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Abstract. We prove that if NP �⊆ BPP, i.e., if SAT is worst-case hard,
then for every probabilistic polynomial-time algorithm trying to decide
SAT, there exists some polynomially samplable distribution that is hard
for it. That is, the algorithm often errs on inputs from this distribution.
This is the first worst-case to average-case reduction for NP of any kind.
We stress however, that this does not mean that there exists one fixed
samplable distribution that is hard for all probabilistic polynomial-time
algorithms, which is a pre-requisite assumption needed for one-way func-
tions and cryptography (even if not a sufficient assumption). Neverthe-
less, we do show that there is a fixed distribution on instances of NP-
complete languages, that is samplable in quasi-polynomial time and is
hard for all probabilistic polynomial-time algorithms (unless NP is easy
in the worst case).
Our results are based on the following lemma that may be of independent
interest: Given the description of an efficient (probabilistic) algorithm
that fails to solve SAT in the worst case, we can efficiently generate
at most three Boolean formulae (of increasing lengths) such that the
algorithm errs on at least one of them.
Keywords. Average-case complexity, worst-case to average-case reduc-
tions, foundations of cryptography, pseudo classes.
Subject classification. 68Q10, 68Q15, 68Q17, 94A60.

1. Introduction

It is traditional in computational complexity to measure worst-case complexi-
ties, and say that a problem is feasible if it can be solved in worst-case poly-
nomial time (i.e., it is in P or BPP). A general belief is that NP-complete
languages do not have feasible algorithms that are correct on every input. Thus
under a worst-case measure of complexity, these problems are hard. However,
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this does not mean that in practice NP-complete problems are hard. It is pos-
sible that for a given problem, its hard instances are “rare”, and in fact it is
solvable efficiently on all instances that actually appear in practice.

1.1. Average-case complexity: The cryptographic approach. This
point of view led Levin (1986) to develop the theory of average-case complexity
of NP problems, trying to capture the notions of easiness and hardness on the
average. We now give a brief overview of the main concepts in this theory.

Let L be a language that we want to decide, and let D be a distribution over
the instances. Here (and throughout the paper) we think of D as an ensemble
of distributions {Dn}n∈N, where Dn is a distribution over {0, 1}n.1 We want to
measure how hard it is to decide L with respect to the distribution D. Thus
we look at the complexity of the distributional problem (L,D).

Trying to capture the notion of “real-life” instances, we look at input dis-
tributions that can be efficiently generated. We say that D is samplable if
there exists some probabilistic polynomial-time machine that generates the
distribution. Formally, we require that there is a probabilistic polynomial time
algorithm such that the output distribution of this algorithm on input 1n, is
the distribution Dn.

2

This leads to a definition of the distributional analogue of the class NP.

Definition 1.1. The class DistNP contains all the distributional problems
(L,D), where L ∈ NP and D is a samplable distribution.

Levin (1986) and subsequent papers (e.g., Ben-David et al. (1990); Gurevich
(1990, 1991); Venkatesan & Levin (1988)) defined the notions of reductions
between distributional problems and completeness in DistNP, and were able
to show several complete problems in the class.

Next, we turn to define the notion of a distributional problem being “easy”
on the average.

Definition 1.2. Let C be a class of algorithms and (L,D) a distributional
problem. We say that (L,D) ∈ Avgp(n) C if there is an algorithm AD ∈ C such
that for every large enough n, Prx∈Dn [AD(x) = L(x)] ≥ p(n).

1We mention that Levin considered a single distribution over all inputs, but Impagliazzo
(1995) showed that it is essentially equivalent to consider ensembles of distributions.

2We remark that Levin considered a more restricted class of distributions that are
P-computable, i.e., their probability function can be calculated in polynomial time. However,
Impagliazzo & Levin (1990) showed that there is an average-case hard language in NP with
respect to a samplable distribution if and only if there is an average-case hard language in
NP with respect to a P-computable distribution.
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The actual definition given in Levin (1986) differ in various details from
Definition 1.2, for example whether the algorithm has a zero-sided, one-sided
or two-sided error, and whether the algorithm has a strict running time or
only expected running time. The definition we give here is due to Impagliazzo
(1995), where it is called Heur P.

When thinking of efficient solutions, we should think of C as being P or BPP.
Thus the average-case analogue of the statement NP �⊆ BPP (i.e., DistNP �⊆
AvgBPP) is that there exists an NP language L and a samplable distribution D,
such that every efficient probabilistic algorithm errs with high probability over
instances drawn from D.

This notion seems to capture the intuition of a problem being hard on the
average. Furthermore, it seems to be the right notion of hardness that is needed
for cryptographic applications. For example, consider a cryptosystem that is
based on the RSA encryption scheme. We would like the user to be able to
sample efficiently composite numbers of the form N = p·q (where p, q are prime
numbers known to the user) such that with high probability over this sample
space, an adversary would not be able to factor the chosen number and to
break the encryption. Thus, in particular, we require a samplable distribution
that together with the problem of factoring will give a distributional problem
that is not in AvgBPP. We should point out though, that this requirement in
itself does not suffice for this application, because we need to generate numbers
according to the distribution together with their factorization. The point that
we want to make is that for this application, average-case hardness is necessary.

1.2. Average-case complexity: The algorithmic approach. While the
notion of hard distributional problems seems to capture the intuitive meaning
of hardness on average, we now explain that it may be insufficient to capture
the intuitive meaning of easiness on average and may be problematic when
taking an algorithmic point of view. That is, saying that a distributional
problem (L,D) is easy on the average means that there is an efficient (average-
case) algorithm for the specific distribution D. Often, we don’t have precise
knowledge of the distribution of the inputs, and even worse, this distribution
may change in the future. A reasonable guarantee is that the inputs are drawn
from some unknown samplable distribution (which, as before, is our model
of “real-life” instances). Thus we would like to design an algorithm that is
guaranteed to succeed with good probability whenever the inputs are sampled
from some samplable distribution. This gives rise to the following definition,
due to Kabanets (2001).
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Definition 1.3 (Pseudo classes). Let C be a class of algorithms and L a lan-
guage. We say that L ∈ Pseudop(n) C if there exists an algorithm B ∈ C such
that for every samplable distributions D = {Dn}n∈N

we have that for large
enough n, Prx∈Dn[B(x) = L(x)] ≥ p(n).

When C is a class of probabilistic algorithms, there are subtleties in this
definition (as well as in Definition 1.2). In the introduction we ignore these
subtleties and we refer the reader to Definition 2.1, which addresses these issues.

Note that if L ⊆ Pseudop C then for every samplable distribution D,
(L, D) ∈ Avgp C, while the converse does not seem to hold. Definition 1.3
and its generalizations arise in the context of derandomization in the uniform
setting Gutfreund et al. (2003); Impagliazzo & Wigderson (1998); Kabanets
(2001); Lu (2001); Trevisan & Vadhan (2006) (the reader is referred to Ka-
banets (2002) for a recent survey). We believe this definition captures a basic
notion in computational complexity. We want to mention that Trevisan &
Vadhan (2006) also made the distinction between definitions of average-case
complexity for “hardness” and definitions for “easiness”.

1.3. Worst-case to average-case reductions in NP. Cryptography has
been a very successful field in the last few decades. A vast amount of crypto-
graphic primitives are known to exist under complexity theoretic assumptions.
Yet, the basis on which cryptography relies is much less understood.

