
Pseudorandom generators with optimal seed length for
non-boolean poly-size circuits

[Extended Abstract]

Sergei Artemenko
∗

University of Haifa
Mount Carmel, Haifa

sartemen@gmail.com

Ronen Shaltiel
†

University of Haifa
Mount Carmel, Haifa

ronen@cs.haifa.ac.il

ABSTRACT
A sampling procedure for a distribution P over {0, 1}ℓ, is
a function C : {0, 1}n → {0, 1}ℓ such that the distribution
C(Un) (obtained by applying C on the uniform distribution

Un) is the “desired distribution” P . Let n > r ≥ ℓ = nΩ(1).
An nb-PRG (defined by Dubrov and Ishai (STOC 2006))
is a function G : {0, 1}r → {0, 1}n such that for every
C : {0, 1}n → {0, 1}ℓ in some class of “interesting sam-
pling procedures”, C′(Ur) = C(G(Ur)) is close to C(Un) in
statistical distance.

We construct poly-time computable nb-PRGs with r =
O(ℓ) (which is best possible) for poly-size circuits. Previous
nb-PRGs of Dubrov and Ishai have r = Ω(ℓ2). We rely on
the assumption that: there exists β > 0, and a problem L in
E = DTIME(2O(n)) such that for every large enough n, non-
deterministic circuits of size 2βn that have NP-gates cannot
solve L on inputs of length n. This assumption is a scaled

nonuniform analogue of (the widely believed) EXP ̸= ΣP2 ,
and similar assumptions appear in various contexts in deran-
domization. The nb-PRGs of Dubrov and Ishai are based
on very strong cryptographic assumptions, or alternatively,
on non-standard assumptions regarding incompressibility of
functions on random inputs.

When restricting to poly-size circuits C : {0, 1}n → {0, 1}ℓ

with Shannon entropy H(C(Un)) ≤ k, for ℓ > k = nΩ(1),
our nb-PRGs have r = O(k) which is best possible. The
nb-PRGs of Dubrov and Ishai use seed length r = Ω(k2)
and require that the probability distribution of C(Un) is ef-
ficiently computable.

Our nb-PRGs follow from a notion of “conditional PRGs”
which may be of independent interest. These are PRGs
where G(Ur) remains pseudorandom even when conditioned
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on a “large” event {A(G(Ur)) = 1}, for an arbitrary poly-
size circuit A. A related notion was considered by Shaltiel
and Umans (CCC 2005) in a different setup, and our proofs
use ideas from that paper, as well as ideas of Dubrov and
Ishai.

We also give an unconditional construction of a poly-time
computable nb-PRGs for poly(n)-size, depth d circuits C :

{0, 1}n → {0, 1}ℓ with r = O(ℓ · logd+O(1) n). This improves
upon the previous work of Dubrov and Ishai that has r ≥ ℓ2.
Our nb-PRGs can be implemented by a uniform family of
poly-size constant depth circuits (with slightly larger, but
still almost linear seed length). The nb-PRG of Dubrov and
Ishai computes large parities and cannot be computed in
poly-size and constant depth.

This result follows by adapting a recent PRG construction
of Trevisan and Xue (CCC 2013) to the case of nb-PRGs,
and implementing it by constant-depth circuits.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Theory
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1. INTRODUCTION
A sampling procedure is a function C : {0, 1}n → {0, 1}ℓ

such that when C is applied on the uniform distribution Un,
the obtained distribution C(Un) is some “desired distribu-
tion”P over ℓ-bit strings. There are two natural complexity
measures for sampling procedures: the computational com-
plexity of the function C, and the randomness complexity
which is the number of random bits used by the procedure
(denoted by n). The reader is referred to [38], for a dis-
cussion on the complexity of sampling procedures. Dubrov
and Ishai [7] considered the following natural problem: is it
possible to reduce the randomness complexity of sampling
procedures without substantially increasing their computa-
tional complexity? Specifically, given an efficient sampling
procedure C : {0, 1}n → {0, 1}ℓ with n > ℓ, construct an



efficient sampling procedure C′ : {0, 1}r → {0, 1}ℓ which
uses only r ≪ n random bits, and C′(Ur) is close to the
desired distribution C(Un) in statistical distance.1 For this
purpose, Dubrov and Ishai suggested the following notion
of “pseudorandom generator against non-Boolean statistical
tests”.

Definition 1.1 (nb-PRG [7]). A function G : {0, 1}r →
{0, 1}n is an ϵ-nb-PRG for a function C : {0, 1}n → {0, 1}ℓ
if the distributions C(G(Ur)) and C(Un) are ϵ-close (and
we say that G ϵ-fools C). G is an ϵ-nb-PRG for a class C
of functions, if G is an ϵ-nb-PRG for every function in the
class.

Indeed, given an efficient nb-PRG G we can compute
C′(Ur) = C(G(Ur)) and sample a distribution that is ϵ-close
to C(Un) using only r random bits.2 Note that if the class
of sampling procedures that we consider contains the func-
tion C : {0, 1}n → {0, 1}ℓ that outputs the first ℓ bits (and
any reasonable complexity class does), then the seed length
r has to be at least ℓ (assuming ϵ < 1/2). nb-PRGs are a
natural generalization of “standard PRGs” defined below.

Definition 1.2 (PRG). A function G : {0, 1}r → {0, 1}n
is an ϵ-PRG for a function C : {0, 1}n → {0, 1} if
|Pr[C(G(Ur)) = 1]−Pr[C(Um) = 1]| ≤ ϵ (that is iff C(G(Ur))
and C(Un) are ϵ-close). G is an ϵ-PRG for a class C of func-
tions, if G is an ϵ-PRG for every function in the class.

Consequently, nb-PRGs are at least as hard to construct
as (standard) PRGs. In this paper we will be interested
nb-PRGs for two types of sampling procedures: polynomial-
size circuits and circuits with polynomial-size and constant
depth.
In addition to the application of reducing randomness of

sampling procedure, nb-PRGs can also be used to reduce the
communication in interactive protocols (by having a party
send a seed to an nb-PRG and the other parties compute
the next message function). Dubrov and Ishai [7] gave such
applications in information theoretic cryptographic setups,
and we believe that there may be many additional applica-
tions.

If H(C(Un)) is small
If we are guaranteed that the Shannon entropy of C(Un)
is small (say H(C(Un)) ≤ k for some parameter k) than
we can hope for a shorter seed length r ≈ k. There are
efficiently samplable distributions P with entropy k, such
that any distribution that is ϵ-close to P cannot be sampled
using less than O(k/ϵ) bits.3 Thus, an ϵ-nb-PRG for poly-
size circuits that are guaranteed to produce distributions
with entropy ≤ k, must have seed length r = Ω(k/ϵ).

