How to get more mileage from randomness extractors^{*}

Ronen Shaltiel[†]

May 27, 2008

Abstract

Let \mathcal{C} be a class of distributions over $\{0,1\}^n$. A deterministic randomness extractor for \mathcal{C} is a function $E: \{0,1\}^n \to \{0,1\}^m$ such that for any X in \mathcal{C} the distribution E(X) is statistically close to the uniform distribution. A long line of research deals with explicit constructions of such extractors for various classes \mathcal{C} while trying to maximize m.

In this paper we give a general transformation that transforms a deterministic extractor E that extracts "few" bits into an extractor E' that extracts "almost all the bits present in the source distribution". More precisely, we prove a general theorem saying that if E and C satisfy certain properties, then we can transform E into an extractor E'.

Our methods build on (and generalize) a technique of Gabizon, Raz and Shaltiel (FOCS 2004) that present such a transformation for the very restricted class C of "oblivious bit-fixing sources". The high level idea is to find properties of E and C which allow "recycling" the output of E so that it can be "reused" to operate on the source distribution. An obvious obstacle is that the output of E is correlated with the source distribution.

Using our transformation we give an explicit construction of a two-source extractor E: $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^m$ such that for every two independent distributions X_1 and X_2 over $\{0,1\}^n$ with min-entropy at least $k = (1/2 + \delta)n$ and $\epsilon \leq 2^{-\log^4 n}$, $E(X_1, X_2)$ is ϵ -close to the uniform distribution on $m = 2k - C_{\delta} \log(1/\epsilon)$ bits. This result is optimal except for the precise constant C_{δ} and improves previous results by Chor and Goldreich (SICOMP 1988), Vazirani (Combinatorica 1987) and Dodis et al. (RANDOM 2004).

We also give explicit constructions of *extractors for samplable distributions* that extract many bits even out of "low-entropy" samplable distributions. These constructions rely on a average case hardness assumptions and extend some previous results by Trevisan and Vadhan (FOCS 2000) that give such extractors only for distributions with "high entropy".

^{*}A preliminary version of this paper appeared in 21st IEEE Conference on Computational Complexity. [†]This research was supported by BSF grant 2004329.

1 Introduction

1.1 Background

A well studied paradigm in computer science is that of randomized algorithms and protocols. It is known that having access to random bits allow parties to perform tasks that cannot be performed by deterministic parties. (The reader is referred to [20, 36] for textbooks on randomized algorithms). The most obvious example is the area of Cryptography which inherently relies on the assumption that parties have access to random bits (that is to a string of independent coin tosses).

A large body of research is concerned with obtaining such a sequence of random bits. A common strategy is to try and sample from some source distribution X (say on n bit strings) that is available to a computer (some examples are: electro-magnetic noise, key strokes of user and timing of past events). However, it is unlikely that this gives bits that are independent coin tosses. A standard and successful paradigm is the "randomness-extraction paradigm" in which one copes with this issue by coming up with functions that transform a source distribution X into a distribution Zthat is (close to) the uniform distribution.

1.1.1 Deterministic randomness extractors

A "deterministic randomness extractor" is a function that "extracts" bits that are (statistically close to) uniform from "weak sources of randomness" which may be very far from uniform.

Definition 1.1 (deterministic extractor). Let C be a class of distributions on $\{0,1\}^n$. A function $E : \{0,1\}^n \to \{0,1\}^m$ is a deterministic ϵ -extractor for C if for every distribution X in C the distribution E(X) (obtained by sampling x from X and computing E(x)) is ϵ -close to the uniform distribution on m bit strings.¹

Given a class C, a central goal of this field is to design *explicit* (that is polynomial time computable) deterministic extractors that extract as many random bits as possible.

Distributions $X \in C$ must "contain" random bits in order to allow extraction. The amount of random bits "contained" in a probability distribution is formally measured by the "min-entropy" of the distribution.

Definition 1.2 (min-entropy). Given a random variable X taking values in $\{0,1\}^n$ the minentropy of X denoted $H_{\infty}(X)$ is given by $\min_{x \in \{0,1\}^n} \log(1/\Pr[X=x])$.

More precisely, a necessary condition for a class C to have an ϵ -extractor $E : \{0, 1\}^n \to \{0, 1\}^m$ (for $\epsilon < 1/2$) is that every distribution X in C has min-entropy at least m.

1.1.2 Some related work on deterministic randomness extraction.

Various classes C of distributions were studied in the literature: The first construction of deterministic extractors can be traced back to von Neumann [41] who showed how to use many independent tosses of a biassed coin (with unknown bias) to obtain an unbiased coin. Blum [6] considered sources that are generated by a finite Markov-chain. Santha and Vazirani [30], Vazirani [38, 39], Chor and Goldreich [8], Dodis et al. [11], Barak, Impagliazzo and Wigderson [1], Barak et al. [2],

¹Two distributions P and Q over $\{0,1\}^m$ are ϵ -close (denoted by $P \sim_{\epsilon} Q$) if for every event $A \subseteq \{0,1\}^m$, $|P(A) - Q(A)| \leq \epsilon$.