The weakest assumption that allows cryptographic applications is the ex-
istence of one-way functions (OWF) Impagliazzo & Luby (1989). However,
all the current candidate constructions of one-way functions rely on the hard-
ness of specific problems (such as factoring, discrete log or lattice problems
Ajtai (1996); Ajtai & Dwork (1997); Diffie & Hellman (1976); Micciancio &
Regev (2004); Rabin (1979); Regev (2004); Rivest et al. (1978)). None of these
problems is known to be as hard as solving an NP–complete language in the
worst-case. 3

The desire to make the foundations of cryptography more credible, or at
least better understood, drove much work in the past, and is a question of
fundamental importance. In particular it was shown that the existence of
OWF is equivalent to the existence of many cryptographic primitives such
as: pseudorandom generators, pseudorandom functions, bit commitments, and
digital signatures Goldreich et al. (1986); H̊astad et al. (1999); Impagliazzo &
Luby (1989); Naor (1991); Rompel (1990).

3Some of these problems only rely on an average-case hardness assumption, and others,
such as lattice based problems, rely on the worst-case hardness of languages that are unlikely
to be NP–complete Aharonov & Regev (2005); Goldreich & Goldwasser (2000).



cc 16 (2007) NP vs. PseudoBPP 5

Perhaps the holy grail of the area is the attempt to base the existence of
one-way functions on a worst-case computational complexity assumption, such
as NP �= P or NP �⊆ BPP. One thing that is clear from the beginning is that
the assumption that OWF exist, at the very least, implies that there exists
a language in NP that is hard on average for BPP. Thus an important (and
necessary) step towards basing cryptography on the NP �⊆ BPP assumption is
showing a worst-case to average-case reduction for an NP–complete problem.

Open Question 1.4. Does NP �⊆ BPP imply DistNP �⊆ Avg1−n−O(1) BPP?

Open Question 1.4 has been the focus of some recent research (the reader
is referred to Bogdanov & Trevisan (2003) for more details). We note that the
error parameter n−O(1) can be significantly improved by known hardness am-
plification results Healy et al. (2006); Impagliazzo & Levin (1990); O’Donnell
(2004); Trevisan (2003, 2005). Some of the aforementioned results require hard-
ness against circuits (rather than probabilistic polynomial time algorithms).

Worst-case to average-case reductions have been shown to exist for complete
languages in high complexity classes such as EXP, PSPACE, and �P (where
hardness is measured both against uniform and nonuniform classes) Babai et al.
(1993); Impagliazzo & Wigderson (1997); Sudan et al. (2001); Trevisan & Vad-
han (2006). In contrast, no worst-case to average-case reductions are known for
NP-complete problems. In fact, there are results that rule out several classes
of such reductions. Specifically, Bogdanov & Trevisan (2003) (improving on
Feigenbaum & Fortnow (1993)) show that there is no worst-case to average-
case black-box and non-adaptive reductions from an NP-complete language to
itself unless the polynomial-time hierarchy collapses. By a black-box reduction
we mean a polynomial-time oracle machine R, that when given an oracle that
does “too well” on the average, solves the NP language on the worst case. This
result shows that unless the polynomial-time hierarchy collapses there are no
such reductions that make non-adaptive queries to their oracles. Viola (2004)
showed that there is no black-box worst-case to average-case transformation
that is computable within the polynomial-time hierarchy. Roughly speaking, a
black-box transformation is an algorithm that transforms any worst-case hard
problem into one that is hard on average, without relying on any specific prop-
erties of the problem.

1.4. Our results. Pseudo classes have received much less attention than av-
erage classes. In fact, most of what we know about pseudo classes are “easiness
results” showing that assuming the existence of problems that are hard (in
the worst case), certain randomized procedures can be derandomized “on the
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average” Gutfreund et al. (2003); Impagliazzo & Wigderson (1998); Kabanets
(2001); Lu (2001); Trevisan & Vadhan (2006). In this paper we study this no-
tion in relation to “hardness”. Our main results are worst-case to average-case
reductions for PseudoP and PseudoBPP.

Theorem 1.5.

(i) NP �= P ⇒ NP �⊆ Pseudo5/6 P

(ii) NP �= RP ⇒ NP �⊆ Pseudo97/100 BPP.

This worst-case to average-case reduction in the algorithmic setting, stands
in contrast to the failure in proving such a reduction in the cryptographic setting
(for the class Avg BPP). To the best of our knowledge, it is the first worst-case
to average-case reduction for NP-complete languages under a natural notion
of average-case complexity. Stated in words, Theorem 1.5 says that if NP is
hard on the worst case, then for any efficient algorithm trying to solve some
NP-complete language, it is possible to efficiently sample instances on which
the algorithm errs.

We remark that once we are able to sample hard instances for one specific
NP-complete problem (say Satisfiability) then we can sample hard instances for
any complete problem. This follows immediately by using many-one reductions
because applying a many-one reduction on instances drawn from a samplable
distribution results in another samplable distribution.

In order to establish Theorem 1.5, we prove a lemma that says that given the
description of an efficient algorithm that fails to decide SAT, we can efficiently
generate three Boolean formulae such that the algorithm errs on at least one of
the three. We stress that the lemma does not rely on any unproven assumptions
and is correct whether NP = P or not.

Finally, we use Theorem 1.5 to show that there is a fixed distribution on
instances of SAT (in fact every NP-complete language), that is samplable in
quasi-polynomial time, and every efficient algorithm errs with non-negligible
probability on instances drawn from the distribution. More formally,

Theorem 1.6. Let f(n), s(n) be time-constructible functions such that f(n)=
nω(1), and s(n) = ω(1). Then there is a distribution D that is samplable in
time f(n), such that for every NP-complete language L, the following holds,

NP �= RP ⇒ (L, D) �∈ Avg1−1/s(n) BPP .

Note that D is the same distribution for every NP-complete language. In-
terestingly, this distribution is very simple to describe (see the proof of Theo-
rem 1.6 in Section 5).
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1.5. Perspective: Impagliazzo’s worlds. Impagliazzo (1995) gives an en-
lightening survey where several scenarios regarding the existence of OWF and
the NP vs. BPP question are explored. In particular he considers five possible
worlds: Algorithmica (where NP problems are easy on the worst-case), Heuris-
tica (where NP is hard in the worst-case but easy on the average), Pessiland
(where NP is hard on the average, but yet there are no OWF), Minicrypt (where
OWF exist, but not public-key cryptography), and Cryptomania (where there
is public-key cryptography).

When describing his worlds, Impagliazzo considers Levin’s notion of aver-
age-case complexity (and its variants). However, Definition 1.3 suggests an-
other possible world, located between Algorithmica and Heuristica, where NP
problems are hard in the worst-case, but for every such problem there is an al-
gorithm that does well on every samplable distribution. Let us call this world
Super-Heuristica.

The difference between Heuristica and Super-Heuristica is that in the for-
mer, any algorithmic solution to some hard problem is bound to a specific
distribution over the inputs. So if this distribution changes we have to come
up with a new solution to the problem. In Super-Heuristica on the other hand,
once a good heuristic for some NP-complete problem has been developed, ev-
ery new problem that arises, only needs to be reduced to the original problem.
Once this is done, we can forget about this problem: Hard instances for its
heuristic never come up in practice, not now, nor in the future (as long as
“real-life” is modeled well by samplable distributions).