1Two distributions over the same domain are ϵ-close if the
probability that they assign to any event differs by at most
ϵ.
2It is important to observe that C′(Ur) is required to be
statistically indistinguishable from C(Un). Standard PRGs
suffice if we relax the requirement to computational indis-
tinguishability.
3Let 2−n ≤ ϵ ≤ 1/10. Fix some x ∈ {0, 1}n and consider
the distribution P over {0, 1}n which gives weight 1 − 4 · ϵ
to x and 4 · ϵ/(2n − 1) to every other string. Note that
H(P ) = O(ϵn), and yet, for every distribution Q that is
samplable using less than n/2 random bits, Q is not ϵ-close
to P .

1.1 nb-PRGs for polynomial-size circuits

The setup
The most natural setup of parameters for sampling proce-
dures is the case where C : {0, 1}n → {0, 1}ℓ, where ℓ = ne

for some constant 0 < e < 1. We fix this choice of param-
eters for this discussion and consider the case where C is
a size s = s(n) = poly(n). For the application of reducing
randomness for sampling procedures, the size s is known to
the PRG, and the PRG may be allowed to run in time p(n)
for a polynomial p that is larger than s. In the terminol-
ogy of PRGs, this setup is often referred to as the “Nisan-
Wigderson setting” [25]. However, note that as ℓ = ne and
the seed length must be at least ℓ, we are interested in PRGs

G : {0, 1}r → {0, 1}r
O(1)

(often referred to as polynomial
stretch). The application also dictates that G run in time
polynomial in r. This is in contrast to the“Nisan-Wigderson
setting” in which PRGs are often allowed to run in time ex-
ponential in their seed length (because intended applications
plan to enumerate all seed anyway).4 Many (standard) PRG
constructions in the Nisan-Wigderson setting [3, 32, 17, 28,
35, 36] critically use the ability to run in time exponential
in the seed length (usually for encoding strings of length 2r

by error-correcting codes). In fact, the sole exception, is
the original construction of Nisan and Wigderson [25] which
(when used by itself without a pre-processing step of hard-
ness amplification/error correction) can run in time polyno-
mial in the output length (at least under some very specific
hardness assumptions).

Using cryptographic PRGs
A very natural approach to construct nb-PRGs is to reduce
to constructing standard PRGs. It is immediate that a stan-
dard PRG for circuits of size s+2ℓ is an nb-PRG for circuits
C : {0, 1}n → {0, 1}ℓ of size s. (This is because any statisti-
cal test on ℓ bits can be implemented by a circuit of size 2ℓ).
This means that a (standard) PRG G : {0, 1}r → {0, 1}n

that fools circuits of size s + 2ℓ = Θ(2n
1/e

) is an nb-PRG
with the desired parameters. These parameters are obvi-
ously impossible in the Nisan-Wigderson setting (where a
PRG that runs in polynomial time cannot fool a circuit of
size superpolynomial). However, one can hope to achieve
such parameters using “cryptographic PRGs” such as the
Blum-Micali-Yao [6, 39] or HILL [14, 12, 15, 13]. Such
PRGs imply (and therefore require) cryptographic assump-
tions such as the existence of one-way functions. Indeed,
Dubrov and Ishai observe that if there exist one-way permu-
tations f : {0, 1}r → {0, 1}r that cannot be inverted with

noticeable probability by circuits of size 2O(ℓ), then the PRG
construction of Blum, Miali and Yao [6, 39] gives an nb-PRG
with seed length r. A weakness of this approach is that in
order to achieve seed length r = O(ℓc) we need one-way per-

mutations that cannot be inverted by circuits of size 2Ω(r1/c).
This means that we can achieve seed length r = O(ℓ) only
if we have permutations that cannot be inverted with no-
ticeable probability by size 2Ω(r) circuits. This is a very
strong assumption that is known not to hold for some of
the candidate one-way permutations.5 This assumption be-

4We remark that a similar setup (in the boolean setting)
arises in “typically-correct derandomization” [27, 21, 26].
5The reason for using one-way permutations rather than
one-way functions is that the best known PRG constructions



comes plausible for constants c≫ 1 and gives nb-PRGs with
seed length r = O(ℓc). Dubrov and Ishai show that this ap-
proach also yields nb-PRGs with seed length r = O((k/ϵ)c)
for polynomial-size circuits C which are guaranteed to sam-
ple distributions with Shannon entropy ≤ k.6

Function compression
Dubrov and Ishai show an interesting connection between
nb-PRGs and“function compression”. A function f : {0, 1}n →
{0, 1} is compressed by a circuit C : {0, 1}n → {0, 1}ℓ if an
unbounded procedure can compute f(x) given C(x) (with-
out receiving x). We say that f is (1/2 + ϵ, ℓ)-compressible
by size s circuits, if there exits a size s circuit C : {0, 1}n →
{0, 1}ℓ such that f(x) can be recovered correctly from C(x)
on at least (1/2 + ϵ)-fraction of the inputs. Dubrov and
Ishai suggested to base nb-PRG constructions on the as-
sumption that there exist explicit incompressible boolean
functions. The high level idea is that some PRG construc-
tions in the literature, are proven by a reduction showing
that a small distinguisher circuit for the PRG can be con-
verted into a small circuit computing the supposedly hard
function. Some of these reductions can also convert a non-
boolean distinguisher into a non-boolean circuit that com-
presses the function. This approach allows using one-way
permutations f : {0, 1}r → {0, 1}r against poly-size cir-
cuits (rather than exponential size circuits), if the permu-
tations have hard-core bits that are not only secure, but
are also not (1/2 + r−ω(1),Ω(r))-compressible by polyno-
mial size circuits. Assuming the existence of such one-way
permutations, Dubrov and Ishai show that the Blum-Micali-
Yao PRG yields an nb-PRG and has seed length r = O(ℓ).
We are not aware of research that attempts to evaluate the
validity of this assumption. We also point out, that this nb-
PRG does not extend to have seed length proportional to
the entropy, when it is guaranteed that the entropy of the
sampled distribution C(Un) is small.

Nisan-Wigderson PRG with incompressible functions
Dubrov and Ishai show that a polynomial time computable
nb-PRG that fools circuits of size nc is obtained under the
following assumption: There is a function f : {0, 1}O(ℓ) →
{0, 1} computable in polynomial time that is not (1/2 +
Ω(ϵ/ℓ),Ω(l))-compressible by circuits C : {0, 1}n → {0, 1}ℓ

of size nO(c). This result follows by using the function f in
the Nisan-Wigderson generator [25], and follows by a clever
argument showing that the security proof of [25] applies in
this setting. However, a well known inefficiency of the Nisan-
Wigderson generator dictates that even under this assump-
tion the obtained seed length cannot be linear in ℓ and must
be at least quadratic, that is r = Ω(ℓ2).7

from one-way functions [14, 12, 15, 13] have a polynomial
blow-up in the seed length.
6This is achieved by showing that there exists a circuit
D : {0, 1}ℓ → {0, 1}O(k/ϵ) of size roughly 2k such that if
C(Un) and C(G(Ur)) are not ϵ-close then D(C(Un)) and
D(C(G(Ur)) are not Ω(ϵ)-close, meaning that an nb-PRG
that fools D ◦ C also fools C, and in this setup an nb-PRG
can handle very large circuits anyway. Note that this reduc-
tion is specific to this setup.
7This inefficiency was the focus of several works that con-
struct improved PRGs (in the boolean setting) [17, 28, 35,
36], but all these approaches give PRGs with running time
exponential in the seed length and do not make sense in

1.1.1 Hardness assumptions for exponential size cir-
cuits

We give new constructions of nb-PRGs in the “Nisan-
Wigderson setting”. Our constructions achieve seed length
r = O(ℓ) under strong but plausible assumptions. In or-
der to discuss our assumptions we need a quick review of
nondeterministic circuits and oracle circuits.