Raz [27], Rao [26], and Barak et al. [3] studied sources that are composed of several independent samples from various classes of "high entropy" distributions. Chor et al. [9], Ben-Or and Linial [5], Cohen and Wigderson [10], Kamp and Zuckerman [18] and Gabizon, Raz and Shaltiel [14] studied bit-fixing sources which are sources in which a subset of the bits are uniformly distributed. Trevisan and Vadhan [35] studied sources which are "samplable" by small circuits. Barak et al. [2] and Gabizon and Raz [13] studied sources which are uniform over an affine subspace.

1.1.3 Seeded extractors

A negative result was given by Santha and Vazirani [30] that exhibit a very natural class of high min-entropy sources that does not have deterministic extractors. This led to the development of a different notion of extractors called "seeded extractors". Such extractors are allowed to use a short seed of few truly random bits when extracting randomness from a source. (The notion of "seeded extractors" emerged from attempts to simulate probabilistic algorithms using weak random sources [40, 8, 10, 42, 43] and was explicitly defined by Nisan and Zuckerman [24].) Unlike deterministic extractors, seeded extractors can extract randomness from the most general class of sources: Sources with high (min)-entropy.

A seeded randomness extractor is a function which receives two inputs: In addition to a sample from a source X, a seeded extractor also receives a short "seed" Y of few uniformly distributed bits. Loosely speaking, the extractor is required to output many more random bits than the number of bits "invested" as a seed.

Definition 1.3 (seeded extractors for high min-entropy sources). A function $E : \{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ is a strong (k,ϵ) -extractor if for every random variables X, Y such that $H_{\infty}(X) \ge k$ and Y is independent of X and uniformly distributed over $\{0,1\}^d : (E(X,Y),Y)$ is ϵ -close to the uniform distribution on m + d bits.

A long line of research focuses on constructing such seeded extractors with as short as possible seed length that extract as many as possible bits. There are explicit constructions of (k, ϵ) -extractors that use seed of length $polylog(n) + O(log(1/\epsilon))$ to extract k random bits. The reader is referred to [21, 22, 37] for surveys on applications of seeded randomness extractors and to [31] for a survey that focuses on recent explicit constructions of seeded randomness extractors.

1.2 How to get more mileage from deterministic extractors

Let \mathcal{C} be some class of distributions over $\{0,1\}^n$ and assume that for any X in \mathcal{C} , $H_{\infty}(X) \geq k$. The randomness extraction problem is to design an explicit extractor E for \mathcal{C} which extracts as many random bits as possible. It is natural to hope to extract $m \approx k$ random bits as all distributions in \mathcal{C} "contain" k random bits. Suppose we already have an explicit ϵ -extractor E for \mathcal{C} that extracts t < k random bits it is natural to try to "get more mileage from E". That is to try and extract more bits by "recycling the output of E" as follows:

$$E'(x) = E_1(x, E(x))$$

where $E_1 : \{0,1\}^n \times \{0,1\}^t \to \{0,1\}^m$ is a seeded extractor for min-entropy threshold k. If t is large enough (say t > polylog(n)) then there are explicit constructions of a seeded extractor E_1 that extracts all the k random bits from the source distribution.

There is however an obvious obstacle. Let X be a distribution in C. While it is true that E(X) is close to uniform, it is inherently dependent on the distribution X. Thus, when we run E_1 we run it with two dependent distributions X, E(X) and cannot conclude that the output is close to uniform.

1.2.1 The technique of Gabizon et al.

Gabizon et al. [14] focus on the class of oblivious bit-fixing sources with min-entropy k. These are distributions X over n bit strings such that there is a set $S \subseteq [n]$ of k indices such that X restricted to S is uniformly distributed and the remaining bits are fixed. They show a specific construction of a function $E_1 : \{0,1\}^n \times \{0,1\}^t \to \{0,1\}^m$ such that if E is an ϵ -extractor which extracts t random bits from "low-entropy" bit-fixing sources, then for every distribution X in the class, $E'(X) = E_1(X, E(X))$ is $O(\epsilon \cdot 2^t)$ -close to the uniform distribution on $m \approx k$ bits.

That is, at least for the restricted case of bit-fixing sources, if one starts with an extractor E that extracts few bits out of X then it is possible to come up with a function E_1 which gives rise to a deterministic extractor E' that extracts almost all the bits out of the source distribution. It is important to notice that to achieve this we require that E works for a class C which is larger than our "target class": It is not sufficient that E extracts t random bits from bit-fixing sources with min-entropy k. It is crucial that E extracts randomness even from bit fixing sources with minentropy k' < k. We also remark that E_1 needs to have a certain special structure. We elaborate more on the construction of [14] later on.

Following [14], Gabizon and Raz [13] used related ideas to get more mileage out of deterministic extractors for a "affine sources over large fields". (These are sources in which $X = (X_1, \ldots, X_n)$ where each X_i belongs to a field of size at least poly(n) and there exists a subset $S = \{i_1, \ldots, i_k\}$ of indices such that X restricted to S is uniformly distributed and for every $i \notin S$, X_i is given by a linear function of X_{i_1}, \ldots, X_{i_k} .) We elaborate more on the construction of [13] later on.