Theorem 1.5 says that Super-Heuristica does not exist. That is, if an NP-
complete problem has heuristic that does well on every samplable distribution,
then it has an algorithm that does well on every input (or on every distribution,
samplable or not). So if we believe that NP �⊆ BPP, then heuristics for NP-hard
problems will always have to be bound to specific distributions.

1.6. Overview of the technique. In this section we give a high level
overview of the proof of Theorem 1.5. Let us first focus on the first item.
That is, we assume that NP �= P and need to show that for any determin-
istic algorithm BSAT there is a samplable distribution which generates hard
instances for BSAT. The main step in the proof is a lemma that shows that
there is a deterministic procedure R that when given as input the description
of BSAT and an input n outputs at most three formulae, such that BSAT errs
on at least one of the formulae (for infinitely many n). In other words, the
procedure R finds instances such that one of them is hard for BSAT.
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The basic idea. We now explain how to prove this lemma (the main theorem
follows easily from the lemma). We know that BSAT does not solve SAT. Fix
some length n on which BSAT makes an error. Our goal is to find an instance
on which BSAT errs. The basic idea is to consider the following statement
denoted φn: “there exists an instance x of length n such that BSAT(x) �=
SAT(x)”. Note that this statement is a true statement. If this statement was
an NP statement then we could reduce it into an instance of SAT and feed it
to BSAT. If BSAT answers ’no’ then φn is an instance on which BSAT errs. If
BSAT answers ’yes’ then in some sense BSAT “admits” that it makes an error
on inputs of length n. We can hope to use BSAT to find a witness x to φn and
such a witness x is a formula on which BSAT errs.

Note however, that at the moment it is not necessarily the case that de-
ciding φn is in NP. This is because it could be the case that BSAT errs only
on unsatisfiable formulae. (Say for example that BSAT always answers ’yes’.)
Verifying that φn holds seems to require verifying that a given formula x is
unsatisfiable.

A search algorithm. We overcome this difficulty by replacing BSAT with
an algorithm SSAT that has the following properties:

1. When SSAT answers ’yes’ then it also outputs a satisfying assignment,
and in particular it never errs when it answers ’yes’.

2. If BSAT answers ’no’ on input x then SSAT answers ’no’ on input x.

3. If BSAT answers ’yes’ on input x then either SSAT answers ’yes’ (and
finds a satisfying assignment) or else SSAT outputs three formulae such
that BSAT errs on at least one of them.

It is easy to construct such an algorithm SSAT by using the standard self-
reducibility property of SAT. More precisely, on input x, the algorithm SSAT
attempts to use BSAT to find a satisfying assignment. In every step it holds
a formula x that BSAT answers ’yes’ on. It then substitutes one variable of x
to both “zero” and “one” and feeds these formulae to BSAT. If BSAT answers
’yes’ on one of them, then the search continues on this formula. Otherwise, at
least one of the answers of BSAT on x and the two derived formulae is clearly
incorrect. Finally, SSAT accepts if it finds a satisfying assignment. It is easy
to verify that SSAT has the properties listed above.
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Finding hard instances. To find a hard instance we change φn to be the
following statement: “there exists an instance x of length n such that SAT(x) =
1 yet SSAT(x) �= ’yes’”. Note that now deciding φn is in NP and therefore we
can reduce it to a formula. To find hard instances we run SSAT(φn). There
are three possibilities.

1. SSAT finds three instances such that on one of them BSAT errs.

2. SSAT answers ’no’, but in this case BSAT answers ’no’ and φn is a formula
on which BSAT errs.

3. SSAT answers ’yes’ and finds a satisfying assignment x.

It is important to stress that we’re not yet done in the third case. While
we know that SSAT errs on x, it’s not necessarily the case that BSAT errs
on x. In the third case, we run SSAT on x. This time we know that the
third possibility cannot occur (because we are guaranteed that SSAT does not
answer ’yes’ on x) and therefore we will be able to find a hard instance.

Extending the argument to the case where BSAT is randomized.
We say that a randomized algorithm conforms with confidence level 2/3 if for
every input x, either the algorithm accepts x with probability at least 2/3 or it
rejects x with probability at least 2/3. When given such an algorithm BSAT
we can easily use amplification and get an algorithm BSAT that conforms with
confidence level 1 − 2−2n. As in the argument of Adelman (1978), for almost
all choices of random strings u, BSAT(·, u)’s answer “captures” whether BSAT
accepts or rejects x. Thus, we can do the same argument as above replacing
BSAT with BSAT(·, u) for a uniformly chosen u. We will find hard instances
for BSAT(·, u), and with high probability (over the choice of u) one of the
instances will be a formula on which BSAT errs with noticable probability.

In general, we cannot assume that BSAT conforms to some confidence level.
For example, BSAT is allowed to flip a coin on some instances. This means
that on such instances (on which BSAT is undecided) the confidence of BSAT
is not amplified. Thus we cannot say that (with high probability) BSAT(·, u)
and BSAT accept the same set of inputs. To deal with such cases we need
a more cumbersome case-analysis to implement the idea of the deterministic
case. Specifically, we need to go over the reduction and each time state not
only what happens to inputs on which BSAT gives a definite answer, but also
what happens to undecided inputs. This makes the proof of the randomized
case more complicated than the deterministic case, and does not allow us to
directly reduce the former to the latter.
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1.7. Outline. We give some preliminaries in Section 2. In Section 3, we
prove the first item of Theorem 1.5. In Section 4, we prove the second item
of Theorem 1.5. In Section 5, we prove Theorem 1.6. We conclude with a
discussion and open problems.

2. Preliminaries

We denote by [n], the set {1, . . . , n}. For a set S, we write i ∈R S for i being
sampled from the uniform distribution over S. We use Un to denote the uniform
distribution on {0, 1}n.

2.1. Satisfiability. There are many ways to encode formulae as binary
strings. In this paper it is convenient to choose an encoding that can be padded.
More precisely, if x is an encoding of φ then x ◦ 0i is also an encoding of φ.
This means for example that given x we can substitute some of the variables
in x by constants and pad the obtained formula to the same length as x. We
define SAT(x) to be “1” if x encodes a satisfiable formula and zero otherwise.
It is sometimes convenient to think of satisfiability as a language and we write
x ∈ SAT instead of SAT(x) = 1.

2.2. Samplable distributions. An ensemble of distributions D is an infinite
set of distributions {Dn}n∈N

, where Dn is a distribution over {0, 1}n. If A is
a deterministic machine taking two inputs, A(y; Un) denotes the distribution
obtained by picking x uniformly from {0, 1}n and evaluating A(y; x). We say
that D = {Dn} is samplable in time f(n) if there exists a machine A such that
for every n, A(1n; Uf(n)) = Dn, and the running time of A is bounded by f(n).
If f(n) is a fixed polynomial we simply say that D is samplable.

2.3. The class Pseudo BPP. Let PPM denote the class of probabilistic
machines that run in strict polynomial time. We define:

Definition 2.1 (Pseudo BPP). We say that L ∈ Pseudop(n) BPP if there
exists a PPM algorithm B such that for every samplable distributions D =
{Dn}n∈N

we have that for large enough n, Prx∈Dn,y∈R{0,1}r [B(x, y) = L(x)] ≥
p(n).