Definition 1.3 (nondeterministic circuits). A non-
deterministic circuit C has additional “nondeterministic in-
put wires”. We say that the circuit C evaluates to 1 on x
iff there exist an assignment to the nondeterministic input
wires that makes C output 1 on x. Given a boolean func-
tion A(x), an A-circuit is a circuit that is allowed to use A
gates (in addition to the standard gates). An NP-circuit is a
SAT-circuit (where SAT is the satisfiability function) a Σi-
circuit is an A-circuit where A is the canonical ΣP

i -complete
language. The size of all circuits is the total number of wires
and gates.8

Note for example that an NP-circuit is different than a
nondeterministic circuit. The former is a nonuniform ana-
logue of PNP (which contains coNP) while the latter is an
analogue of NP. Similarly, a nondeterministic NP-circuit is

the nonuniform analogue of ΣP2 = NPNP and is thus weaker

than a Σ2-circuit (which is analogous to PΣP
2 ). Hardness as-

sumptions against nondeterministic/NP/Σi circuits appear
in the literature in various contexts of derandomization [22,
23, 33, 9, 28, 29, 4]. Typically, the assumption is of the fol-
lowing form: E is hard for exponential size circuits (where
the type of circuits is one of the types discussed above).
More specifically:

Definition 1.4. We say that “E is hard for exponential
size circuits of type X” if there exists a problem L in E =
DTIME(2O(n)) and a constant β > 0, such that for every
sufficiently large n, circuits of type X with size 2βn fail
to compute the characteristic function of L on inputs of
length n.

Such assumptions can be seen as the nonuniform and
scaled-up versions of assumptions of the form EXP ̸= NP

or EXP ̸= ΣP2 (which are widely believed in complexity the-
ory). As such, these assumptions are very strong, and yet
plausible - the failure of one of these assumptions will force
us to change our current view of the interplay between time,
nonuniformity and nondeterminism.9

this setup.
8An alternative approach is to define using the Karp-
Lipton notation for Turing machines with advice. For
s ≥ n, a size sΘ(1) deterministic circuit is equiva-
lent to DTIME(sΘ(1))/sΘ(1), a size sΘ(1) nondeterminis-

tic circuit is equivalent to NTIME(sΘ(1))/sΘ(1), a size

sΘ(1) NP-circuit is equivalent to DTIMENP(sΘ(1))/sΘ(1),

a size sΘ(1) nondeterministic NP-circuit is equivalent to

NTIMENP(sΘ(1))/sΘ(1), and a size sΘ(1) Σi-circuit is equiv-

alent to DTIMEΣP
i (sΘ(1))/sΘ(1). With this view, we can

also differentiate between circuits that make adaptive calls
to their oracle, and circuits that make nonadaptive calls to
their oracle, and the latter are called parallel circuits.
9Another advantage of constructions based on this type of
assumptions is that any E-complete problem (and such prob-



1.1.2 New constructions of nb-PRGs
We give a construction of nb-PRGs with seed length r =

O(ℓ) under the assumption that E is hard for exponential
size nondeterministic NP-circuits.

Theorem 1.5 (nb-PRGs with short seed). There is
a constant b > 1 such that if E is hard for exponential size
nondeterministic NP-circuits then for every constants e > 0
and c > 1 there is a poly(n)-time computable ϵ-nb-PRG G :
{0, 1}b·ℓ → {0, 1}n for size nc circuits C : {0, 1}n → {0, 1}ℓ,
as long as ℓ ≥ ne, ϵ ≥ n−c.10

Note that G runs in time polynomial in n and this polyno-
mial depends on c, e.

If H(C(Un)) is small
We also consider the subclass of poly-size circuits C such
that H(C(Un)) ≤ k. Recall that here, the best we can shoot
for is seed length r = O(k/ϵ). We achieve this under the
same hardness assumption.

Theorem 1.6 (nb-PRGs for low entropy). There is
a constant b > 1 such that if E is hard for exponential size
nondeterministic NP-circuits then for every constants e > 0
and c > 1 there is a poly(n)-time computable ϵ-nb-PRG

G : {0, 1}b·k/ϵ → {0, 1}n for size nc circuits C : {0, 1}n →
{0, 1}ℓ which satisfy H(C(Un)) ≤ k, as long as k ≥ ne,
ℓ ≤ nc.

Following the discussion in previous sections, we point out
that in this setup, nb-PRGs with this seed length were only
known under the assumption that there are one-way permu-
tations with hardness 2Ω(n), and this is known not to hold
for some candidate one-way permutations. Dubrov and Ishai
[7] were able to achieve nb-PRGs in this setup under some
of the other assumptions discussed in Section 1.1. However,
these nb-PRGs achieve seed length ≥ (k/ϵ)2, and require
an additional assumption: that it is feasible to compute the
quantity p(z) = Pr[C(Un) = z] given z ∈ {0, 1}ℓ.

Alternative hardness assumptions for our theorems
Our main technical construction will rely on the following
assumption:

Assumption 1.7. For every constant c > 1 there exists
an (n−c)-PRG G′ : {0, 1}n → {0, 1}n

c

for nondeterministic
NP-circuits of size nc, and G′ is computable in time p(n)
where p is a polynomial that depends on c.

This assumption is known to follow from the assumption
stated in Theorems 1.5 and 1.6 by the following argument:
By the “downward collapse theorem” of Shaltiel and Umans
[29] the assumption that E is hard for exponential size non-
deterministic NP circuits implies that E is hard for expo-
nential size Σ2-circuits that make non-adaptive calls to their

lems are known) can be used to implement the constructions,
and the correctness of the constructions (with that specific
choice) follows from the assumption. We do not have to con-
sider and evaluate various different candidate functions for
the hardness assumption.

10Our approach can potentially work for smaller ℓ, ϵ, but will
require stronger hardness assumptions that are not as nice
to state. More details are deferred to the full version.

oracle. By [22, 18] the latter assumption implies a PRG G′

with the required properties.
In fact, the PRG G′ obtained in [18, 22] has better pa-

rameters than we asked for. It has “exponential stretch”and
stretches O(c · logn) bits into nc bits. This suggests that
the assumption stated in Theorems 1.5 and 1.6 is stronger
than what is actually needed (as we only need polynomial
stretch). We can therefore use a hardness assumption against
polynomial size Σ2-circuits. However, as we are shooting for
a PRG which is computable in polynomial time (rather than
exponential time), we cannot afford “worst-case to average-
case hardness amplification” (which takes exponential time
and is known not to be possible in polynomial time by
black-box techniques [37]). Instead, we can use Yao’s XOR-
Lemma (see [8] for a survey) which does not blow up the
running time. The price of this modification is that instead
of a “worst-case hardness assumption” we require a “mildly
average-case hardness assumption”. Summing up, we get
that Assumption 1.7 (and therefore the conclusion of the
two main theorems) follow from the following assumption:

Assumption 1.8. For every constant c > 1 there exists a
problem L in P such that for every sufficiently large n, every
size nc Σ2-circuit fails to compute the characteristic function
of L on at least a 1/n-fraction of the inputs of length n.