1.2.2 Our result: a general transformation

We now explain our main result. We are given a distribution X over $\{0,1\}^n$ and functions $E : \{0,1\}^n \to \{0,1\}^t$, $F : \{0,1\}^n \times \{0,1\}^t \to \{0,1\}^r$. (In most cases F will be a seeded extractor although we sometimes use other objects). We want to get that F(X, E(X)) is close to $F(X \otimes U_t)$.² This will allow us to reuse the random bits extracted by E and use them as a seed to the seeded extractor F which in turn will allow us to extract many bits. We show that a sufficient condition is that there is a class C of distributions such that:

- X belongs to \mathcal{C} .
- E is an ϵ -extractor for C with $\epsilon < 2^{-t}$.
- For every $y \in \{0,1\}^t$ and $a \in \{0,1\}^r$, (X|F(X,y) = a) belongs to \mathcal{C} . (We refer to this condition as a "robustness condition").

Thus, for example if F is a seeded extractor we get that F(X, E(X)) is close to $F(X \otimes U_t)$ which is in turn close to uniform. We now give a formal statement of our main result:

²For two distributions P, Q we use $P \otimes Q$ to denote the distribution of pairs (p, q) sampled independently from P and Q.

Theorem 1.4 (main theorem). Let C be a class of distributions over $\{0,1\}^n$. Let $E: \{0,1\}^n \to \{0,1\}^t$ be an ϵ -extractor for C. Let $F: \{0,1\}^n \times \{0,1\}^t \to \{0,1\}^r$. Let X be a distribution in C and assume that:

Robustness condition: For every $y \in \{0,1\}^t$ and $a \in \{0,1\}^r$, (X|F(X,y)=a) belongs to C.

Then $F(X, E(X)) \sim_{\epsilon \cdot 2^{t+3}} F(X \otimes U_t)$.

We remark that the distribution (X|F(X,y) = a) typically has lower min-entropy than the distribution X. Thus, to apply the Theorem on a distribution X with min-entropy k we typically need an extractor E that extracts randomness from distributions with min-entropy smaller than k.

Overview of the argument: We prove (a more general version of) Theorem 1.4 in Section 3. We now explain the intuition behind the proof. It is helpful to oversimplify the situation and assume that E is errorless, that is that E is a 0-extractor for C.

Our goal is to show that the distribution F(X, E(X)) is equal to to the distribution $F(X \otimes U_t)$. For this purpose it is sufficient to show that for every $y \in \{0,1\}^t$, F(X,y) is equal to (F(X, E(X))|E(X) = y). This is because by the assumption that X belongs to C we have that the distribution E(X) is equal to U_t .

For this purpose, it is sufficient to show that for every $y \in \{0,1\}^t$, F(X,y) is independent of E(X) because then

$$(F(X, E(X))|E(X) = y) \sim (F(X, y)|E(X) = y) \sim F(X, y)$$

However, we have that for every $y \in \{0,1\}^t$ and $a \in \{0,1\}^r$, (X|F(X,y) = a) is a distribution in \mathcal{C} . It follows that (E(X)|F(X,y) = a) is the uniform distribution. As this is true for every $a \in \{0,1\}^r$ we have that E(X) is independent of F(X,y). The actual proof imitates the outline above while taking into account that $\epsilon > 0$.

1.3 Applications

We show that our technique is applicable to a large variety of classes of sources.

1.3.1 Extractors for two independent sources

We now consider the class of random variables X that are composed of two independent random variables X_1 and X_2 such that $H_{\infty}(X_1) \ge k_1$ and $H_{\infty}(X_2) \ge k_2$.

Definition 1.5 (two source extractors). A function $E : \{0,1\}^{n_1} \times \{0,1\}^{n_2} \rightarrow \{0,1\}^m$ is a $(k_1, k_2; \epsilon)$ -two-source extractor if for every two independent random variables X_1, X_2 such that $H_{\infty}(X_1) \geq k_1$ and $H_{\infty}(X_2) \geq k_2$: $E(X_1, X_2)$ is ϵ -close to the uniform distribution on m bits.

The function E is strong in the first source if $(X_1, E(X_1, X_2))$ is ϵ -close to (X_1, U_m) where U_m is an independent random variable that is uniformly distributed over $\{0, 1\}^m$.

As noted earlier in Section 1.1.2, a long line of research is concerned with explicit constructions of such extractors. We now mention only results that are directly relevant to this paper. We focus on the scenario in which $n_1 = n_2$ and we denote this length by n. Furthermore we are concerned with entropy threshold $k = (1/2 + \delta)n$ for some constant $\delta > 0$ and set $k_1 = k_2 = k$. Chor and Goldreich [8] proved that the function $E(x, y) = \sum_{1 \le i \le n} x_i \cdot y_i (mod2)$ is a $(k, k; \epsilon)$ -two source extractor (with error $\epsilon = 2^{-\eta n}$ where $\eta > 0$ is a constant that depends only on δ). Note that this extractor extracts only a single bit out of the source distribution. Vazirani [38, 39] (see also [12, 11]) constructed a function E that extracts $\Omega(\delta n)$ bits with the same properties. Dodis et al. [11] observed that Vazirani's extractor is strong in the first source (and also in the second one). A consequence is that it is possible to use the output of E to operate on the first source with a seeded extractor. More specifically, that the construction $E'(x_1, x_2) = E_1(x_1, E(x_1, x_2))$ where E_1 is a seeded extractor yields a two-source extractor. Using this method, [11] construct an extractor that extracts $k + \Omega(\delta n)$ bits (that is about half the entropy present in the source distribution).