2.4. Confidence level of probabilistic machines. It is convenient to as-
sociate some deterministic function with any probabilistic machine by requir-
ing that the machine accepts/rejects with some confidence level. More pre-
cisely, a confidence level is a function c(n) over integers, such that for every
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n, 1/2 < c(n) ≤ 1. Given a machine M ∈ PPM and a confidence level c(·)
we define a function Mc : {0, 1}∗ → {0, 1, ∗} in the following way: Mc(x) = 1
(Mc(x) = 0) if M accepts (rejects) x with probability at least c(|x|) over its
coins, otherwise Mc(x) = ∗. We say that M accepts (rejects) an input x with
confidence level c(|x|) if Mc(x) = 1 (Mc(x) = 0). Otherwise we say that x is
undecided.

We say that a machine M conforms to confidence level c(·) if for every x,
Mc(x) ∈ {0, 1}. Given a function f : {0, 1}∗ → {0, 1} we say that a machine
M ∈ PPM decides f with confidence level c(·) if for every x Mc(x) = f(x).

We remark that given a machine M ∈ PPM that conforms to some confi-
dence level c(n) > 1/2+1/n we can amplify the confidence level and construct
a machine M̄ ∈ PPM that defines the same function relative to confidence level
c̄(n) = 1 − 2−n.

If we do not explicitly mention the confidence level, its default value is 2/3.

3. The deterministic case

In this section we prove the first item of Theorem 1.5, that is that NP �=
P ⇒ NP �⊆ Pseudo5/6 P. The theorem follows from the following lemma that
may be of independent interest. Informally, this lemma says that if NP �= P
then for any algorithm that fails to solve SAT it is possible to produce three
formulae where on one of them the algorithm makes an error.

Lemma 3.1 (Producing hard instances (deterministic version)). Assume that
NP �= P. There is a deterministic procedure R, a polynomial q(·) and a con-
stant d such that the procedure R gets three inputs: integers n, a and a de-
scription of a deterministic machine BSAT; the machine R runs in time nd·a2

and outputs at most three formulae where the length of each formula is either n
or q(na). Furthermore, if BSAT is an algorithm that on inputs of length n runs
in time bounded by na (for some constant a) then for infinitely many input
lengths n, invoking R(n, a, BSAT) gives a set F of formulae such that there
exist φ ∈ F with BSAT(φ) �= SAT(φ).

We first observe that the first item of Theorem 1.5 follows from Lemma 3.1.

Proof of Theorem 1.5 first item. We assume that NP �= P, and as-
sume for the purpose of contradiction that NP ⊆ Pseudo5/6 P. By this as-
sumption there exists a deterministic algorithm BSAT that runs in time na for
some constant a. Furthermore, for any samplable distribution D = {Dn}n∈N

we have that for large enough n, Prx∈Dn[BSAT(x) = SAT(x)] ≥ 5/6. Let R
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be the procedure from Lemma 3.1 and let q(·) and d be the polynomial and
the constant guaranteed in the lemma. We consider the following distribution
D = {Dn}n∈N

defined by a sampling algorithm.

Sampling algorithm for D: On input 1n we first invoke R(n, a, BSAT). By
Lemma 3.1 R outputs at most three formulae of length either n or q(na).
We ignore formulae of length q(na). We then check whether there exists
a number n′ such that q((n′)a) = n. If there exist such an n′, we invoke
R(n′, a, BSAT). Once again we get at most three formulae with lengths
either n′ or q((n′)a) = n. We ignore the formulae of length n′. At the
end of this process we have at most six formulae Bn = {x1, . . . , xt} for
1 ≤ t ≤ 6 where each one is of length n. We now uniformly choose one
of these formulae and output it.

Note that each invocation of R takes time at most nd·a2
and therefore the

sampling procedure runs in polynomial time. From Lemma 3.1 we have that for
infinitely many n, one of the at most three formulae produced by R(n, a, BSAT)
is one on which BSAT errs. For each such n, this formula is either of length n
or of length q(na). Therefore for infinitely many n, Bn contains a formula
on which BSAT errs and with probability at least 1/6 this formula is chosen
by D(1n). This is a contradiction as BSAT is supposed to be correct on any
samplable distribution with probability 5/6 for large enough n. �

Remark 3.2 (A deterministic procedure for finding a hard instance). We
can prove a stronger result by using a less constructive argument. Consider 6
different deterministic algorithms R1, . . . , R6 where for each 1 ≤ i ≤ 6, Ri(1

n)
runs the procedure defined in the proof, to produce Bn and then outputs the i’th
element in Bn (if such exists). For at least one i, Ri(1

n) produces a formula on
which BSAT errs for infinitely many lengths n. Note that whenever Ri outputs
such a formula it does it with probability 1!

Thus under the assumption that NP �= P we can prove a stronger result than
the one claimed in Theorem 1.5, that there exist a deterministic algorithm that
outputs a hard instance on infinitely many input lengths. Using the terminology
of Kabanets (2001) this means that if NP �= P then NP �⊆ PseudoPP.

The remainder of this section is devoted to proving Lemma 3.1.

3.1. A search algorithm. Let a be some constant and let BSAT be a de-
terministic algorithm that runs in time at most ma on inputs of length m. We
define an algorithm SSAT that gets a formula x as input, uses BSAT as an
oracle, and can give one of three answers:
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◦ ’yes’ and an assignment α that is a proof that x is a satisfiable formula.

◦ ’no’ - that means that BSAT answers ’no’ on x.

◦ ”error” and a set F of formulae - taken to mean that BSAT is an incorrect
algorithm, and BSAT must be wrong on at least one formula from F .

We now describe the algorithm SSAT. Loosely speaking, SSAT is the stan-
dard algorithm that uses BSAT (and the self reducibility of SAT) to conduct
a search for a witness. Algorithm SSAT answers that the formula is satisfiable
only if the search concludes with a witness. A precise description follows.

The Algorithm SSAT: The input to SSAT is a Boolean formula x over
the variables v1, . . . , vm and uses an algorithm BSAT as oracle. On
input x, SSAT first asks BSAT if x0 = x is satisfiable, and if BSAT
answers ’no’, SSAT also answers ’no’. Otherwise, suppose SSAT has
so far fixed the partial assignment α1, . . . , αi and BSAT claims xi =
x(α1, . . . , αi, vi+1, . . . , vm) is satisfiable. SSAT asks BSAT if xi is satis-
fiable when vi+1 is set to false and when it is set to true. If BSAT
says none is satisfiable, SSAT declares an error and outputs xi, xi

0 =
x(α1, . . . , αi, 0, vi+2, . . . , vm) and xi

1 = x(α1, . . . , αi, 1, vi+2, . . . , vm). Oth-
erwise, BSAT “claims” at least one of the two possibilities is satisfied,
and SSAT sets vi+1 accordingly (choosing arbitrarily in the case the two
possibilities are satisfied). At the end, SSAT holds a complete assignment
α = α1, . . . , αm and it checks if it satisfies x. If it does, SSAT outputs
’yes’ and the assignment α. Otherwise, it declares an error and outputs
the constant formula xn = x(α1, . . . , αn). By padding formulae before
feeding them to BSAT we can make sure that all formulae that come up
during an execution of SSAT are of the length of the initial input x.

It is useful to sum up the properties of SSAT with the following straight-
forward lemma (the proof is omitted).