This assumption gives assumption 1.7 by using Yao’s XOR-
Lemma on (the characteristic function of) L, and then plug-
ging the amplified function to the Nisan-Wigderson genera-
tor. We remark that the same assumption is also suggested
(and relied on) in a construction of Goldreich and Wigderson
[9] in a different context.

1.2 nb-PRGs for constant-depth circuits
In this section we discuss unconditional constructions of

nb-PRGs against poly-size circuits that have constant-depth.
There are many surprising instances where interesting dis-
tributions can be sampled by procedures with very low com-
putational complexity see e.g., [1] and following work. The
reader is referred to [38] for examples of low complexity sam-
pling procedures. Dubrov and Ishai [7] considered the fol-
lowing setup: Let c, d, e be positive constants and consider
a sampling procedure C : {0, 1}n → {0, 1}ℓ that is a circuit
of size nc and depth d which outputs ℓ = ne bits. Note
that this is the setup considered in the previous section,
with the additional restriction that circuits have constant
depth. Dubrov and Ishai gave the following construction of
nb-PRG.

Theorem 1.9. [7] Let c, d, e be positive constants. For
every constant δ > 0 there is an ϵ-nb-PRG G : {0, 1}r →
{0, 1}n for circuits of size nc, depth d and output length ℓ =

ne. Furthermore, r = ℓ2+δ, ϵ = n−ω(1) and G is computable
in time poly(n).

The construction of Dubrov and Ishai uses the Nisan-
Wigderson generator [24, 25] with the parity function, and
is based on showing that the parity function cannot be com-
pressed by small constant-depth circuits. However, the afore-
mentioned bottleneck in the Nisan-Wigderson generator causes
the seed length r to be larger than ℓ2 whereas the obvious
lower bound is (once again) ℓ. Our first result is an nb-PRG

which achieves seed length Õ(ℓ).



Theorem 1.10 (nb-PRGs with short seed).
Let c, d, e be positive constants. There is an ϵ-nb-PRG G :
{0, 1}r → {0, 1}n for circuits of size nc, depth d and output
length ℓ = ne. Furthermore, r = O(ℓ · logad n) (where ad =

d + O(1) is a constant that depends only on d), ϵ = n−ω(1)

and G is computable in time poly(n).

Our construction gives a general result for arbitrary size,
depth, output length and error, and Theorem 1.10 above
is a special case of a more general theorem appears in Sec-
tion 5. Our proof is based on adapting a recent boolean
PRG construction of Trevisan and Xue [34] (which avoids
the Nisan-Wigderson generator) to the case on nb-PRGs.
A drawback of both Theorem 1.9 and Theorem 1.10 is

that the pseudorandom generator G is guaranteed to run in
polynomial time, but is not necessarily implementable by a
poly-size circuit with constant depth. This means that if we
use G to sample the output distribution of some sampling
procedure C : {0, 1}n → {0, 1}ℓ that is a poly-size constant
depth circuit, then the resulting sampling procedure C′(·) =
C(G(·)) is implementable in poly-time but not necessarily
in constant depth. Our next result gives an nb-PRG which
is implementable by a uniform family of poly-size constant
depth circuits. This PRG achieves seed length roughly ℓ1+α

(where α > 0 is an arbitrary small constant). This is worse
than the seed length of Theorem 1.10, but still better than
that achieved by Dubrov and Ishai in Theorem 1.9.

Theorem 1.11 (nb-PRGs in constant depth).
Let c, d, e be integer constants. For every α > 0 there is an ϵ-
nb-PRG G : {0, 1}r → {0, 1}n for circuits of size nc, depth d
and output length ℓ = ne. Furthermore, r = O(ℓ1+α·logad n)
(where ad = O(1/α+ d) is a constant that depends only on

d, α), ϵ = n−ω(1) and G is computable by a family of uniform
circuits of size poly(n, c logn) and depth O(1/α) (where the
constant hidden in the O(·) is universal, and the depth does
not depend on c, d).11

We obtain this result, by giving an implementation of a
variant of the nb-PRG of Theorem 1.10 by constant depth
circuits. For this, we use an approach of Viola [38] to show
that k-wise independent distributions can be sampled with
competitive seed length by constant depth circuits. The
proof is deferred to the full version.
We stress that the nb-PRG of Dubrov and Ishai from The-

orem 1.9 is not computable by small constant depth circuits.
This is because it computes the parity function on inputs of
length ≥ ℓ.

2. TECHNIQUE
We aim to reduce the task of constructing nb-PRGs to

that of constructing standard PRGs. Our first attempt is
the following trivial observation: An (ϵ/2ℓ)-PRG for size
s+O(ℓ) circuits is also an ϵ-nb-PRG for size s circuits. This
follows because if C(Un) and C(G(Ur)) are not ϵ-close, then
there exists z ∈ {0, 1}ℓ such that the probability assigned to
z by the two distributions differ by ϵ/2ℓ. This means that

11Note that this nb-PRG is “cryptographic” in the sense that
the PRG is implementable by a uniform family of circuits of

size nc′ and depth d′, for some constants c′, d′ and is able to
fool circuits of depth d and size nc for larger d, c for every
sufficiently large n.

a boolean circuit C′(x) which outputs 1 iff C(x) = z is not
(ϵ/2ℓ)-fooled by G.

Using the Nisan-Wigderson generator, we can construct
such PRGs given a poly-time computable function
f : {0, 1}O(ℓ) → {0, 1} on which every circuit of size sO(1)

errs on at least a (1/2−1/2O(ℓ))-fraction of inputs. (Because
of the aforementioned inefficiency of the Nisan-Wigderson
PRG, this approach cannot give seed smaller than Ω(ℓ2)).
However, “existing techniques” cannot produce such a func-
tion f from the assumption that E is hard for exponen-
tial size circuits (or even from the weaker assumption: E is
mildly average-case hard for exponential size circuits) [30,
2]. Trevisan and Vadhan [33] suggested that these limita-
tions can be bypassed if we assume that E is hard for ex-
ponential size nondeterministic circuits (or more generally
Σi-circuits for some i ≥ 1). They were able to start from
such assumptions and obtain their goal (which is extractors
for samplable distributions). They were not, however, able
to construct average-case hard functions (or PRGs) with
very low error.12

Inspired by the success of Trevisan and Vadhan, we aim
to construct nb-PRGs starting from a worst-case hardness
assumption for Σi-circuits (for some small i). In order to
achieve this, we would like a reduction, showing that a cir-
cuit C : {0, 1}n → {0, 1}ℓ that is not ϵ-fooled by some can-
didate PRG can be transformed into a boolean test that is
not ϵ′-fooled by the PRG. Our boolean test may be complex
(and allowed to use nondeterminism) but we require that ϵ′

is not much smaller than ϵ. This intuition is captured in
the following lemma (which can be seen as a more careful
version of our first attempt).

