A(m,Ssamp, Sπ, e, Y ) =
1] ≥ 1− ν

20 .

3. For every m, ssamp, sπ, y and every any-order space s channel eσC that induces at most pN errors, the
function D(z) = A(m, ssamp, sπ, e

σ
C(z), y) has a space s′ ROBP F such that D(z) = F σ(z).

Lemma 7.2 (Milestones Lemma). If there exist a milestones function then for every m ∈ {0, 1}RN , and
every any-order space s channel eσC ,

Pr[m ∈ Dec(Enc(m,S,R)⊕ eσC(Enc(m,S,R)))] ≥ 1− ν

To conclude the proof of Theorem 6.5 and prove its second item we need to:

• Prove Lemma 7.2. This is done in Section 7.1

• Provide a milestones function A for our construction. This is done in Section 7.2.

Together, these two tasks conclude the proof of Theorem 6.5.

7.1 Proof of Milestones Lemma

We prove the milestones lemma in two steps, described in the two sections below. The proof follows along
the same lines as in [SS16] which in turn relies on [GS16].

7.1.1 The hiding lemma

The following lemma states that for every message, sampler seed and permutation seed, The encoding is
pseudorandom for small space any-order ROBPs. This intuitively means that from the point of view of
small space channel, the codeword that it sees is independent of the choices of the message, sampler seed
and permutation seed. This can be used to argue that (in some precise sense explained later) the errors
inflicted by such a channel are independent of the message, sampler seed, and permutation seed. This will
later allow us to analyze the channel as if the error pattern it chooses is independent of the message, sampler
seed and permutation seed.

Lemma 7.3 (Hiding Lemma). For every message m ∈ {0, 1}RN , sampler seed ssamp ∈ {0, 1}`
′

and
permutation seed sπ ∈ {0, 1}`

′
, let V = Enc(m; (sπ, ssamp, SPRG, R1, · · · , Rnctrl)) be a random variable

(defined over the probability space where SPRG, R1, · · · , Rnctrl are chosen uniformly and independently).
It follows that V is ν

5 -pseudorandom for any-order space s′ ROBPs.

Proof. We assume for contradiction that there exists a space s′ ROBP D and a permutation σ : {0, 1}N →
{0, 1}N such that:

|Pr[Dσ(V ) = 1]− Pr[Dσ(UN ) = 1]| > ν

5

The lemma follows from the following claim.

Claim 7.4. One of the following holds:
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• There exists a space s′ ROBP C : {0, 1}Ndata → {0, 1} and a permutation τ : [Ndata] → [Ndata]
such that, |Pr[Cτ (G(SPRG)) = 1]− Pr[Cτ (UNdata

) = 1]| > ν
10 .

• There exists z′ ∈ {0, 1}` and space s′ ROBP C : {0, 1}b → {0, 1} and a permutation τ : [b] → [b]
such that, |Pr[Cτ (Encctrl(z

′, Ud)) = 1]− Pr[Cτ (Ub) = 1]| > ν
10n .

Proof. (of claim) We partition V into V = (Vdata, Vctrl)
Samp(ssamp) using definition 6.4. We have that Dσ

distinguishes V = (Vdata, Vctrl) from UN = (Udata, Uctrl) with probability greater than ν/5, we do a hybrid
argument and consider the hybrid distribution H = (Vdata, Uctrl). It follows that:

• Either Dσ distinguishes H from UN with probability ν/10,

• or, Dσ distinguishes H from V with probability ν/10.

In the first case, we have that Vdata and Uctrl are independent, and an averaging argument gives that there
exists a fixed value v′ctrl, such that Dσ distinguishes (Udata, v

′
ctrl) from (Vdata, v

′
ctrl) with probability ν/10.

This gives that there exists a space s′ ROBP C : {0, 1}Ndata → {0, 1} and a permutation τ : [Ndata] →
[Ndata] such that the first item of the claim holds.

In the second case, we have that m and sπ are fixed and therefore the string y = π−1
sπ (EncBSC(m)) used

in the encoding algorithm is also fixed. The encoding algorithm computes the data part by xoring y with
G(SPRG) and therefore Vdata = G(SPRG)⊕ y. By an averaging argument, there exists a fixing s′PRG such
thatDσ distinguishes ((G(s′PRG)⊕y), Uctrl) from (((G(s′PRG)⊕y), Vctrl)|SPRG = s′PRG) with probability
ν/10.

We get that there exists a space s′ ROBP D′ : {0, 1}nctrl·d → {0, 1} and a permutation σ′ : [nctrl · d]→
[nctrl · d] such that (D′)σ

′
distinguishes Uctrl from V ′ctrl = (Vctrl|SPRG = s′PRG).