In this paper we use our technique (and a recent extractor construction of [27]) to improve this result. In particular we show how to extract $2k - C \log(1/\epsilon)$ bits (for a constant C depending only on δ). That is, we extract almost all the 2k random bits present in the source distribution. This is stated formally in the next Theorem:

Theorem 1.6. For every constant $\delta > 0$ there is a constant C > 0 such that for large enough n, let $k = (1/2 + \delta)n$ and let $\epsilon \leq 2^{-\log^4 n}$ then there is an explicit $(k, k; \epsilon)$ -two-source extractor $E : \{0, 1\}^n \times \{0, 1\}^n \to \{0, 1\}^m$ for $m = 2k - C \log(1/\epsilon)$.

Radhakrishnan and Ta-Shma [25] showed that any two-source extractor must suffer an entropy loss of $2 \log(1/\epsilon)$. It follows that for small values of ϵ the output length of our extractor is optimal except for the value of the constant C.

Overview of the argument: We show that the function

$$E'(x_1, x_2) = E_1(x_1, E(x_1, x_2)), E_2(x_2, E(x_1, x_2))$$

is a two-source extractor when E is a two source extractor and E_1, E_2 are seeded extractors (and the parameters are chosen appropriately). Note that we use $E(x_1, x_2)$ as a seed for seeded extractors that operate both on x_1 and x_2 . We find this surprising as unlike the case of [11] we have that (X_1, X_2) is inherently dependent on $E(X_1, X_2)$.

We want to use our general transformation. For this purpose let us denote $x = (x_1, x_2)$ and define $F(x, y) = E_2(x_2, y)$. We first note that when using a uniformly chosen and independent seed Y the distribution $F((X_1, X_2), Y)$ is (close to) uniformly distributed and is independent of X_1 . We are allowed to replace Y by E(X) if we meet the robustness condition, that is if for every strings y and a, (X|F(X, y) = a) is a source in C. We note that

$$(X|F(X,y) = a) \sim (X_1, X_2|E_2(X_2,y) = a) \sim (X_1, (X_2|E_2(X_2,y) = a))$$

and that in this distribution the two sources are indeed independent. For a typical choice of a we have that $(X_2|E_2(X_2, y) = a)$ has entropy roughly $k - m_2$ (where m_2 is the output length of E_2). Thus, we meet the robustness condition if E is an extractor for two independent sources where the first source has entropy k and the second source has small entropy. Such an extractor construction was given by Raz [27] for $k = (1/2 + \delta)n$. This allows us to apply our transformation and conclude that $F(X, E(X)) = E_2(X_2, E(X_1, X_2))$ is close to uniform. We are then able to use the fact that E is strong in the first source to argue that this distribution is (close to) independent of X_1 . (For this we actually need a stronger robustness condition that is explained later on). Once we have that we can use $E_2(X_2, E(X_1, X_2))$ (which in particular contains $E(X_1, X_2)$ assuming E_2

is a strong extractor) to extract all the randomness from X_1 . The exact details are given in Section 4. We remark that any future improvement in constructing two-source extractors for low entropy threshold can be plugged into our technique.

1.3.2 Extractors for samplable distributions

Trevisan and Vadhan [35] suggested studying the class of distributions that are samplable by polynomial size circuits.

Definition 1.7 (Samplable distributions). A function $f : \{0,1\}^r \to \{0,1\}^n \cup \{\bot\}$ is a sampler for a distribution P over $\{0,1\}^n$ if for a random variable R that is uniformly distributed in $\{0,1\}^r$:

- $(f(R)|f(R) \neq \bot) \sim P$.
- $\Pr[f(R) = \bot] \le 1/3.$

Given a class \mathcal{F} of functions we define a class of distributions samplable by \mathcal{F} which is the class of all distributions P such that there is an f in \mathcal{F} which is a sampler for P.

We remark that this definition is slightly different than that in [35].³

Definition 1.8 (Extractors for samplable distributions). A function $E : \{0,1\}^n \to \{0,1\}^m$ is a (k,ϵ) -extractor for a class \mathcal{F} of functions if E is an ϵ -extractor for the class of distributions Xsamplable by \mathcal{F} which satisfy $H_{\infty}(X) \ge k$.

Following [35] we are interested in extracting randomness from distributions X on n bit strings that are samplable by size $s = n^{O(1)}$ circuits. Trevisan and Vadhan showed that such extractors exist (and in fact are computable by size $s^{O(1)}$ circuits). They also showed that any extractor E for such distributions cannot have a size s circuit. As at this point in time we do not know how to prove such lower bounds we cannot expect to have unconditional explicit extractors (as such extractors are polynomial time computable functions that cannot be computable by size s circuits). Trevisan and Vadhan show that explicit extractors can be constructed assuming the existence of polynomial time computable functions that are hard on average for size s Σ_1 -circuits.⁴

Theorem 1.9. [35] Let $f : \{0,1\}^n \to \{0,1\}$ be a function such that for any Σ_1 -circuit C of size s, $\Pr[C(X) = f(X)] \leq 1/2 + \epsilon$ (here X is a uniformly distributed random variable over $\{0,1\}^n$). Then for any $\Delta > 0$, f is a $(n - \Delta, O(2^{\Delta}\epsilon))$ -extractor for distributions samplable by size $(2^{\Delta}\epsilon s)^{\Omega(1)}$ (deterministic) circuits.