Lemma 3.3. Algorithm SSAT runs in polynomial time and furthermore:

◦ If SSAT answers ’yes’ on x then x is satisfiable and SSAT outputs an
assignment α that satisfies x.

◦ If SSAT answers ’no’ on x then BSAT answers ’no’ on x.

◦ If SSAT answers ‘error’ then SSAT outputs a set F of at most three
formulae of length identical to that of x such that there is a formula
y ∈ F with BSAT(y) �= SAT(y).
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3.2. Finding incorrect instances. We now describe the procedure R from
Lemma 3.1. We obtain as input numbers n, a and a description of a determin-
istic machine BSAT. We modify BSAT so that it stops after at most ma steps
on inputs of length m. This in turn defines a polynomially related time bound
on SSAT.

For every integer n we define an NP statement φn:

∃x∈{0,1}n

[
SAT(x) = 1 and SSAT(x) �= ’yes’

]
.

Note that indeed there is a circuit of size polynomial in na that given a
formula x and an assignment α checks whether it is the case that both α sat-
isfies x and SSAT(x) �= ’yes’. Using the Cook–Levin theorem the procedure R
reduces φn into a formula φ′

n of length polynomial in na over variables x, α
and z (where z is the auxiliary variables added by the reduction) with the
property that φ′

n is satisfiable if and only if φn is satisfiable. Furthermore the
Cook–Levin reduction also gives that for any triplet (x, α, z) that satisfies φ′

n,
x satisfies φn and α is a satisfying assignment for x. We choose q(·) to be a
polynomial that is large enough so that q(na) is bigger than the length of φ′

n.
(Note that this can be done for a universal polynomial q that does not depend
on n or BSAT and depends only on the efficiency of the Cook–Levin reduction).
We then pad φ′

n to length q(na).

Remark 3.4. Before we continue with the proof, we want to point out that the
use of the statement φn relies on the fact that the computation of BSAT (and
hence SSAT) has a short description as a Boolean formula. In other words, our
analysis only applies to an efficient BSAT. This means that when viewed as a
reduction, our argument is non-black-box. We refer the reader to Gutfreund &
Ta-Shma (2006) for a detailed analysis and discussion about the reduction that
we give here and what exactly makes it non-black-box. We want to emphasize
that one should not confuse non-black-box with non-relativizing. Indeed our
argument does relativize.

The procedure R then runs SSAT on φ′
n using BSAT as an oracle. There

are three cases:

◦ SSAT declares an error during the run and outputs three (or one) formu-
lae. In this case the procedure outputs these formulae.

◦ SSAT outputs ’no’. In this case the procedure outputs φ′
n.

◦ SSAT outputs ’yes’ and a satisfying assignment (x, α, z) for φ′
n. In par-

ticular, x ∈ SAT but SSAT(x) �= ’yes’. The procedure then runs SSAT
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on x. There are now only two options (either SSAT declares an error, or
answers ’no’):

– SSAT declares an error during the run and outputs three (or one)
formulae. In this case the procedure outputs these formulae.

– SSAT outputs ’no’. In this case the procedure outputs x.

3.3. Correctness. The most time consuming step in the description of R
is running SSAT on φ′

n. Recall that SSAT is an algorithm that runs in time
poly(na) on inputs of length n, and we feed it an input φ′

n of length q(na) =
poly(na). Altogether the running time is bounded by poly(na2

) as required.
Let us consider a modification SSAT′ of SSAT that gives a Boolean answer:

It answers ’yes’ when SSAT answers ’yes’ and ’no’ when SSAT answers ’no’ or
‘error’. By our assumption NP �= P and in particular SSAT′ does not solve
SAT. This means that there are infinitely many input lengths n on which
SSAT′ makes errors. We show that when R is given n, where n is such an
input length then it finds instances on which BSAT is incorrect.

Lemma 3.5. For any input length n on which SSAT′ doesn’t correctly solve
SAT, if R is given the triplet (n, a, BSAT) as input, then it outputs at most
three formulae such that on at least one of them BSAT makes an error.

Proof. Note that SSAT′ has one-sided error: It cannot err when it answers
’yes’. Thus, there exists a satisfiable formula x of length n such that SSAT′(x) =
’no’. It follows that φ′

n is a satisfiable formula. We now follow the description
of the procedure R and show that in all cases it finds instances on which BSAT
makes an error. Recall that R runs SSAT(φ′

n).

◦ If SSAT declares an error during the execution on φ′
n then by Lemma 3.3,

one of the three formulae (of length q(na)) that SSAT outputs is an error
of BSAT.

◦ If SSAT outputs ’no’, then by Lemma 3.3, BSAT(φ′
n) = ’no’ and thus

BSAT makes an error on φ′
n.

◦ If SSAT outputs ’yes’, then it also outputs a satisfying assignment (x, α, z)
for φ′

n and in particular, x ∈ SAT but SSAT(x) �= ’yes’. The procedure R
then runs SSAT on x. There are now only two options (either SSAT
declares an error, or answers ’no’):
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– If SSAT declares an error during the run then by Lemma 3.3 it
outputs at most three formulae (of length n) such that on one of
them BSAT errs.

– If SSAT outputs ’no’ then by Lemma 3.3, BSAT(x) = ’no’. However
we know that x is satisfiable and therefore R finds an error of BSAT.

�

This concludes the proof of Lemma 3.1.

Remark 3.6 (Finding hard instances when assuming NP = P). Lemma 3.1
shows that assuming that NP �= P, we can find hard instances for any polyno-
mial time algorithm attempting to solve SAT. We remark that in case NP = P,
it is also easy to find hard instances for any polynomial time algorithm that
does not solve SAT. This is easily done by using the polynomial time SAT
solver to find a witness of a formula that checks the statement “there exists
an instance of length n on which the given algorithm and the SAT solver do
not agree”. Thus Lemma 3.1 actually holds unconditionally whenever BSAT
fails to solve SAT in the worst-case (although for the proof of Theorem 1.5 it
is enough to state it the way it is).

4. The randomized case

In this section we prove the second item of Theorem 1.5, namely that NP �=
RP ⇒ NP �⊆ Pseudo97/100 BPP.

The overall structure of the proof follows that of the deterministic setting.
The theorem follows from the following lemma that is analogous to Lemma 3.1
and may be of independent interest. Informally, this lemma says that if NP �=
RP then for any randomized algorithm that fails to solve SAT, it is possible to
produce three formulae such that with a good probability, the algorithm makes
an error on one of them. It is important to stress that we do not assume that
the given randomized machine conforms to some confidence level.

Lemma 4.1 (Producing hard instances (randomized version)). Assume that
NP �= RP. For every constant c > 1/2 there is a randomized procedure R, a
polynomial q(·) and a constant d such that the procedure R gets three inputs:
integers n, a and a description of a randomized machine BSAT; the procedure R
runs in time nd·a2

and outputs at most three formulae where the length of each
formula is either n or q(na). Furthermore, if BSAT is a randomized algorithm
that on inputs of length n runs in time bounded by na then for infinitely many
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input lengths n, invoking R(n, a, BSAT) gives with probability 1− 1/n a set F
of formulae such that there exist φ ∈ F with BSATc(φ) �= SAT(φ).

The proof that the second item of Theorem 1.5 follows from Lemma 4.1 is
very similar to that in the previous Section. (Here we also have to take into
consideration the coin tosses of BSAT and the 1/n error probability of R.)