Recall that the encoding procedure prepares the j’th block of the control part cctrl, by Encctrl(s, rj).
Having fixed SPRG = s′PRG the only random variables that remain unfixed in V ′ctrl are R1, . . . , Rnctrl

.
This means that there exists s′ ∈ {0, 1}` such that (V ′ctrl)j = Encctrl(s

′, Rj) and in particular, the nctrl

blocks are independent. We have that (D′)σ
′

distinguishes V ′ctrl from Uctrl with probability ν/10, and by
a standard hybrid argument, there exists a space s′ ROBP C and a permutation τ : [b] → [b] such that Cτ

distinguishes (V ′ctrl)j = Encctrl(s
′, Rj) from uniform with probability (ν/10)

nctrl
≥ ν

10n and the second item
follows.

The lemma follows by the pseudorandomness properties of the G and Encctrl, noting that

ν

10n
≥ 1

2(logN)(cν+1)
≥ 2−s

′
.

where the last inequality follows from the requirement that s′ ≥ (logN)(cν+3).

7.1.2 Hiding lemma implies milestones lemma

We now show that the milestones lemma (Lemma 7.2) follows from the hiding lemma (Lemma 7.3). We are
assuming that A is a milestone function. We need to show that for every message m ∈ {0, 1}RN , and every
any-order space s channel eσC that induces at most pN errors,

Pr[m ∈ Dec(Enc(m,S,R)⊕ eσC(Enc(m,S,R)))] ≥ 1− ν,

where S = (Ssamp, Sπ, SPRG), R = (R1, . . . , Rnctrl
) are chosen uniformly and independently.

Fix some message m ∈ {0, 1}RN and let Z = Enc(m,S,R) denote the random variable that is the en-
coding of the message. We assume (for contradiction) that Pr[m ∈ Dec(Enc(m,S,R)⊕eσC(Enc(m,S,R)))] <
1− ν. By the first property of a milestones function and an averaging argument we have that:
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Claim 7.5. Pr[A(m,Ssamp, Sπ, e
σ
C(Z), Y ) = 1] < 1− ν/3.

Proof. Let

B = {(s, r)|Pr[m ∈ Dec(Enc(m, s, r)⊕ eσC(Enc(m, s, r)))] < 1− ν/20} ,

where the probability is only over the random coins of the decoder Dec (as m, s, r are fixed). By an averag-
ing argument, Pr[(S,R) ∈ B] ≥ ν − ν/20.

Note that for a fixed (s, r) the error vector e induced by the channel C is also fixed. We consider the
probability space where (S,R) = (s, r) are fixed and Y (the random coins of the function A) is chosen
uniformly. By the first property of a milestone function, we have that for a fixed (s, r) ∈ B and a fixed error
e, Pr[A(m, ssamp, sπ, e, Y ) = 0] > 1

2 (as otherwise decoding must succeed with probability 1 − ν/20).
Let A′ = A(m,Ssamp, Sπ, e

σ
C(Z), Y ) be the random variable of the output of function A in the probability

space where S,R, Y are chosen uniformly.

Pr[A′ = 0] ≥ Pr[A′ = 0|(S,R) ∈ B] · Pr[(S,R) ∈ B] >
1

2
· 19ν

20
≥ ν

3

It follows that

Pr[A(m,Ssamp, Sπ, e
σ
C(Z), Y ) = 1] = Pr[A′ = 1] = 1− [A′ = 0] < 1− ν/3.

We add an independent random variable ZU that is uniform over {0, 1}N to our probability space (that
now consists of independently chosen S,R, Y, ZU ). By the second property of a milestone function, we
have that for every error vector e,

Pr[A(m,Ssamp, Sπ, e, Y ) = 1] ≥ 1− ν/20.

As ZU is independent of (Ssamp, Sπ, Y ) this holds also for an error vector of the form eσC(ZU ). Namely,

Pr[A(m,Ssamp, Sπ, e
σ
C(ZU ), Y ) = 1] ≥ 1− ν/20.

This means that:

Pr[A(m,Ssamp, Sπ, e
σ
C(ZU ), Y ) = 1]− Pr[A(m,Ssamp, Sπ, e

σ
C(Z), Y ) = 1]

> (1− ν/20)− (1− ν/3) ≥ ν/4.

By averaging, there exist fixed values s′samp, s
′
π and y′ such that if we consider the event

W =
{
Ssamp = s′samp, Sπ = s′π, Y = y′

}
we have that:

Pr[A(m, s′samp, s
′
π, e

σ
C(ZU ), y′) = 1|W ]− Pr[A(m, s′samp, s

′
π, e

σ
C(Z), y′) = 1|W ] > ν/4.