Lemma 2.1. There exists a constant B > 0 such that for
every constant C > 0 the following holds: Let R and V be
distributions over {0, 1}ℓ that are not ℓ−C-close (the reader
should think of R = C(Un) and V = C(G(Ur))). There exist
a z ∈ {0, 1}ℓ and i ∈ [ℓ] such that

|Pr[Ri = zi|R1,...,i−1 = z1,...,i−1]−Pr[Vi = zi|V1,...,i−1 = z1,...,i−1]|

> ℓ−(C+5),

and Pr[R1,...,i−1 = z1,...,i−1] ≥ 2−B·ℓ.

The proof of Lemma 2.1 is deferred to the full version. We
explain the high level idea below. We use the following
lemma (which follows by a case analysis).

12Hardness amplification from worst-case to average case typ-
ically rely on binary error-correcting codes with certain“sub-
linear time” list-decoding procedures [32]. These techniques
cannot achieve low error with low complexity procedures
[30, 2]. The approach of Trevisan and Vadhan is to allow
these procedures to be nondeterministic, or more generally
to allow them access to a Σi-oracle. Indeed, using this ap-
proach, Trevisan and Vadhan were able to construct non-
binary codes with the required properties. They were not
able to extend these results to binary codes (which is typ-
ically easy by code concatenation). We note that the im-
possibility results of Shaltiel and Viola [30] provide an ex-
planation for this failure, showing that there is an inherent
difference between the binary and non-binary cases. These
impossibility results rule out the possibility of obtaining bi-
nary codes with the desired properties, even if the decoding
procedures are given oracle access to languages in the poly-
nomial time hierarchy. This is because [30] show that such
decoding procedures imply a small constant depth circuit for
the majority function, and a PH computation can be seen
as a constant depth circuit over the queries to the oracle.



Lemma 2.2. Let R, V be two distributions over some fi-
nite set S, such that R and V are not α-close. Let ρ, ν ≥ 0
and let f : S → {0, 1} be a function such that p = Pr[f(R) =
0] ≤ 1

2
then at least one of the following holds:

• |Pr[f(R) = 1]− Pr[f(V ) = 1]| > ρ.

• (R|f(R) = 1) and (V |f(V ) = 1) are not ((α− ρ) · (1−
ν))-close.

• (R|f(R) = 0) and (V |f(V ) = 0) are not ((α− ρ) · (1+
ν/2p))-close.

For the proof of Lemma 2.1 we apply Lemma 2.2 itera-
tively ℓ times as follows. At each step we concentrate on the
first bit of R and V (by setting f(z) = z1 or f(z) = 1 − z1
depending on whether the first bit of R is more likely to
be one or zero). By Lemma 2.2 either the first bit distin-
guishes the two distributions, or we can condition the two
distributions R and V on the event that the first bit is fixed
and obtain two distributions on less bits which are not close.
By iterating this argument, we eventually obtain a boolean
distinguisher that distinguishes R and V conditioned on the
event that a prefix of the bits are fixed.
The second conclusion in Lemma 2.1 is that the event

that we condition on has probability 2−O(ℓ). This will be
important later on, as the exponent in this probability will
be the main factor in the final seed length of the nb-PRG.
Consequently, we need to be careful that the event that we
condition on is not of too low probability. In each step we
are happy if we condition on an event with probability ≥ 1

2

(as ℓ such steps do not reduce the probability below 2−ℓ).
We are concerned in steps that reduce the probability to
less than half. However, by the third condition of Lemma
2.2, each such step increases the statistical distance (which
cannot exceed one). This gives us control over the total
contribution of “risky steps” and we can show that this total
contribution does not reduce the probability below 2−O(ℓ).
The next definition captures the kind of tests that dis-

tinguishes C(Un) from C(G(Ur)) according to the lemma
above.

Definition 2.3 (Conditional test [29]).
A conditional test is a pair (A,D) where A : {0, 1}n →
{0, 1} is called condition, and D : {0, 1}n → {0, 1} is called
distinguisher. We say that a conditional test (A,D) is ϵ-
fooled by a distribution P over {0, 1}n if

| Pr
X←P

[D(X) = 1|A(X) = 1]− Pr
X←Un

[D(X) = 1|A(X) = 1]| ≤ ϵ

The density of a condition A is PrX←Un [A(X) = 1]. The
density of a conditional test (A,D) is the density of A, and
we say that the test has size s if both A,D are circuits of
size at most s.

With this terminology, Lemma 2.1 can be rephrased as fol-
lows:

Corollary 2.4. There exists a constant B > 0 such
that for every constant C > 0 the following holds: Let G :
{0, 1}r → {0, 1}n, and let E : {0, 1}n → {0, 1}ℓ be a size s
circuit. If G is not ℓ−C-fooled by E then there exist a con-
ditional test (A,D) of size s + O(ℓ) and density ≥ 2−O(ℓ)

which is not ℓ−(C+5)-fooled by G.

2.1 PRGs against conditional tests
In light of Corollary 2.4, we would like to construct a PRG

that fools poly-size conditional tests. Shaltiel and Umans
[29] constructed PRGs against conditional tests. However,
the setup considered there is quite different. It is not re-
quired that the PRG is computable by a deterministic pro-
cedure, and the PRG is allowed to have access to an NP-
oracle. Moreover, the PRG receives the condition A before
producing its output. This allows the PRG to find “inter-
esting” elements x ∈ {x : A(x) = 1} using its NP oracle, and
this ability is critically used by the PRG. There are also ad-
ditional advantages to having an NP oracle, which we can’t
use in our setup. On the other hand, we have an advantage
over the setup of [29], we are guaranteed that the density
of A is roughly 2−ℓ and are shooting for seed length O(ℓ)
(whereas in [29] one wants seed O(logn)) regardless of the
density. We are not able to construct polynomial time PRGs
against conditional tests in our setup. However, we are able
to achieve the following weaker objects:

Definition 2.5 (cd-PRG). A function G : {0, 1}r1+r2 →
{0, 1}n is an ϵ-cd-PRG for a class C of conditional tests, if
with probability 1− ϵ/2 over choosing s1 ← Ur1 , every con-
ditional test (A,D) in C is ϵ/2-fooled by Gs1(Ur2), where
Gs1 : {0, 1}r2 → {0, 1}n is defined by Gs1(s2) = G(s1 ◦ s2).
G is an ϵ-wcd-PRG if for every conditional test (A,D) in C,
with probability 1 − ϵ/2 over choosing s1 ← Ur1 , (A,D) is
ϵ/2-fooled by Gs1(Ur2).