Proof of Theorem 1.5 second item. We assume that NP �= RP, and
assume for the purpose of contradiction that NP ⊆ Pseudo97/100 BPP. By this
assumption there exists a randomized algorithm BSAT that runs in time na for
some constant a. Furthermore, for any samplable distribution D = {Dn}n∈N

we
have that for large enough n, Prx∈Dn,y[BSAT(x, y) = SAT(x)] ≥ 97/100 (here

y ∈ {0, 1}poly(n) are the random coins of BSAT). Let R be the procedure from
Lemma 3.1 and let q(·) and d be the polynomial and the constant guaranteed
in the lemma. We consider the following distribution D = {Dn}n∈N

defined by
a sampling algorithm.

Sampling algorithm for D: We choose c = 51/100. On input 1n we first
invoke R(n, a, BSAT). By Lemma 4.1, R outputs at most three formulae
of length either n or q(na). We ignore formulae of length q(na). We
then check whether there exists a number n′ such that q((n′)a) = n. If
there exist such an n′, we invoke R(n′, a, BSAT). Once again we get at
most three formulae with lengths either n′ or q((n′)a) = n. We ignore
the formulae of length n′. At the end of this process we have at most six
formulae Bn = {x1, . . . , xt} for 1 ≤ t ≤ 6 where each one is of length n.
We now uniformly choose one of these formulae and output it.

Note that each invocation of R takes time at most nd·a2
and therefore the

sampling procedure runs in polynomial time. From Lemma 3.1 we have that
for infinitely many n, with probability at least 1−1/n one of the at most three
formulae produced by R(n, a, BSAT) is a formula y on which BSATc(y) �=
SAT(y). We call such lengths n useful. For each useful n, we consider two
events: The first is that R(n, a, BSAT) contains a formula y as above of length n
and the second that R(n, a, BSAT) contains a formula y as above of length
q(na). For each useful n at least one of the events occurs with probability at
least (1 − 1/n)/2 = 1/2 − 1/2n (over the coin tosses of R). It follows that for
infinitely many n, with probability 1/2−1/2n the set Bn contains a formula y as
above. For each such n, we choose such a formula with probability at least 1/6.
Finally, having y such that BSATc(y) �= SAT(y) means that the probability
that BSAT answers correctly on y is smaller than c. Therefore with probability
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at least 1
6
· (1

2
− 1

2n
) · (1− c) > 3/100 (over the coin tosses of both D and BSAT)

we have that BSAT fails to compute SAT correctly on the output of D. �

Remark 4.2. In our proof we do not try to optimize the constants. by using
a more careful calculation, the constant 97/100 can be improved. However, we
do not know how to get it below 2/3 (see Open Question 6.1).

The remainder of this section is devoted to proving Lemma 4.1. We assume
that NP �= RP and fix some constant c > 1/2.

4.1. Using Adelman’s method on BSAT. Given a randomized algorithm
BSAT such that for any m and all choices of random coins BSAT runs in
time ma, we transform the algorithm BSAT into an algorithm BSAT by am-
plification.

The algorithm BSAT: When given a formula x of length n, the algorithm
BSAT uniformly chooses n2 independent strings v1, . . . , vn2 where each
of them is of length na. For every 1 ≤ i ≤ n2, the algorithm applies
BSAT(x, vi) and it outputs the majority vote of the answers.

The purpose of this amplification is to use the argument of Adelman (1978)
to show that many fixed choices of randomness for BSAT “capture” the behav-
ior of BSAT.

Definition 4.3. Let n be some integer and c > 1/2. We say that a string u
of length na+2 is good for BSAT at length n and confidence c if for every x of
length n and b ∈ {0, 1}:

BSAT(x, u) = b ⇒ BSATc(x) ∈ {b, ∗} .

The following straightforward lemma is proven by using similar arguments as
in Adelman (1978).

Lemma 4.4. Let 1/2 < c ≤ 1 be some constant. For every large enough n,
the fraction of strings of length na+2 that are good for BSAT at length n and
confidence c is at least 1 − 2−n.

Proof. Fix x ∈ {0, 1}n such that BSATc(x) = b, for b ∈ {0, 1}. Let u =
v1, . . . , vn2 be the random coins for BSAT. By the Chernoff bound,

Pr
u

[
BSAT(x, u) = 1 − b

]
< e−

c
2
n2(1− 1

2c
)2 ≤ 2−2n .
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Since there are 2n strings of length n, by the union bound, for a randomly

chosen u ∈ {0, 1}na+2

, there exists x ∈ {0, 1}nsuch that BSATc(x) = b (for
b ∈ {0, 1}) but BSAT(x, u) = 1− b, with probability at most 2−n. We conclude

that with probability at least 1 − 2−n, for a randomly chosen u ∈ {0, 1}na+2

it
holds that for every x of length n and b ∈ {0, 1}:

BSAT(x, u) = b ⇒ BSATc(x) ∈ {b, ∗} . �

4.2. A search algorithm. We now define the randomized analog of the
search algorithm SSAT from Section 3.1.

The Algorithm SSAT: Given a formula x of length n, the algorithm SSAT
uniformly chooses a string u ∈ na+2. From that point on, the algorithm
operates exactly in the same way as the version described in Section 3.1
with the exception that whenever the algorithm described there wants
to compute BSAT(y) for some formula y, the new algorithm computes
BSAT(y, u). We use the notation SSAT(x, u) to describe the outcome of
SSAT on x when using u as random coins.

It is useful to sum up the properties of SSAT with the following lemma
which is analogous to Lemma 3.3.

Lemma 4.5. Algorithm SSAT runs in randomized polynomial time. Further-
more, let 1/2 < c < 1 be some constant and n a large enough integer. Fix
some string u of length na+2 that is good for BSAT at length n and confidence
level c, then:

◦ If SSAT(x, u) = ’yes’ then x is satisfiable and SSAT outputs an assign-
ment α that satisfies x.

◦ If SSAT(x, u) = ’no’ then BSATc(x) ∈ {0, ∗}.
◦ If SSAT(x, u) answers ‘error’ then SSAT outputs a set F of at most three

formulae of length identical to that of x and there exist y ∈ F such that
BSATc(y) �= SAT(y).

Proof. The proof is essentially identical to that of Lemma 3.3 by using the
properties of a good u (Definition 4.3).

For the first item note that SSAT(x, u) answers ’yes’ only after it checks
that α is a satisfying assignment. For the second item note that SSAT(x, u)
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answers ’no’ only if BSAT(x, u) answers ’no’ on the given input. By Defi-
nition 4.3 and the fact that u is good for BSAT of length n, it follows that
BSATc(x) ∈ {0, ∗}.

For the third item note that SSAT(x, u) answers error on two cases: In the
first case, BSAT(·, u) claims that some formula is satisfiable while claiming that
the two descendent formulae obtained by substituting a variable to zero or one
are unsatisfiable and SSAT(x, u) outputs these three formulae. It follows that
on at least one formula, y, of the three BSAT(y, u) �= SAT(y). By Definition 4.3
this implies that BSATc(y) �= SAT(y). In the second case, BSAT(·, u) “claims”
that some formula y (with no variables) has the constant Boolean value “one”
while SSAT checks and see that it has “zero”. Again by Definition 4.3 it follows
that BSATc(y) �= SAT(y). In both cases the length of the formulae is identical
to that of x because of the way we padded queries to BSAT in the description
of SSAT. �

4.3. Finding incorrect instances. For every integer n and u ∈ {0, 1}na+2

we define an NP statement φn,u:

φn,u = ∃x∈{0,1}n

[
SAT(x) = 1 and SSAT(x, u) �= ’yes’

]
.