We have that (Ssamp, Sπ, Y ) is independent of ZU and also independent of (SPRG, R). Therefore:

Pr[A(m, s′samp, s
′
π, e

σ
C(ZU ), y′) = 1]−Pr[A(m, s′samp, s

′
π, e

σ
C(Enc(m, s′π, s

′
samp, SPRG, R)), y′) = 1] > ν/4.
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This setup (namely, where Ssamp, Sπ are fixed, and SPRG, R = (R1, . . . , Rnctrl
) are uniform) is exactly

the probability space considered in the hiding lemma (Lemma 7.3). By the third property of milestones
functions, we have the function D(z) = A(m, s′samp, s

′
π, e

σ
C(z), y′) has a space s′-ROBP F such that

D(z) = F σ(z). Therefore,

Pr[F σ(ZU ) = 1]− Pr[F σ(Enc(m, s′π, s
′
samp, SPRG, R)) = 1] > ν/4,

and this a contradiction to the hiding lemma (Lemma 7.3). This concludes the proof of the milestones
lemma.

7.2 Milestones Lemma implies Theorem 6.5

In this section we show that Lemma 7.2 implies Theorem 6.5. Our task is to define a milestones function
that meets the three requirements in Definition 7.1.

7.2.1 Intuition for the proof

Our milestones function will be a conjunction of many “small milestones” that:

• If all of them happen then decoding succeeds w.h.p. (so that we meet the first requirement of a
milestone function).

• The probability that all milestones occur simultaneously is very large (so that we meet the second
requirement of a milestone function).

We will start with defining milestones that are not necessarily computable by small space ROBPs, and will
later show that these milestones can be “approximated” by a small space ROBP, so that we meet the third
requirement of a milestone function.

A milestone function receives (amongst other things) ssamp, sπ and e ∈ {0, 1}N with hamming weight
at most pN . We will use the following notation (whenever sSamp, sπ, e are clear from the context).

• I = {i1, . . . , inctrl
} = Samp(ssamp) be the set of control indices.

• edata = eIdata and ectrl = eIctrl is the partition of the error vector to its control and data part.

• eπdata = πsπ(edata). This is the permuated error vector on the data part.

• blocks(q) = |
{
j ∈ [nctrl] : The hamming weight of eij is larger than q · b

}
|. (Here ei denotes the b

bit long i’th block of e). This is the number of control blocks on which the fraction of errors is larger
than q.

Loosely speaking, the milestones that we will be interested in are:

Control milestone: That blocks(p+ ε) ≤ (1− ε
16) · nctrl. This means that at least an ε/16 fraction of the

original nctrl control blocks were not hit by too large error. (This will happen w.h.p. by the properties
of the sampler).

Data milestone: Here we recall the function Am from Theorem 3.20, and note that our milestones can
depend on m. This function Am(·) receives a string e′ ∈ {0, 1}Ndata and if it answers one, then
(amongst other things) DecBSC(EncBSC(m) ⊕ e′) = m. Furthermore Theorem 3.20 guarantees that
if e′ is obtained by applying a t-wise independent permutation π on edata then Pr[Am(e′) = 1] is very
large.
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The final milestones function is the conjunction of both control and data milestones. Continuing this intuitive
explanation:

• If both milestones pass, then decoding succeeds w.h.p.: This is because at least ε2nctrl/16 control
blocks are decoded correctly by Encctrl. This means that the “correct seed s” appears w.h.p. in the
list of candidates of the decoding. When decoding the data part is executed for the correct s, the error
pattern e′ that is encountered is indeed the application of π(edata) for a low weight edata, and therefore
applying BSC decoding (after unmasking and permuting) indeed recovers the correct message m.

• The probability that both milestones occur simultaneously is very close to one.

A technical difficulty is that this choice of milestones cannot be computed by a small space ROBP and
does not meet the third requirement. The issue is that the channel gets to choose the permutation σ that
reorders the N bit codeword that it reads. The new order does not necessarily “respect the block structure”:
The ROBP may read different bits of a certain block c′i in different times. Moreover, the order in which the
ROBP reads the data bits is also modified by the permutation π.

We will use the following approach to deal with this problem. We will consider two versions of a
milestones function: a strong version and a weak version (in which we use different choices of parameters).
We will argue that:

• The strong version implies the weak version.

• If the weak version passes then decoding succeeds w.h.p.

• The probability that the strong version passes is close to one.

• This shows that both weak and strong versions satisfy the first two conditions of a milestones func-
tion. The importance of this is that any function that is “sandwiched” between these two milestones
functions also satisfies the first two conditions of a milestones function. We will implement such a
function by a small space ROBP (meeting also the third condition). Specifically:

• For every m, ssamp, sπ, e and every permutation σ : [N ]→ [N ] we will show that there is a random-
ized small space ROBP F such that:

– If all the strong versions hold with respect to m, ssamp, sπ, e then PrY [F σY (e) accepts] ≥ 1 −
ν/20. (Here the probability is with respect to a random coin toss Y of the milestone func-
tion/ROBP).