It is natural to extend this approach to extract more than one bit. Note that a function f as above satisfies that the distribution (X, f(X)) (where X is uniformly distributed) is indistinguishable from uniform by size $s \Sigma_1$ -circuits. By using the same argument as in [35] it is possible to extract $t < \log s$ bits using an analogous assumption that there is a pseudorandom generator Gsuch that the distribution (X, G(X)) is indistinguishable from uniform by small Σ_1 -circuits.

³We allow the sampling function to output \perp . This is a minor difference and we take this approach to allow sampling from distributions which have probabilities that aren't powers of two. We stress that all our results also follow in the definition of [35].

⁴A Σ_1 -circuit is a circuit which in addition to the standard boolean gates is also allowed to use gates which compute a Σ_1 -complete problem (e.g. satisfiability). The precise definition appears in Definition 5.1.

Lemma 1.10. Let $G: \{0,1\}^n \to \{0,1\}^t$ be a function such that for any Σ_1 -circuit D of size s:

$$|\Pr_{X \in_R\{0,1\}^n}[D(X, G(X)) = 1] - \Pr_{X \in_R\{0,1\}^n, Y \in_R\{0,1\}^t}[D(X, Y) = 1]| \le \epsilon$$

If $t \leq \log s - 1$ then for any $\Delta > 0$, G is a $(n - \Delta, O(2^{\Delta} \epsilon))$ -extractor for distributions samplable by size $(2^{\Delta} \epsilon s)^{\Omega(1)}$ (deterministic) circuits.

It should be noted that the assumptions of both Theorem 1.9 and Lemma 1.10 are somewhat non standard. For some weak choices of parameters the assumption of Theorem 1.9 follows from more standard assumptions concerning worst case hardness of Boolean functions. Furthermore, it is not known whether the assumption of Lemma 1.10 is equivalent to that of 1.9. See discussion in Section 6.

We remark that the argument of Lemma 1.10 only works for $t < \log s.^5$ Given a size bound $s = n^{O(1)}$ if there exist a generator G as in the lemma then we get an extractor. We remark that as we want G to run in polynomial time we must assume that this polynomial is larger than s and can extract at most $t = O(\log n)$ bits.

Using our general approach we show how to convert an extractor E that extracts $t = O(\log n)$ bits into an extractor E' that extracts almost all the bits present in the source distribution. Our construction improves a different construction implicit in [35] that achieves the same goal for the special case when the min-entropy threshold is $k = (1 - \nu)n$ for a small constant $\nu > 0$. The advantage of our construction (that is presented in Section 5) is that it works for any $k > \log^4 n$. One subtlety in our construction (that also occurs in the construction of [35]) is that it is not sufficient that the initial extractor E extracts randomness from distributions samplable by deterministic circuits. Instead we make the stronger requirement that E extracts randomness from distributions samplable by Σ_1 -circuits.

Thus, we need to move everything "up one level in the hierarchy". Following [35] we notice that Lemma 1.10 relativizes and therefore if one assumes that G fools Σ_2 -circuits then one gets that G is an extractor for distributions samplable by Σ_1 -circuits. We then show how to use our transformation to improve some constructions of extractors for samplable distributions. Nevertheless, we remark that in this setting the improvements are less significant as we do not have good extractors to "start from". Putting the ideas sketched above together we get that if the assumption of Lemma 1.10 holds for Σ_2 -circuits with $\epsilon = 2^{-(1-\beta)n}$ for some constant $\beta > 0$ then for any k and constant $\alpha > 0$ we get an explicit extractor E that on distribution samplable by size $s^{\Omega(1)}$ circuits extract $(1-\alpha)k - \beta n - O(\log n)$ bits. Exact details are given in Section 5.

Overview of the argument: We show that $E'(x) = E_1(x, E(x))$ (where *E* is a deterministic extractor for distributions samplable by small Σ_1 -circuits and E_1 is a seeded extractor) is an extractor for samplable distributions. The main problem is that to apply Theorem 1.4 we need $(X|E_1(X,y)=a)$ to be a samplable distribution. We have that E_1 is polynomial time computable, however this does not suffice to get that the distribution above is samplable by deterministic circuits. It does follow (by using results on sampling NP witnesses [33, 17, 4]) that the distribution above is samplable by a Σ_1 -circuit and this is why we require that *E* is an extractor for such distributions.

⁵Loosely speaking, this is because the proof converts a distinguisher D' for G(X) where X is a samplable distribution into a distinguisher D as above. The assumption that $t < \log s$ guarantees that D' can be expressed as a size $2^t < s$ circuit.

We remark that Tevisan and Vadhan also give another construction of extractors for samplable distributions that starts from worst case hardness. Even with the strongest possible assumptions this construction only gives an extractor for entropy threshold $k = (1 - \nu)n$ for some small constant $\nu > 0$. Thus, at the moment our transformation does not give an improvement in this setup. In Section 6 we elaborate on open problems.

1.3.3 Extractors for bit-fixing sources

For completeness we now sketch how the main result of Gabizon, Raz and Shaltiel [14] follows in our framework. We are interested in extracting randomness from bit-fixing sources with min-entropy k. We are given an extractor E that extracts few bits (say t bits) and want to convert it into an extractor E' that extracts almost all the bits present in the source distribution. Interestingly, in this scenario we cannot use the construction $E'(x) = E_1(x, E(x))$ as used in the previous applications. Instead we use Theorem 1.4 to construct a "seed-obtainer". This is an object A(x) introduced in [14] which on a bit-fixing source X with min-entropy k outputs two distributions X' and Z such that X' is a bit-fixing source with min-entropy $k' \approx k$, Z is short and is (close to) uniform. Another requirement is that and X' and Z are (close to) being independent. Given a seed obtainer we can use Z as a seed to a seeded extractor and extract randomness from X'.