Note that a cd-PRG is in particular a wcd-PRG. Loosely
speaking, in both notions, this definition allows the PRG to
choose a uniform s1 ∈ {0, 1}r1 which will not be affected by
the condition A. Only the second part of the seed (namely,
s2) is affected by conditioning.13

We are able to use the machinery developed by Shaltiel
and Umans [29] (together with additional ideas) to construct
cd-PRGs under the assumption that E is hard for exponen-
tial size nondeterministic NP-circuits, and wcd-PRGs under
the weaker assumption that E is hard for exponential size
nondeterministic circuits. We elaborate on this in Section 3.
We are not able to show that wcd-PRGs give nb-PRGs, but
are able to show that the stronger notion of cd-PRGs give
nb-PRGs. This follows by the next lemma.

Lemma 2.6 (cd-PRGs are nb-PRGs). Let C be a con-

stant and let G : {0, 1}r1+r2 → {0, 1}n be an (ℓ−(C+5)/2)-
cd-PRG for conditional tests of size s + O(ℓ) and density

at least 2−O(ℓ) then G is a ℓ−C-nb-PRG for size s circuits
E : {0, 1}n → {0, 1}ℓ.

Proof. Let E : {0, 1}n → {0, 1}ℓ be a circuit of size s
and assume that E is not ℓ−C-fooled by G, meaning that
C(E(Ur)) and E(Un)) are not ℓ−C-close. By an averaging
argument, for an ℓ−C/2-fraction of s1 ∈ {0, 1}r1 , E is not
(ℓ−C/2)-fooled by Gs1 , and call such s1 useful. by Corol-
lary 2.1 for every useful s1, there exists a conditional test

13For perspective, let us consider an analogous definition to
the standard setup of PRGs (or even nb-PRGs): Let C be
a class of functions C : {0, 1}n → {0, 1}ℓ. If for every test
in the class C, with probability 1 − ϵ/2, over s1 ← Ur1 ,
Gs1(Ur2) ϵ/2-fools the test, then G is an ϵ-nb-PRG. Thus,
for the more standard notion of ϵ-PRGs (or even ϵ-nb-PRGs)
the modifications made in Definition 2.5 are immaterial and
this is why this notion is not usually defined in these setups.



(As1 , Ds1) of size s + O(ℓ) and density 2−O(ℓ) which is not

(ℓ−(C+5)/2)-fooled by Gs1 .

We remark that the fact that Gs1 fools all circuits s+O(ℓ)
is an overkill for the argument. However, we do need Gs1 to
fool many tests simultaneously, and this is why the argument
does not work with wcd-PRGs.

3. A CONSTRUCTION OF CD-PRGS
We now show that Assumption 1.7 implies cd-PRGs. The

construction is specified in Figure 1. The intuition for the
construction builds on ideas of Shaltiel and Umans [29] (to-
gether with additional ideas) and we give a high level intu-
ition in the next paragraph.

Intuition for the construction
Recall that we are aiming to construct a cd-PRG for condi-
tional tests with density at least 2−d. The first r1 bits of the
seed will be used to select a poly(n)-wise independent per-
mutation h : {0, 1}n → {0, 1}n. This costs r1 > n random
bits (that we cannot afford) and we will derandomize this
choice using a PRG G1 for nondeterministic NP-circuits.
Recall that the definition of cd-PRGs discusses choosing

a random seed of length r1 and fixing its value. Therefore,
it will be sufficient to argue that with high probability we
obtain a fixed permutation h : {0, 1}n → {0, 1}n such that
for every relevant condition circuit A : {0, 1}n → {0, 1},
truncating the output of h to n− d bits, we achieve a hash
function that hashes {x : A(x) = 1} without many collisions.
Formally, we will truncate to length n − v bits, for v =
d+O(logn) bits, and will argue that the obtained hash func-
tion has the property that no output z ∈ {0, 1}n−v has more
than a polynomial number of preimages in {x : A(x) = 1}.
However, for the sake of this informal explanation, let us
oversimplify, and pretend that by choosing v = d, we can
truncate h to obtain a hash function that is one-to-one on
{x : A(x) = 1}. We now continue describing the second part
of the seed. We use a short seed s2 and apply a PRG
G2 against NP-circuits to generate a pseudorandom string
G2(s2) of length n− v. For each such pseudorandom string
z = G2(s2), its preimage in {x : A(x) = 1} under the trun-
cated version of h is unique, and can be obtained by h−1(G2(s2)◦
w) for some unique w ∈ {0, 1}v. In other words, the distri-
bution R = h−1(G2(s2) ◦ w) where s2 is a uniform seed of
G2 and w is chosen uniformly from {0, 1}v has the prop-
erty that (R|A(R) = 1) is a bijection of the pseudorandom
strings generated by G2. Note that an NP-circuit can com-
pute this bijection, and as G2 fools such circuit, we obtain
a cd-PRG. (The actual argument is more technical as we
are not guaranteed that the hash function is one to one, but
follows using the same intuition).

We now prove that the construction yields cd-PRGs.

Theorem 3.1. There exist a constant c such that for ev-
ery constant b the following holds: Let v = d + O(b · logn)
and ϵ ≥ n−b. If G1, G2 are (ϵ/100)-PRGs for nondeter-

ministic NP circuit of size nb2·c then G is an ϵ-cd-PRG for
conditional tests of size nb and density ≥ 2−d.

Note that for every constant δ > 0, Assumption 1.7 guar-
antees the existence of G1, G2 with d1 = d2 = nδ that can
be computed in time poly(n) and have error n−2b, giving
that:

Corollary 3.2. If Assumption 1.7 holds then for every
constants b ≥ 1, δ > 0 and parameter d, there exists a
poly(n)-time computable (n−b)-cd-PRG

G : {0, 1}d+nδ+O(b logn) → {0, 1}n for conditional tests of
size nb and density ≥ 2−d.

Theorem 1.5 follows from Lemma 2.6, Corollary 3.2 and
the discussion in Section 1.1.1 showing that Assumption 1.7
follows from the assumption in Theorem 1.5.

3.1 Analysis of the construction
We now prove Theorem 3.1. The seed s1 is used to pick

a permutation hG(s1) : {0, 1}n → {0, 1}n. We want this
permutation to be good in the following respect:

Definition 3.3 (Splitting function). Given a func-
tion h : {0, 1}n → {0, 1}n, let h′ : {0, 1}n → {0, 1}n−v be
the function obtained by truncating the last v output bits
of h. Let δ > 0. A function h : {0, 1}n → {0, 1}n is δ-
splitting for A : {0, 1}n → {0, 1} if for every y ∈ {0, 1}n−v,
the quantities ay := | {x : A(x) = 1 ∧ h′(x) = y} | and a :=

| {x : A(x) = 1} |, satisfy ay ≤ (1 + δ) · a · 2−(n−v).

We set δ = n−2b and will show that a poly(n)-wise in-
dependent permutation is δ-splitting for a condition A with
high probability. The full proof (which relies on a Chernoff
bound for t-wise independent permutations) is deferred to
the full version.