– If Pr[F σY accepts] ≥ 1
2 then all the weak version hold with respect to m, ssamp, sπ, e.

This will gives a space s ROBP that satisfies the third property of a milestone function, and is sandwiched
between the weak and strong conditions. Altogether, this will allow us to meet all three conditions. This
intuition is implemented in the next sections.

7.2.2 Weak and strong milestone functions

We start by defining weak and strong versions of milestones.

Definition 7.6. Let x = (m, ssamp, sπ, e, y) be an input to a milestone function.

Control milestone: We define:

• Aweakctrl (x) = 1 iff blocks(p+ ε) ≤ (1− ε
16) · nctrl.
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• Astrongctrl (x) = 1 iff blocks(p+ ε
4) ≤ (1− ε

3) · nctrl.

Data milestone: Recall that the code EncBSC : {0, 1}RBSCNdata → {0, 1}Ndata that we use is given by
Theorem 3.20 using pBSC = p + α. Furthermore, Theorem 3.20 also states that this code is a
concatenated code with certain additional properties. Using the notation of Theorem 3.20, we define
Amv : {0, 1}Ndata → {0, 1} be the function that outputs one on input e′ ∈ {0, 1}Ndata iff

|
{
i ∈ [nout] : Deciin(Enc(m)⊕ e′) 6= Encout(m)i

}
| ≤ v.

(With this notation the function Am defined in Theorem 3.20 is Amw/10). We define:

• Aweakdata (x) = 1 iff Amw (eπdata) = 1.
• Astrongdata (x) = 1 iff Amw/10(eπdata) = 1.

Let Aweak(x) = Aweakctrl (x) ∧Aweakdata (x) and Astrong(x) = Astrongctrl (x) ∧Astrongdata (x).

The next two lemmas give that any milestone function that is “sandwiched” between Aweak and Astrong

satisfy the first two properties of a milestone function.

Lemma 7.7. The function Aweak satisfies the first property of a milestone function. (This in particular
implies that Astrong also satisfies the first property).

This follows as the function Aweak was defined precisely so that the decoding components, in the de-
coding algorithm of Figure 3 are used with the correct guarantee. A full proof appears in Section 7.2.4.

Lemma 7.8. The function Astrong satisfies the second property of a milestone function (even if ν/20 is
replaced with ν/100). (This in particular implies that Aweak also satisfies the second property).

This follows as the function Astrong was defined precisely so that the pseudorandom components (the
sampler and permutation) are “sufficiently random” to imply that Astrong holds. For this, we only need to
analyze the case where e is fixed and the seeds (Ssamp, Sπ) are chosen at random. A full proof appears in
Section 7.2.5.

7.2.3 Efficient milestones that are sandwiched between weak and strong

Our goal is to define a function A(m, ssamp, sπ, e, y) that satisfies all three properties of a milestones func-
tion in Definition 7.1. The two functions Astrong, Aweak of the previous section satisfied the first two
properties but not the third (and they also didn’t make use of their ability to toss random coins y).

The third condition says that for every m, ssamp, sπ, y and every any-order space s channel eσC that
induces at most pN errors, the functionD(z) = A(m, ssamp, sπ, e

σ
C(z), y) has a space s′ ROBP F such that

D(z) = F σ(z).
Let us consider the following computational model for computing A(m, ssamp, sπ, e, y).

• The milestone function A has space sA (for some parameter sA).

• Computation on the internal space (and all inputs other than e) is for free.

• The milestone function A accesses e in the following manner: A reads the bits of e one by one in an
unknown order. However, whenever a bit is read, the milestone function is informed what is the index
j of this bit in e.
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It follows that ifA can be computed in the manner described above, with space sA = s′−s, then the third
condition holds and, for every m, ssamp, sπ, y and every any-order space s channel eσC that induces at most
pN errors, the functionD(z) = A(m, ssamp, sπ, e

σ
C(z), y) has a space s′ ROBP F such thatD(z) = F σ(z).

More precisely, when Cσ is applied on an input z, it produces the output Cσ(z) which is a reordering
of eσC(z) according to some fixed permutation (the permutation σ−1). The model of computation for A
doesn’t care about the precise order in which e = eσC(z) is given, and therefore the overall computation
D(z) = A(m, ssamp, sπ, e

σ
C(z), y) can be implemented by a space sA + s = s′ ROBP F that reads its input

in the order dictated by the permutation σ (that was chosen by the channel).
We now define the final milestones function A that we will use:

Definition 7.9. Let x = (m, ssamp, sπ, e, y) be an input to a milestone function. We will think of y as a pair
y = (y1, y2) of choices for random coins. We set q = (logN)cν+1.