To construct a seed obtainer, [14] use an "averaging sampler" this is a function Samp that given a random seed of t/2 random bits produces a subset $T \subseteq [n]$ which "behaves like a random set" in the sense that it intersects every fixed set T in essentially the same way as if it was a random set. (The reader is referred to [15] for a survey on averaging samplers.) To construct the seed-obtainer we consider the following function $F : \{0, 1\}^n \times \{0, 1\}^t \to \{0, 1\}^n$: Given x and y, F splits the tbits long y into two t/2 bit long blocks y_1, y_2 . It uses y_1 as a seed to a sampler to produce a set Tand sets x' to be $x|_T$ (x restricted to the indices in T) and $z = y_2$ (in order for x' to be of length nwe can pad it with zeroes). The parameters are set so that with high probability (over the choice of the seed to the sampler y_1) T hits approximately k' indices of bits that are random in X.

It follows that if we apply F on X and an independent uniformly distributed random variable Y then we obtain X' and Z such that indeed X' is (a convex combination of) bit-fixing sources with min-entropy k' and $Z = Y_2$ is independent and uniformly distributed. Thus, if we can meet the requirements of Theorem 1.4 then we can argue that F(X, E(X)) is close to F(X, Y) and this means that A(x) = F(x, E(x)) gives a seed obtainer. To meet the requirements we note that $(X|F(X,y) = (x',y_2))$ is a bit fixing source with k - k' bits. (This is because the conditioning misses k - k' indices in which X is random). Thus, if E is an extractor for bit-fixing sources with min-entropy k - k' then this transformation works and yields a seed obtainer.

1.3.4 Extractors for affine sources

Gabizon and Raz [13] used an analysis analogous to that in [14] to get more mileage out of extractors for affine sources. For completeness we sketch how this transformation follows in our framework.

We are given an extractor $E : \{0,1\}^n \to \{0,1\}^t$ that extracts randomness from distributions that are uniform over an affine space of dimension k'. We want to get more mileage by using $E'(x) = E_1(x, E(x))$ where E_1 is a seeded extractor. Given an affine source X of dimension k > k'we want to apply Theorem 1.4. We need that $(X|E_1(X,y)=a)$ is an affine source. This follows when $E_1(X, y)$ is a linear function. Thus, we can get more mileage out of affine sources by using seeded extractors which for every seed y are linear functions. Gabizon and Raz give a construction of a deterministic extractor which extracts few bits and a seeded extractor which is linear and as a consequence get a deterministic extractor that extracts many bits.

We remark that Gabizon and Raz focus on the case where the field is of polynomial size (rather than say size two) because their initial deterministic extractor only works in this case. Nevertheless, we want to point out that the transformation works for any field. In fact, the transformation can also be applied in the affine-source disperser of Barak et al. [2] but this requires getting into the details of that paper (essentially because the final object is a disperser and not an extractor). The transformation can also be applied on Bourgain's affine source extractor [7].

1.4 Can we get more mileage from seeded extractors?

In Section 6 we give a counterexample showing that our method cannot be directly applied to get more mileage out of seeded extractors. One reason that our analysis does not work for seeded extractor is that we require the error ϵ of the initial extractor E to satisfy $\epsilon \leq 2^{-t}$ where t is the output length of E. However, by the lower bounds of [24, 25] an extractor for general distributions with error ϵ must have a seed of length at least $2\log(1/\epsilon) > t$ and thus it is not useful as it spends more bits than it extracts.

1.5 Outline of this paper

In Section 2 we give some necessary preliminaries. In Section 3 we explain our main transformation, restate Theorem 1.4 in a more general way and prove it. In Section 4 we show how to apply our technique to two-source extractors. In Section 5 we show how to apply our technique to exractors for samplable distributions. Finally, we discuss limitations of our technique and present open problems in Section 6.

2 Preliminaries

Notations: We use [n] to denote the set $\{1, \ldots, n\}$. We denote the length of a string x by |x|. Logarithms will always be taken with base 2. We use U_n to denote the uniform distribution over n bits. Given a distribution A we use $w \leftarrow A$ to denote the experiment in which w is chosen randomly according to A.

2.1 Probability distributions

Distributions: Some of the proofs in this paper require careful manipulations of probability distributions. We use the following notation. We denote the probability of an event B under a probability distribution P by $\Pr_P[B]$. We say that two distributions P and Q over the same domain V are ϵ -close (denoted $P \sim_{\epsilon} Q$) if for any event B, $|\Pr_P[A] - \Pr_Q[A]| \leq \epsilon$. We use the standard fact that P and Q are ϵ -close if and only if $\frac{1}{2} \sum_{v \in V} |\Pr_P[v] - \Pr_Q[v]| \leq \epsilon$. We use $P \sim Q$ to say that $P \sim_0 Q$ (which means that P and Q are equal as distributions).