Lemma 3.4. Let A : {0, 1}n → {0, 1} be a condition with

density ≥ 2−v+10 log(n/δ)+2. The probability over s ← Uq

that hs is not (δ/4)-splitting for A is at most 2−n5b

.

By a union bound over all circuits of size nb we get that:

Corollary 3.5. The probability over s ← Uq that hs is
not (δ/4)-splitting for all circuits A of size nb with density

≥ 2−v+10 log(n/δ)+2 is at most 2−n.

We can achieve a similar result in the experiment
s← G1(Ud1) rather than s← Uq.

Lemma 3.6. The probability over s1 ← Ud1 that hG1(s1)

is not δ-splitting for all circuits A of size nb with density
≥ 2−v+10 log(n/δ) is at most 2−n + ϵ/100 ≤ ϵ/50.

Lemma 3.6 follows from noticing that given an s ∈ {0, 1}q,
The test T (s) which checks whether there exists a condi-

tion A with density ≥ 2−v+10 log(n/δ) such that hs is not

δ-splitting for A, can be implemented by a size nO(b2) non-
deterministic NP-circuit. We have that G1 fools such tests,
which means that the probabilities in the experiments s ←
G1(Ud1) and s← Uq are close.

To implement the test T (s) note that by “approximate
counting of NP witnesses” [31, 19, 5], given a condition
A, an NP-circuit can check whether the density is at least
2−v+10 log(n/δ), and compute very good approximations to
the quantities a and ay. This means that the test T (s) can
be expressed as: “does there exists an A and y such that A
has sufficiently large density and ay/a > (1 + δ) · 2−(n−v)”.



Figure 1: A cd-PRG

Parameters: n and v, b, d1, d2.

Ingredients:

• A family H of 2q permutations, for q = nO(b), indexed by strings s ∈ {0, 1}q . Given s, the permutations

hs, h
−1
s are required to be computable in time nO(b). H should be (2−n11b

)-close to (n10b)-wise inde-

pendent, namely, for every distinct x1, . . . , xn10b ∈ {0, 1}n, (hs(x1), . . . , hs(xn10b ))s←Uq is 2−n11b
-close

to the uniform distribution on n10b distinct elements from {0, 1}n. There are such explicit constructions
in the literature [11, 16, 20].

• A function G1 : {0, 1}d1 → {0, 1}q that is computable in time polynomial in n.

• A function G2 : {0, 1}d2 → {0, 1}n−v that is computable in time polynomial in n.

Both G1, G2 will be assumed to be pseudorandom generators for nondeterministic NP-circuits of size nO(b)

which exist by assumption 1.7.

The cd-PRG: G : {0, 1}r:=d1+d2+v → {0, 1}n is defined as follows: Given s1 ∈ {0, 1}d1 , s2 ∈ {0, 1}d2 and

w ∈ {0, 1}v, we define G(s1, s2, w) = h−1
G1(s1)

(G2(s2)◦w). We set r1 = d1 and r2 = d2+v so that r = r1+r2.

This test can be implemented by a nondeterministic NP-
circuit. A full proof is deferred to the full version.14

Finally, we show that if a good s1 (namely, one for which
hG(s1) is δ-splitting) is chosen. Then the distribution

G(s1, Ur2) = h−1
G1(s1)

(G2(Ud2) ◦ Uv) ϵ/2-fools every relevant

conditional test (A,D).

Lemma 3.7. Let h : {0, 1}n → {0, 1}n be a δ-splitting
permutation, and (A,D) be a conditional test of size nb and

density ≥ 2−v+10 log(n/δ). Then h−1(G2(Ud2) ◦ Uv) (O(δ) +
ϵ/100)-fools (A,D).

This concludes the proof of Theorem 3.1. The proof of
Lemma 3.7 is deferred to the full version, and is based
on a similar argument of Shaltiel and Umans [29]. For
Lemma 3.7, it is sufficient that G2 fools NP-circuits that
make nonadaptive calls to their oracle, and by [29], such
PRGs can be obtained from the assumption: E is hard for
exponential size nondeterministic circuits. The idea behind
the proof is that Un can be presented as R1 = (h−1(Y1 ◦
W ))Y1←Un−v,W←Uv and the distribution considered in the

lemma is R2 = h−1(Y2◦W ))Y2←G2(Ud2
),W←Uv . For fixed y ∈

{0, 1}n−v, these coincide. NP-circuits can approximate the
quantities ℓy = | {x : A(x) = 1 ∧D(x) = 1 ∧ h′(x) = y} |, and
a = | {x : A(x) = 1} |, and therefore an NP-circuit can out-
put 1 on distribution Yi with probability proportional to

Ey←Yi [
ℓy ·2v

a
] which is equal to Pr[D(Ri) = 1|A(Ri) = 1]

if h is 0-splitting. Consequently, if (D,A) distinguishes R1

from R2 then an NP-circuit distinguishes Y1 from Y2. A
more careful argument shows that this holds also for h that
is δ-splitting and not 0-splitting.
We now make an observation that will be helpful for the

proof of Theorem 1.6: The proof of Theorem 3.1 follows just

14This is the place where nondeterministic NP-circuits come
up. We remark that by the AM protocol of Goldwasser
and Sipser [10], a nondeterministic circuit can check whether
the number of inputs accepted by a given circuit A is larger
than some constant quantity. If we are shooting to construct
wcd-PRGs (rather than cd-PRGs), then this observation (to-
gether with some small modifications in the proofs above)
leads to an implementation of T (s) by a nondeterministic
circuit. This enables us to relax Assumption 1.7 and replace
nondeterministic NP-circuits with nondeterministic circuits.

the same if we allow conditions A to be nondeterministic cir-
cuits rather than deterministic circuits. This is because the
only properties of A used, is that an NP-circuit can approx-
imate the size of sets of the form {x : A(x) = 1 ∧B(x) = 1},
where B is some deterministic circuit. This holds also for
nondeterministic circuits A.

Another observation that will be useful for proving Theo-
rem 1.6 is that G of Corollary 3.2 fools all nondeterministic
circuits C of size nb. This follows as for fixed s1, G is a
poly(n)-size permutation of the distribution G2(Ud2) ◦ Uv

which fools nondeterministic circuits of size nO(b).

4. NB-PRGS FOR SAMPLING PROCEDURES
WITH LOW ENTROPY

In this section we prove Theorem 1.6. Our proof uses some
ideas by Dubrov and Ishai [7]. We are shooting to construct
an ϵ-nb-PRG for size nc circuits C : {0, 1}n → {0, 1}n with
H(C(Un)) ≤ k. Let ϵ′ = Ω(ϵ2/k) and let G : {0, 1}r →
{0, 1}n be an ϵ′-cd-PRG for conditional tests of size nO(c)

and density d = O(k/ϵ). Such a poly(n)-time G follows from
Assumption 1.7 by Corollary 3.2. Using the assumption that
k ≥ ne, we have that r = O(d) = O(k/ϵ) as required. As
noted earlier, G also fools conditional tests where the con-
dition A is a size nO(c) nondeterministic circuit, and it fools
nondeterministic circuits of size nO(c).