Control milestone: We define Actrl(x) as follows:

• We think of y1 as “random coins” for:

– Selecting q uniform and i.i.d. “control blocks” d1, . . . , dq from I = samp(ssamp) =
{i1, . . . , inctrl

}.
– Let Bi = {(i− 1)b+ 1, . . . , ib} be the set of indices in the i’th block. For every k ∈ [q],

we also choose uniform and independent dk1, . . . d
k
q ∈ Bdk .

• Actrl(x) = 1 iff at least ε8 · q of k ∈ [q], satisfy that at most (p+ ε
2) · q of j ∈ [q] have edkj = 1.

Data milestone: We define Actrl(x) as follows:

• We recall (once again) that the code EncBSC : {0, 1}RBSCNdata → {0, 1}Ndata that we use is
given by Theorem 3.20 using pBSC = p + α. Furthermore, Theorem 3.20 also states that this
code is a concatenated code with certain additional properties. We write Ndata = nout · nin as
done in Theorem 3.20.
• We think of y2 as ”random coins” selecting q uniform and i.i.d. “inner blocks” v1, . . . , vq from

[nout].
• Adata(x) = 1 iff at least w

5 · q of k ∈ [q], satisfy that Encout(m)vk = Decvkin (EncBSC(m) ⊕
πsπ(edata)).

Let A(x) = Actrl(x) ∧Adata(x).

Note that Actrl can be implemented with space q2 in the computational model defined above. This is
because Actrl only depends on q2 specific bits of e. We can store these bits as they arrive, and produce the
output when all these bits are stored in memory. Similarly, Adata can be implemented with space q · nin in
the computational model defined above. This is because Actrl only depends on q · nin specific bits of e.

Overall, this uses space sA = q2 + q · nin = O(q2) (as nin is a constant). We have chosen q =
(logN)cν+1, and so, s′ − s = sA ≤ (logN)2cν+3 as required in Theorem 6.5.

Loosely speaking, the function A uses its random coins to approximate the functions Aweak, Astrong.
Consequently, by a Chernoff bound we can prove the next lemma. Recall that Astrong, Aweak do not depend
on the input y, and so in the lemma below we allow ourselves to omit it from their input.

Lemma 7.10. For every m ∈ {0, 1}RN , ssamp ∈ {0, 1}`
′
, sπ ∈ {0, 1}`

′
and e ∈ {0, 1}N of hamming

weight at most pN :
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• If PrY [A(m, ssamp, sπ, e, Y ) = 1] ≥ 1
2 then Aweak(m, ssamp, sπ, e) = 1.

• If Astrong(m, ssamp, sπ, e) = 1 then PrY [A(m, ssamp, sπ, e, Y ) = 1] ≥ 1− ν/100.

Loosely speaking, the claim follows because A approximates a function that is sandwiched between
Aweak and Astrong.

Proof. We start with proving the second item, and consider the control milestone. For every control block
i ∈ I , let pi be the relative hamming weight of ei. If Astrong accepts then blocks(p + ε

4) ≤ 1 − ε
3 . This

means that the fraction of control blocks in i ∈ I such that pi > p+ ε
4 is at most 1− ε

3 . By a Chernoff bound,
the probability that more than an ε/4 fraction of the q selected d1, . . . , dq have pi > p+ ε

4 is 2−Ω(q/ε2). By
another Chernoff bound for every k ∈ [q], the probability (over the choice of dk1, . . . , d

k
q ) that

Pr

[
| 1

q
·
∑
j∈[q]

edkj
− pi |>

ε

10

]
≤ e−Ω(q/ε2).

Therefore, by a union bound, with probability 1− q · e−Ω(q/ε2) all approximations are correct and therefore,
with probability 1− (q + 1) · 2−Ω(q/ε2) ≥ 1− ν/100 over the choice of Y , A accepts.

The proof of the data milestone, as well as the first item of the lemma uses the same rationale of approx-
imation by a Chernoff bound, and follows along the same lines.

This concludes the proof that the milestones lemma implies Theorem 6.5. We have seen that A satisfies
the third condition of a milestone function. The combination of Lemma 7.7, Lemma 7.8 and Lemma 7.10
gives that A also satisfies the first two conditions.

7.2.4 Proof of Lemma 7.7

We will prove the lemma in two steps that correspond to the two steps of the decoding: decoding control,
and decoding data.

Claim 7.11. For every m, s = (ssamp, sπ, sPRG), r, e and y, let c = Enc(m, s, r) and c′ = c ⊕ e. If
Aweak2 (m, ssamp, sπ, e, y) = 1 then Pr[s ∈ Listctrl] ≥ 1− ν/20 (here the probability is over the coin tosses
of the decoder, and Listctrl is the list obtained in the decoding algorithm described in Figure 3).