Random variables: A random variable R that takes values in U is a function $R : \Omega \to U$ (where Ω is a probability space). We sometimes refer to R as a probability distribution over U (the distribution of the output of R). For example, given a random variable R and a distribution P we sometimes write " $R \sim P$ " and this means that the distribution of the output of R is equal to P.

Pairs of distributions and variables: Given two random variables R_1, R_2 over the same probability space Ω we use (R_1, R_2) to denote the random variable induced by the function $(R_1, R_2)(\omega) = (R_1(\omega), R_2(\omega))$. To avoid visual clutter we sometimes omit the parenthesis and write R_1, R_2 .

Given two probability distributions P_1, P_2 over domains Ω_1, Ω_2 we define $P_1 \otimes P_2$ to be the product distribution of P_1 and P_2 which is defined over the domain $\Omega_1 \times \Omega_2$.

Definition 2.1 (conditioning distributions and random variables). Given a probability distribution P over some domain U and an event $A \subseteq U$ such that $\Pr_P[A] > 0$ we define a distribution (P|A) over U as follows: Given an event $B \subseteq U$, $\Pr_{P|A}(B) = \Pr_P[B|A] = \frac{\Pr_P[A \cap B]}{\Pr_P[A]}$.

We extend this definition to random variables $R : \Omega \to U$. Given an event $A \subseteq \Omega$ we define (R|A) to be the probability distribution over U given by $\Pr_{(R|A)}[B] = \Pr[R \in B|A]$.

Parsing formal expressions involving, \otimes and conditioning As the paper uses the notation above quite extensively we take a moment to clarify this notation. For example, if R_1, R_2 are random variables and $A \subseteq \Omega$ is an event the expression $(R_1, R_2|A)$ refers to the probability distribution of the random variable (R_1, R_2) when conditioned on the event A. The expression $R_1 \otimes (R_2|A)$ refers to the product of two probability distributions: The first is the probability distribution of the random variable R_1 and the second is that of R_2 conditioned on the event A. We furthermore note that the expression $R_1, (R_2|A)$ is not legal in our terminology as $(R_2|A)$ is a probability distribution and not a random variable (the notation using comma only allows random variables). Furthermore, the expression above doesn't make sense as the correlation between R_1 and $(R_2|A)$ is not explicitly specified.

We also need the following standard technical lemmas. For completeness we provide proofs in Appendix A.

Lemma 2.2. Let R_1, R_2 be random variables taking values in A. Let $f : A \to B$ be some function. If $R_1 \sim_{\epsilon} R_2$ then $f(R_1) \sim_{\epsilon} f(R_2)$.

Lemma 2.3. Let R_1 be a random variable taking values in A_1 and R_2 be a random variable taking values in $\{0,1\}^v$. Assume that $H_{\infty}(R_1) \geq k$. Then for every $\rho > 0$ there exists a set $G \subseteq \{0,1\}^v$ such that:

- 1. $\Pr[R_2 \in G] \ge 1 \rho$.
- 2. For every $a \in G$, $H_{\infty}((R_1|R_2 = a)) \ge k (v + \log(1/\rho))$.

Lemma 2.4. Let R_1, V_1 be random variables taking values in A_1 and R_2, V_2 be random variables taking values in A_2 . Suppose that:

- 1. $R_2 \sim_{\epsilon_2} V_2$.
- 2. For every $a \in A_2$, $(R_1 | R_2 = a) \sim_{\epsilon_1} (V_1 | V_2 = a)$.

Then $(R_1, R_2) \sim_{(\epsilon_1 + \epsilon_2)} (V_1, V_2).$

Lemma 2.5. Let R_1, V_1 be random variables taking values in A_1 and R_2 be a random variable taking values in A_2 . Suppose that V_1 and R_2 are independent and that there exists a set $G \subseteq A_2$ such that:

- 1. $\Pr[R_2 \in G] \ge 1 \epsilon_2$.
- 2. For every $a \in G$, $(R_1|R_2 = a_2) \sim_{\epsilon_1} V_1$.

Then $(R_1, R_2) \sim_{(\epsilon_1 + \epsilon_2)} (V_1, R_2).$

We also use the following easy Lemma proven in [14].

Lemma 2.6. [14] (Lemma 2.6) Let R_1 be a random variable taking values in A_1 and R_2 be a random variable taking values in $\{0,1\}^t$. Assume that $(R_1, R_2) \sim_{\epsilon} (R_1 \otimes U_t)$. Then for every $b \in \{0,1\}^t$, $(R_1|R_2 = b) \sim_{\epsilon \cdot 2^{t+1}} R_1$.

3 A transformation for a general family of sources

3.1 The main theorem

For some of our intended applications we need to restate Theorem 1.4 in a more general form. We first need the definition of a *strong deterministic extractor*.

Definition 3.1 (strong deterministic extractor). Let C be a class of distributions on $\{0,1\}^n$. A function $E : \{0,1\}^n \to \{0,1\}^m$ is a strong deterministic ϵ -extractor for C with respect to some function Part: $\{0,1\}^n \to \{0,1\}^p$ if for every distribution X in C: (E(X), Part(X)) is ϵ -close to the distribution $U_m \otimes Part(X)$.

We remark that this definition indeed generalizes definition 1.1 as one can choose Part(x) to be a constant function and in that case the two definitions coincide. We also note that this notation generalizes the notation of strong two-source extractors: If $E(x_1, x_2)$ is a two-source extractor that is strong in the first source this is captured by denoting $x = (x_1, x_2)$ and saying that the extractor E(x) is strong with respect to the function $Part(x) = x_1$.