Note that indeed there is a circuit of size polynomial in na that given a
formula x and an assignment α checks whether it is the case that both α satis-
fies x and SSAT(x, u) �= ’yes’. Using the Cook–Levin theorem the procedure R
reduces φn,u into a formula φ′

n,u of length polynomial in na over variables x,
α and z (where z is the auxiliary variables added by the reduction) with the
property that φ′

n,u is satisfiable if and only if φn,u is satisfiable. Furthermore
the Cook–Levin reduction also gives that for any triplet (x, α, z) that satisfies
φ′

n,u, x satisfies φn,u and α is a satisfying assignment for x. We choose q(·) to
be a polynomial that is large enough so that q(na) is bigger than the length of
φ′

n,u. (Note that this can be done for a universal polynomial q that does not
depend on n, u or BSAT and depends only on the efficiency of the Cook–Levin
reduction). We then pad φ′

n,u to length q(na).

The procedure R chooses at random strings u′ ∈ {0, 1}q(na)a+2

and u ∈
{0, 1}na+2

. It then runs SSAT(φ′
n,u, u

′). There are three cases:

◦ SSAT declares an error during the run and outputs three (or one) formu-
lae. In this case the procedure outputs these formulae.

◦ SSAT outputs ’no’. In this case the procedure outputs φ′
n,u.
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◦ SSAT outputs ’yes’ and a satisfying assignment (x, α, z) for φ′
n,u.

The procedure then runs SSAT(x, u). There are three cases:

– SSAT declares an error during the run and outputs three (or one)
formulae. In this case the procedure outputs these formulae.

– SSAT outputs ’no’. In this case the procedure outputs x.

– SSAT outputs ’yes’. In this case the procedure fails.

4.4. Correctness. The most time consuming step in the description of R is
running SSAT on φ′

n,u. Recall that SSAT is an algorithm that runs in time
poly(na) on inputs of length n, and we feed it an input φ′

n,u of length q(na) =

poly(na). Altogether the running time is bounded by poly(na2
) as required.

We now prove that with a good probability the procedure does not fail. We
first prove:

Lemma 4.6. Suppose R chooses u, u′ such that:

◦ u is good for BSAT at length n, and,

◦ The sentence φn,u is TRUE, and,

◦ u′ is good for BSAT at length q(n).

Then, R outputs a set F of at most three formulae such that there exists
y ∈ F such that BSATc(y) �= SAT(y).

Proof. We know that u′ is good for BSAT at length q(n) and that φ′
n,u

is satisfiable. We are now in a similar position to the deterministic case. If
SSAT(φ′

n,u, u
′) declares an error, then by Lemma 4.5 one of the three formulae

(of length q(na)) that SSAT outputs is a formula y such that BSATc(y) �=
SAT(y). If SSAT outputs ’no’, then by Lemma 4.5, BSATc(φ

′
n,u) ∈ {∗, ’no’}

and thus BSATc(φ
′
n,u) �= SAT(φ′

n,u).
We are left with SSAT(φ′

n,u, u
′) = ’yes’. In such a case SSAT outputs

a satisfying assignment (x, α, z) for φ′
n,u, and in particular SAT(x) = 1 but

SSAT(x, u) �= ’yes’. There are now only two options: either SSAT(x, u) declares
an error, or answers ’no’. If SSAT declares an error during the run, then by
Lemma 4.5 (and because u is good for BSAT at length n) it outputs a set of at
most three formulae (of length n) such that one of them, y, satisfies BSATc(y) �=
SAT(y). If SSAT(x, u) outputs ’no’ then by Lemma 4.5, BSATc(x) ∈ {∗, ’no’}.
However, we know that x is satisfiable and therefore BSATc(x) �= SAT(x). �
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We know that the probability u or u′ are not good for BSAT at the appro-
priate lengths is negligible. We now turn for the remaining condition:

Lemma 4.7. Assume NP �= RP. Then, for infinitely many n, except for prob-

ability 1
2n

, for a random u ∈ {0, 1}na+2

we have that φn,u is TRUE.

Proof. Assume not. I.e., except for finitely many n, with probability at

least 1
2n

a random u ∈ {0, 1}na+2

has the property that φn,u is FALSE. That
is, ∀x∈{0,1}n [ SAT(x) = 1 ⇒ SSAT(x, u) = ’yes’ ]. As we always have
SSAT(x, u) = ’yes’ ⇒ SAT(x) = 1, we conclude that for all x ∈ {0, 1}n,
SSAT(x, u) = SAT(x). In particular SSAT is an RP algorithm with success
probability at least 1

2n
, and therefore NP ⊆ RP. A contradiction. �

Altogether, this shows that the fraction of pairs u, u′ on which R does not
find a hard instance is at most 2−n + 2−q(n) + 1

2n
≤ 1

n
for large enough n as

required. This concludes the proof of Lemma 4.1.
We mention that similar (but more careful) arguments from Remark 3.6

can show that the lemma holds unconditionally whenever BSAT fails to solve
SAT in the worst-case.

5. A worst-case to average-case reduction for
distributional problems

In this section we prove Theorem 1.6. Namely, we show how to swap the
quantifiers and get a single (simple to describe) distribution on SAT instances
that is samplable in quasi-polynomial time, and every probabilistic polynomial-
time algorithm errs on it with non-negligible probability (unless NP = RP).

Proof of Theorem 1.6. Let Mk be the set of all probabilistic Turing ma-
chines upto the k’th machine, under a standard enumeration of Turing ma-
chines. We define the distribution D = {Dn} by its generating algorithm: to
generate instances of length n, choose uniformly a machine M from M3·s(n)/100.
Run M for f(n) steps on the input 1n (providing the randomness it needs).
If M hasn’t halted, output 0n. Otherwise let x be the output of M . Then pad
or trim x to be of length n and output it.

Now assume NP �= RP. We show (SAT, D) �∈ Avg1−1/s(n)BPP. Let A be a
probabilistic polynomial-time algorithm trying to solve SAT. By Theorem 1.5,
there exists a polynomial time sampler R that samples hard instances for A
with a constant probability (i.o.). Let p(n) be R’s running time. Let n0 be
such that for every n ≥ n0, R ∈ M3·s(n)/100 and f(n) ≥ p(n).
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There are infinitely many input lengths n ≥ n0 for which A errs with
probability greater than 3/100 over instances sampled by R(1n). Let n1 be
such an input length. With probability at least 100/(3 · s(n1)), Dn1 picks
the machine R. It then runs R on 1n1 for at least p(n1) steps, and because
p(n1) < f(n1) R halts, and with probability greater than 3/100 outputs an
instance on which A errs. Overall, the probability (over the instances and A’s
internal coins) that A errs on Dn1 is at least 1/s(n1) as desired. �

6. Discussion and open problems

6.1. On standard worst-case to average-case reductions for NP. The
qualitative difference between hardness against average classes and hardness
against pseudo classes is whether the samplable distribution can be stronger
than the polynomial time algorithm and in particular simulate it (as in the
pseudo classes) or not (as in the average classes). We believe this is a very
fundamental difference. Indeed in the proof of Theorem 1.5, the samplable
distribution runs the algorithm. We therefore believe that our techniques are
not sufficient for solving Open Question 1.4.