Assume that some size nc circuit C with H(C(Un)) ≤ k
is not ϵ-fooled by G. We will try to show that there exists a
circuit C′ of size nO(c) and output length O(k/ϵ) that is not
fooled by G. We can then use the previous argument with
C′.

Lemma 4.1. There exists a nondeterministic circuit A :
{0, 1}n → {0, 1} of size nO(c) and density ≥ 1 − ϵ, such

that | {x : A(x) = 1} | ≤ 2O(k/ϵ) and the distributions R =
(C(X)|A(X) = 1)X←Un , and V = (C(G(Y ))|A(C(G(Y ))) =
1)Y←Ur are not ϵ/10-close.

The proof of Lemma 4.1 is deferred to the full version. We
provide a sketch here. Let A be a nondeterministic circuit

that accepts S =
{
z : Pr[C(Un) = z] ≥ 2−10k/ϵ

}
. Such a

circuit follows by the aforementioned AM-protocol of Gold-



wasser and Sipser [10]. Since H(C(Un)) ≤ k, the distri-
bution C(Un) cannot place a lot of weight on Sc, implying
that Pr[A(C(Un)) = 1] ≥ 1 − ϵ/10. We know that A(C(·))
is ϵ′-fooled by G and ϵ′ ≤ ϵ/10. Therefore, “some of the
statistical distance” between C(Un) and C(G(Ur)) must be
“preserved” under the condition A, and so R and V are not
ϵ/10-close.

The set S is of size ≤ 2ck/ϵ for some constant c. It
is standard that with positive probability, picking a ran-
dom function from a pairwise independent family of hash
functions h : {0, 1}n → {0, 1}2ck/ϵ is one to one on S,
and such a function can be implemented by a poly-size cir-
cuit. It follows that R = (h(C(X))|A(X) = 1)X←Un , and
V = (h(C(G(Y )))|A(C(G(Y ))) = 1)Y←Ur are not ϵ/10-
close. We can now apply Lemma 2.1 on R and V (which are
on O(k/ϵ) output bits) to obtain a conditional test (A′, D′)

of size nO(c) that distinguishes between them with advan-

tage ϵ/10
O(k/ϵ)

= Ω(ϵ2/k) ≥ ϵ′. Furthermore, A′ has den-

sity 2−O(k/ϵ). This means that the conditional test (A′′, D)
where A′′(x) = A(x) ∧ A′(x) is a nondeterministic circuit

of size nO(c) with density ≥ 2−O(k·log log(1/ϵ)/ϵ)−1 such that
(A′′, D) is not ϵ′-fooled by G. This is a contradiction, as

G is an ϵ′-cd-PRG against size nO(c) conditional tests with
this density.

5. NB-PRGS FOR POLY-SIZE CONSTANT
DEPTH CIRCUITS

The following theorem generalizes Theorem 1.10 and The-
orem 1.11.

Theorem 5.1. Let ℓ ≤ n < M be positive integers, and
let ϵ ≥ 2−n be a parameter. There is a procedure G :
{0, 1}r → {0, 1}n such that for every circuit C : {0, 1}n →
{0, 1}ℓ of size M and depth d, the distribution C(G(Ur)) is
ϵ-close to C(Un), and it is possible to take:

• r = ℓ ·O(logM)d+7 · log7(1/ϵ) and then G can be com-
puted in time poly(n, logd M).

• r = ℓ1+α · (logM)d · (log(M/ϵ))O(1/α) for an arbitrary
constant α > 0, and then G can be computed by a
uniform family of circuits of size poly(n, logd M) and
depth O(1/α).

We remark that the procedure G needs to know the pa-
rameters ℓ, n, d,M and ϵ. However, the running time/size
of G is a fixed polynomial in (n, logd M), and the depth
depends of G depends only on α.

5.1 Adapting the pseudorandom generator of
[34]

There does not seem to be a general method to transform
Boolean PRGs for constant depth circuits into nb-PRGs for
constant depth circuits. Indeed, the nb-PRG of Dubrov and
Ishai relies (amongst other things) on specific properties of
the proof of correctness of the Nisan-Wigderson generator.
In order to prove Theorem 1.10 we will exploit specific prop-
erties of the recent Boolean PRG construction of Trevisan
and Xue [34].
The technique of [34] is based on pseudorandom restric-

tions - namely, a randomness efficient way to sample a small
(but noticeable) subset S of the n input variables of a circuit

C : {0, 1}n → {0, 1} of poly-size and constant depth, such
that if the remaining bits are chosen at random, then the
restricted circuit (which now gets |S| bits as input) simpli-
fies into a poly-logarithmic depth decision tree. It is easy
to verify that their approach works also on non-boolean cir-
cuits C : {0, 1}n → {0, 1}ℓ and these simplify into a poly-
logarithmic depth decision forests.

A PRG (with very low stretch) against boolean circuits
can be constructed by sampling a set S pseudorandomly, and
then sampling the values of the bits outside of S uniformly,
and the value of bits inside S by poly-logarithmic-wise inde-
pendence. The rationale is that following the restriction the
simplified circuit cannot distinguish a uniform |S| bit string
from a poly-logarithmic-wise independent one. This gives a
PRG with almost linear seed, and the seed can be reduced
by recursion in which the step of sampling the value of bits
outside of S uses the PRG recursively, rather than a uniform
string. This argument can be extended to the non-boolean
setting at the cost of multiplying the independence by ℓ. A
full proof is deferred to the full version.

6. DISCUSSION AND OPEN PROBLEMS
The notions of cd-PRGs and wcd-PRGs are quite strong,
and we are expecting that they will find applications in var-
ious setups.

We are using hardness against nondeterministic NP-circuits
to construct nb-PRGs. Is it possible to use hardness for a
weaker class? (Say nondeterministic circuits or NP circuits).
We remark that we can construct wcd-PRGs under hardness
for nondeterministic circuits (which seems like the best that
can be done). However, we were not able reduce nb-PRGs
to wcd-PRGs. This suggests that we may be able to achieve
the weaker hardness assumption by improving the reduction
so that we can use a weaker notion than cd-PRGs and show-
ing how to construct such PRGs using hardness assumptions
for nondeterministic circuits.

Recently, it is shown by [1] (and following work) that many
cryptographic primitives can be computed by low circuit
classes (and in particular, by poly-size constant depth cir-
cuits). We expect that nb-PRGs for poly-size constant depth
circuits can be useful in this setup (as they fool the circuits
that implement the primitives). Moreover, our PRGs are
also implementable in poly-size and constant depth, and this
may be helpful (even in the boolean case), as low complexity
security reductions can run them.

Is it possible to give unconditional constructions of nb-
PRGs against size s = nc and depth d circuits C : {0, 1}n →
{0, 1}ℓ with seed length O(ℓ) +O(logad s) for a constant ad

that depends only on d? Note that we achieve the multipli-
cation of the two terms, but it may be possible to achieve
the sum (even without new progress on circuit lower bounds
for constant depth circuits).
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