Proof. By definition ifAweakctrl (e) = 1 iff blocks(p+ε) ≤ (1− ε
16)·nctrl. This means that there are ε·nctrl/16

indices in I = Samp(ssamp) such that Decctrl(c
′
i) decodes correctly (as only (p + ε) · b errors were placed

on the i’th block, and Decctrl list-decodes from this number of errors). For every such i, the correct message
s appears in the list Decctrl(c

′
i).

In the first step, the decoding algorithm choose n′ random indices from [n]. The fraction of good indices
in [n] is εnctrl/16

n = ε2n
48 . It follows (by a Chernoff bound) that with probability at least 1− 2−Ω(ε4·n′) at least

ε2 · n′/100 of the n′ chosen indices i1, . . . , in′ , have s ∈ Listi. Therefore, if this event occurs, s passes the
pruning step and is selected to Listctrl. Finally, we note that 1 − 2−Ω(ε4·n′) ≥ 1 − ν/20 by the choice of
n′ = (logN)cν+2.

Claim 7.12. For every m, s = (ssamp, sπ, sPRG), r, e and y, let c = Enc(m, s, r) and c′ = c ⊕ e. If
Aweakdata (m, ssamp, sπ, e, y) = 1 and s ∈ Listctrl (meaning that s was recovered correctly by the first step of
decoding) then m ∈ Dec(c′).
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Proof. We have that s ∈ Listctrl, meaning that s is one of the candidates considered in the second step
of the decoding. Let y′ be the string obtained from c′ after the decoding uses ssamp to find the data
blocks, sPRG to unmask the data, and sπ to permute it back to it’s original state. The requirement that
Aweakdata (m, ssamp, sπ, e, y) = 1 implies that Amw (eπdata) = 1. This means that the function Am(eπdata) from
Theorem 3.20 answers one. By Theorem 3.20 this gives that

m = DecBSC(EncBSC(m)⊕ eπdata).

Note that eπdata is the error vector used on EncBSC(m) in c′. More precisely, when decoding data in Figure
3 the string x′ = EncBSC(m)⊕ eπdata. It follows that m is in the final list of Dec(c′).

The lemma follows from the combination of both claims.

7.2.5 Proof of Lemma 7.8

A good intuition to keep in mind is that we are trying to bound the harm that can be caused by an additive
channel that uses fixed error vector e of Hamming weight at most pN .

We start by showing that with high probability, no more than an ε2/4 fraction of the control blocks,
suffer too many errors from the error vector e.

Claim 7.13. For every m, e of Hamming weight at most pn, y, and sπ,

Pr[Astrongctrl (m,Ssamp, sπ, e, y) = 1] ≥ 1− ν/100.

Proof. For a given error vector e we define:

Te =
{
i : The i’th block has Hamming weight at most (p+ ε

4) · b
}
.

For every e that has Hamming weight at most pN , it holds that |Te| > ε
4 ·n (otherwise we would have more

than pN errors). Define fe : [n] → {0, 1} such that fe(i) = 1 iff i ∈ Te. By the properties of the sampler
Samp,

Pr
(z1,...,znctrl

)←Samp(U`′ )

[
1

nctrl
· |{i : zi ∈ Te}| −

|Te|
n
| > α

100

]
≤ ν

N3
.

Thus, if we choose Ssamp uniformly and independently we get that with probability 1 − ν
N3 , we have that

blocks(p+ ε
4) ≤ (1− ε

4 + α
100) · nctrl ≤ (1− ε

3) · nctrl, and Astrongctrl (m,Ssamp, sπ, e, y) = 1 (where the last
inequality uses that α ≤ ε).

We now show that the fraction of errors induced by e to the data part cannot be significantly larger than p.

Claim 7.14. For every m, e of Hamming weight at most pN , y, and sπ,

Pr
ssamp←U`′

[
weight(eSamp(ssamp)

data ) ≥ Ndata · (p+
α

100
)
]
≤ ν

N3
.

Proof. For a given error vector e, we define fe : [n] → [0, 1] such that fe(i) = wi, where wi is the relative
weight of ith block in e. By the definition of the sampler,

Pr
(z1,...,znctrl

)←Samp(U`′ )

| 1

nctrl

∑
i∈[nctrl]

f(zi)− p| >
α

100

 ≤ ν

N3
.
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Thus with probability 1− ν
N3 , the number of errors induced to the control blocks is at least Nctrl(p− α

100),
which implies that the number of error induced to the data is less than pN−Nctrl(p− α

100)) ≤ Ndata(p+ α
100)

(where the last inequality follows because Nctrl ≤ Ndata). The claim follows.