A worst-case to average-case reduction is a mapping from a language L to
a language L′, such that for every efficient algorithm A′ that solves L′ well on
the average, there is an efficient algorithm A (that uses A′) that solves L in the
worst-case. As we mentioned in the introduction, there are works that show
that certain classes of reductions cannot establish worst-case to average-case
connections for NP-complete languages (under Levin’s notion). Specifically,
Viola (2004) shows that efficient reductions that only make a black-box use of
the language L and the algorithm A′ do not exist (unconditionally). Bogdanov
& Trevisan (2003) (improving on Feigenbaum & Fortnow (1993)) show that
reductions that start from L that is NP-complete, where A uses A′ as a black-
box and asks it only non-adaptive queries do not exist (unless the polynomial-
time hierarchy collapses). We want to point out that our reduction is non-
black-box both in L (we use the downwards self-reducibility of SAT), and in A′

(we use the fact that BSAT can be computed by an efficient algorithm, and in
particular we use the code of this algorithm). It would be interesting to know
whether reductions that are non-black-box both in L and A′ are necessary to
prove a worst-case to average-case reduction for PseudoBPP as in Theorem 1.5
(in contrast to AvgBPP where the negative results of Bogdanov & Trevisan
(2003); Feigenbaum & Fortnow (1993); Viola (2004) apply).

6.2. Hardness amplification. A problem that is related (in fact comple-
ments) worst-case to average-case reductions, is the problem of hardness am-
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plification. That is, whether the existence of a function that is mildly hard
(i.e., every algorithm errs with probability at least 1/poly(n) over some sam-
plable distribution on the inputs) implies the existence of a function that is
very hard (i.e., every algorithm errs with probability almost half, and there-
fore is not much better than a coin toss). Here, in contrast to the problem of
worst-case to average-case reductions there are many positive results for aver-
age classes. It is known that with respect to the uniform distribution (and by
Impagliazzo & Levin (1990), it is enough to consider this distribution) hard-
ness amplification can be done for various complexity classes and models of
computations and in particular, can be done for functions in EXP and in NP
(with various parameters) where the hardness is measured both against uniform
and non-uniform classes Babai et al. (1993); Healy et al. (2006); Impagliazzo
& Wigderson (1997); O’Donnell (2004); Sudan et al. (2001); Trevisan (2003,
2005); Trevisan & Vadhan (2006); Yao (1982).

Our worst-case to average-case reduction only gives a mildly hard function.
One way to improve this would be to show hardness amplification for pseudo
classes. We do not know how to do that. In its strongest form, this open
question can be stated as:

Open Question 6.1. Does NP �⊆ Pseudo1−n−1 BPP imply NP �⊆
Pseudo1/2+n−d BPP for every constant d ≥ 0?

6.3. Program checking. Suppose that someone claims that he has an effi-
cient algorithm for SAT. Can we automatically check whether the algorithm is
correct? For simplicity let’s concentrate on the case that the given algorithm is
a search algorithm (this is without loss of generality by the search to decision
reduction). Our results show that if NP �= RP then for infinitely many input
lengths we can generate a formula that is satisfiable but the algorithm answers
that it isn’t. Nevertheless, when our procedure outputs a formula we cannot be
sure that it has this property (it may be the case that the algorithm correctly
solves SAT or that we don’t succeed on the given input length). The problem is
that we cannot verify that the formula is satisfiable. An interesting open prob-
lem suggested to us by Adam Smith is to come up with a “dream-breaker”.
This is a procedure that outputs a satisfiable formula together with a satisfying
assignment on which the given algorithm fails. This allows to verify that the
given algorithm errs on the generated formula. We remark that dream-breakers
exist if one way functions exist because we can test whether the given algorithm
inverts a one-way function on a random input. An interesting open problem is
to construct dream-breakers from the assumption that NP is hard on the worst
case.
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The question whether dream-breakers exist is related to the large body
of research about program checking. This notion was formalized by Blum &
Kannan (1995). There are two important differences between the program
checkers of Blum & Kannan (1995) and the dream-breakers that we consider
above. First, in the model of Blum & Kannan (1995), the checker only has
a black-box access to the program being checked, and in particular it does
not rely on the efficiency of the program. We on the other hand allow the
checker to look at the description of the program. In this sense the program
checkers of Blum & Kannan (1995) are stronger. On the other hand, Blum &
Kannan (1995) only aims to check the program on a given instance, while we
aim at checking whether the program solves an NP-complete problem on every
instance (of a given length). Micali (2000) considered a model of checkers that is
in between. Specifically, his checkers have non-black-box access to the program
being checked (and in particular they can rely on the fact that the program is
efficient), but the aim is still to check whether the program is correct on a given
instance.4 In Micali (2000) it was shown that if a coNP-complete problem has
a non-interactive computationally sound proof system, then there are checkers
for NP-complete problems in his model of program checking. Whether there
are checkers for NP-complete problems in the model of Blum & Kannan (1995)
is a long standing open problem (even under plausible assumptions).

6.4. Subsequent work. Following the publication of the conference version
of this paper Gutfreund et al. (2005), there has been some work that addressed
most of the issues we raised in this section.

Gutfreund & Ta-Shma (2006) used the results of this paper to prove a
conditional worst-case to average-case reduction under the standard notion of
average-case complexity (i.e., Definition 1.2). Specifically they show under a
weak derandomization assumption that if NP is worst-case hard for BPP, then
nondeterministic quasi-polynomial time is average-case hard for BPP.

Also in Gutfreund & Ta-Shma (2006), it is shown that a generalization
of the argument of Bogdanov & Trevisan (2003) rules out the possibility to
prove Theorem 1.6 (and hence Theorem 1.5) via black-box and non-adaptive
reductions, under the assumption that there is a language in coNP that cannot
be decided by a family of quasi-polynomial size nondeterministic circuits. Our
reduction can be done non-adaptively, by replacing the standard search to
decision reduction in the proof of Lemma 4.1 by a non-adaptive reduction of
Ben-David et al. (1990). Thus the techniques we develop here suggest a way to

4The model of Micali (2000) has in addition some efficiency requirements that we ignore
in this discussion.
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bypass the limitations of Bogdanov & Trevisan (2003); Feigenbaum & Fortnow
(1993), and highlights non-black-box reductions as the direction to do that.

Atserias (2006) gives a non-uniform version of Theorem 1.5. That is, he
shows how to generate hard instances for a given small circuit by using the
circuit only as an oracle, and without looking at its description. This is in
contrast to our proof of Lemma 4.1, where the procedure R must have access
to the code of the algorithm BSAT. Still, his proof relies on the fact that the
circuit is small, so his argument is again non-black-box.

Finally, Gutfreund (2006) makes a progress towards solving Open Ques-
tion 6.1, by proving:

Theorem 6.2. For every constant d > 0,

NP �⊆ BPP ⇒ PNP
|| �⊆ Pseudo1/2+n−d BPP .

Here PNP
|| is the class of languages decidable by deterministic polynomial-

time TM’s making non-adaptive NP-oracle calls.
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