In order to prove Lemma 7.8 it is sufficient to show that:

Claim 7.15. For every m, e of Hamming weight at most pn, y, and ssamp. If ssamp is not one of the bad
strings considered in the events of the two previous claims, then

Pr[Astrongdata (m, ssamp, Sπ, e, y) = 1] ≥ 1− ν/100.

Proof. Let ssamp be a sampler seed for which the none of the two events of the previous two claims hold.
(It is important to note that these events do not involve Sπ). We have that the hamming weight of ê =

e
Samp(ssamp)
data is at most (p+ α

100)·Ndata. The functionAstrongdata checks whether the functionAm from Theorem
3.20 accepts πSπ(ê). When choosing EncBSC in Figure 1, we applied Theorem 3.20 with pBSC = p+α and
block length Ndata. The string ê has hamming weight less than (p+ α) ·Ndata, and therefore, by Theorem
3.20,

Pr[Astrongdata (m, ssamp, Sπ, e, y) = 1] = Pr[Am(πSπ(ê) = 1] ≥ 1− 2−Ω(t) ≥ 1− ν/100,

where the last inequality follows because t = (logN)cν+2.

Lemma 7.8 follows from the three claims above by noticing that ν/N3 + ν/N3 + ν/100 ≤ ν/20.

8 Conclusion and Open Problems

A natural open problem is to improve the running time of encoding and decoding to linear time. We remark
that the step of applying a permutation π[n] → [n] on all n inputs, takes at least time O(n log n) (just to
write down the inputs and outputs) and this is an obvious bottleneck for the approach used in this paper.

Guruswami and Smith [GS16] showed that we cannot expect to have uniquely decodable stochastic
codes for space log n channels if p > 1

4 . However, it is not known whether for p < 1
4 , uniquely decodable

stochastic codes for bounded space channels are possible with rate R > 1 − H(2p) that is larger than
the Gilbert-Varshamov bound (or even with a rate that matches the Gilbert-Varshamov bound, and efficient
encoding and decoding).
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A Proof of Theorem 3.20

In this subsection we prove Theorem 3.20. We start by specifying the inner and outer codes stated in the
theorem statement, and then prove their relevant properties. We will use the following construction by
Guruswami and Indyk [GI05].

Theorem A.1 (Theorem 3 [GI05]). For every 0 < R < 1, and every sufficiently small ε > 0, there exists an
explicitly specified family of codes of rateR and relative distance at least (1−R−ε) over an alphabet of size
2O( 1

ε4
· 1
R
·log( 1

ε
)), such that codes from the family can be encoded in linear time and can also be (uniquely)

decoded in linear time from a fraction e of errors and s of erasures provided 2e+ s ≤ (1−R− ε).

In the following, we use some of the codes previously considered by [Smi07] and[GS16], and make
small changes to fit our framework.

Outer code: Let Encout : {0, 1}kout → ({0, 1}log qout)nout be the code guaranteed by Theorem A.1. These
codes are encodable and decodable in linear time, can have rate Rout ≥ 1 − ε/10 and are able to recover
from λ1 = ε/200 fraction of error, with an alphabet size qout ≤ 2ε

−7
. Since we can combine symbols to

increase the alphabet size without compromising the fraction of correctable symbol errors, we will assume
that log(qout) ∈ Θ(ε−7).

Inner code: By Shannon’s theorem there exists binary linear codes Encin : {0, 1}kin → {0, 1}nin , with
rate Rin ≥ 1 −H(p) − ε/10 that are decodable from BSCnin

p′ errors with probability 2−Θ(ε2nin), for every
0 ≤ p′ ≤ p. Thus we can choose λ2 ∈ Θ(ε2). For our application we require that,

2 · 2−(λ2/2)·nin ≤ λ1/100 (2)

Hence, we get the added constrain that nin ≥ Θ
(

log(1/λ1)
λ2

)
, which we satisfy by our choice of parameters

since λ1 = ε/200 and nin > kin = log(qout). The code is constructed by an exhaustive search over all
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linear codes, where Decin simply implements a maximum likelihood decoding. Both the decoding and con-
struction can be performed in time 2poly(nin). For more details, the reader is referred to [GRS12] Chapter 13.

Note that the concatenated code Enc = Encout ◦ Encin : {0, 1}kout → {0, 1}n specified by the above
inner and outer codes is well defined, with rate R ≥ 1−H(p)− ε, as intended.

In order to prove the penultimate item in Theorem 3.20, we prove the following claim, for which we
introduce the following notation: For e ∈ {0, 1}n denote De = πUd(e). For every i ∈ [nout] we use Dj

e

to denote (De)(j−1)·nin+1 · · · (De)j·nin . The penultimate item in Theorem 3.20 will follow from the claim
below:

Claim A.2. Let t ≤ n0.1, and let π : {0, 1}d × [n] → [n] be a (2−10·t, t)-wise independent permutation.
For every j ∈ [nout], let Ajm : {0, 1}nin → {0, 1} be a function that on input y ∈ {0, 1}nin outputs one iff,

Decin(Encin(Encout(m)j)⊕ y) 6= Encout(m)j ,

For every e ∈ {0, 1}n of Hamming weight at most pn, and every set S of t′ ≤
⌊
t/nin

⌋
distinct indices

i1, · · · , it′ ∈ [nout], it holds that,

Pr[Ai1m(Di1
e ) = . . . = A

it′
m (D

it′
e ) = 1] ≤ (2(−λ2/2)·nin)t

′

The proof of Claim A.2 is given below, but first we use the claim to prove the penultimate item in
Theorem 3.20. First note that by definition,

Pr[Am(πUd(e)) = 0] = Pr
[ ∑
j∈nout

Ajm(Dj
e) ≥ w/10

]
(3)

Thus to prove the penultimate item in Theorem 3.20, we need to show that

Pr[
∑
j∈nout

Ajm(Dj
e) ≥ w/10] = Pr[

∑
j∈nout

Ajm(Dj
e) ≥ (λ1/10) · nout] ≤ 2−λ3·t.

For every j ∈ [nout], let Xj denote Ajm(Dj
e). By Claim A.2 for every t′ ≤

⌊
t/nin

⌋
distinct indices

i1, · · · , it′ ∈ [nout], Pr[Xi1 = . . . = Xit′ = 1] ≤ µt
′

for µ = (2(−λ2/2)·nin). Finally, by using the tail
bounds stated at Lemma 3.12, we get that

Pr[
∑
j∈nout

Xj ≥ 2 · µ · nout] ≤ 2−λ3t, (4)

for a sufficiently small constant λ3. This concludes the proof since by our choice of parameters 2·µ ≤ λ1/10,
(see Equation 2 above).

Proof of Claim A.2. Recall that we want to show that for every set S of t′ ≤
⌊
t/nin

⌋
distinct indices

i1, · · · , it′ ∈ [nout],
Pr[Ai1m(Di1

e ) = . . . = A
it′
m (D

it′
e ) = 1] ≤ 2−(λ2/2)·t.

Let DS
e denote Di1

e ◦ · · · ◦ D
it′
e . We will compare DS

e to BSC
(t′·nin)
p , and show that they are close. Let

ASm : ({0, 1}nin)t
′ → {0, 1} be a function defined as follows: On input y ∈ ({0, 1}nin)t

′
, such that yj =

y(j−1)·nin+1 · · · yj·nin , ASm(y) = 1 iff for every ij ∈ S, Aijm(yj) = 1. Note that this means that,

Pr[ASm(DS
e ) = 1] = Pr[Ai1m(Di1

e ) = . . . = A
it′
m (D

it′
e ) = 1] (5)
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Claim A.3. For every 0 < p < 1
2 , e ∈ {0, 1}n with Hamming weight pn, and S of size t′,

Pr[ASm(DS
e ) = 1] ≤ 2 · Pr[ASm(BSC(t′·nin)

p ) = 1] + 2−10t.

Proof of Claim A.3. Let us first imagine the case where π does not have an additive error, that is, π is a (0, t)-
wise independent permutation. By definition, DS

e can be viewed as sampling ` = t′ · nin uniform positions
in the error vector e without replacement. On the other hand, BSC`

p can be viewed as sampling ` uniform
positions in e with replacement. Let E denote the event where BSC`

p has no collision (no position was
sampled twice). By definition this means that, DS

e ≡ (BSC`
p) | E. Thus, for every function ASm : {0, 1}` →

{0, 1},

Pr[ASm(DS
e ) = 1] = Pr[ASm(BSC`

p) = 1 | E] ≤
Pr[ASm(BSC`

p) = 1]

Pr[E]
≤

Pr[ASm(BSC`
p) = 1]

1−
(
`
2

)
/n

(6)

Since π is only (2−10t)-close to a t-wise permutation, we get that,

Pr[ASm(DS
e ) = 1] ≤ 2 · Pr[ASm(BSC`

p) = 1] + 2−10t (7)

Note that by the properties of the inner code we specified in our construction, it holds that for every
0 ≤ p′ ≤ p and ij ∈ S: Pr[A

ij
m(BSCnin

p′ ) = 1] ≤ 2−λ2·nin , and ultimately

Pr[ASm(BSC
(t′·nin)
p′ ) = 1] ≤ (2−λ2·nin)t

′
.

Thus, Claim A.3 yields that for every S and e ∈ {0, 1}n with Hamming weight at most pn,

Pr[ASm(DS
e ) = 1] ≤ 2 · (2−λ2·nin)t

′
+ 2−10t ≤ (2(−λ2/2)·nin)t

′
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