As the statement of Theorem 3.2 below is rather technical, we first explain the main differences from the more simple Theorem 1.4.

- A weaker robustness condition: We replace the "robustness condition" of Theorem 1.4 by a weaker condition which essentially says that the robustness condition holds with high probability rather than with probability one.
- **Recycling the bits of** E(X): We replace the former guarantee that F(X, E(X)) is close to $F(X \otimes U_t)$ by the stronger guarantee that (F(X, E(X)), E(X)) is close to (F(X, Y), Y) where Y is independent of X and is uniformly distributed in $\{0, 1\}^t$.
- A stronger guarantee: We don't only claim that F(X, E(X)) is close to $F(X \otimes U_t)$ but rather that for any $y \in \{0, 1\}^t$, (F(X, E(X))|E(X) = y) is close to F(X, y).
- Allowing E to be strong: We allow E to be a strong extractor (with respect to some function Part). In this case we get the stronger conclusion that F(X, E(X)) is close to being independent from Part(X). (This is important for the application of two-source extractors).

We now state the more general version.

Theorem 3.2 (main theorem: more general version). Let C be a class of distributions over $\{0,1\}^n$. Let $E : \{0,1\}^n \to \{0,1\}^t$ be an ϵ -extractor for C that is strong with respect to a function Part : $\{0,1\}^n \to \{0,1\}^p$. Let $F : \{0,1\}^n \times \{0,1\}^t \to \{0,1\}^r$. Let X be a distribution in C and assume that:

Weak robustness condition: For every $y \in \{0,1\}^t$ the random variable Part(X) is independent of F(X, y) and furthermore there exists a set $G_y \subseteq \{0,1\}^r$ such that:

- 1. $\Pr[F(X, y) \notin G_y] \leq \epsilon$.
- 2. For every $a \in G_y$, (X|F(X,y) = a) belongs to C.

Then,

- 1. For every $y \in \{0,1\}^t$, $(\mathsf{Part}(X), F(X, E(X))|E(X) = y) \sim_{\epsilon \cdot 2^{t+2}} (\mathsf{Part}(X), F(X, y))$.
- 2. Let Y be a random variable that is independent of X and is uniformly distributed over $\{0,1\}^t$. We have that: $(\operatorname{Part}(X), F(X, E(X)), E(X)) \sim_{\epsilon \cdot 2^{t+3}} (\operatorname{Part}(X), F(X, Y), Y)$.

Note that Theorem 1.4 is indeed a special case of Theorem 3.2 by choosing Part(X) to be some constant function. It is therefore sufficient to prove Theorem 3.2. This is done in the next subsection.

3.2 Proof of Theorem 3.2

In this Section we prove Theorem 3.2. Let X be a distribution in \mathcal{C} which satisfies the "weak robustness condition". Fix some $y \in \{0,1\}^t$ and let G_y be the set guaranteed by the "weak robustness condition".

Lemma 3.3. For every $a \in G_y$, $(E(X), \mathsf{Part}(X)|F(X, y) = a) \sim_{\epsilon} (U_t \otimes \mathsf{Part}(X))$.

Proof. Fix some $a \in G_y$. We define the distribution X' = (X|F(X, y) = a). By the weak robustness condition we have that X' is a distribution in \mathcal{C} . As E is a strong ϵ -extractor for \mathcal{C} it follows that $(E(X'), \mathsf{Part}(X'))$ is ϵ -close to $U_t \otimes \mathsf{Part}(X')$. The assumptions of the Theorem also say that $\mathsf{Part}(X)$ is independent of F(X, y). It follows that $\mathsf{Part}(X') \sim \mathsf{Part}(X)$ and therefore

$$(E(X), \operatorname{Part}(X)|F(X, y) = a) \sim_{\epsilon} (U_t \otimes \operatorname{Part}(X')) \sim (U_t \otimes \operatorname{Part}(X))$$

Lemma 3.4. $(E(X), \operatorname{Part}(X), F(X, y)) \sim_{2\epsilon} (U_t \otimes (\operatorname{Part}(X), F(X, y))).$

Proof. The lemma will follow by applying Lemma 2.5. We choose:

- $R_1 = (E(X), Part(X)).$
- $R_2 = F(X, y).$
- $V_1 = (U_t \otimes \mathsf{Part}(X)).$

By the "weak robustness condition" and Lemma 3.3 we have that:

1. $\Pr[R_2 \notin G_y] \leq \epsilon$.

- 2. V_1 and R_2 are independent.
- 3. For every $a \in G_y$, $(R_1|R_2 = a) \sim_{\epsilon} V_1$.

Applying Lemma 2.5 we conclude that $(R_1, R_2) \sim_{2\epsilon} (V_1, R_2)$ or in other words:

$$(E(X), \mathsf{Part}(X), F(X, y)) \sim_{2\epsilon} ((U_t \otimes \mathsf{Part}(X)), F(X, y)) \sim (U_t \otimes (\mathsf{Part}(X), F(X, y)))$$

Lemma 3.5. $(Part(X), F(X, y)|E(X) = y) \sim_{2\epsilon \cdot 2^{t+1}} (Part(X), F(X, y)).$

Proof. The lemma will follow by applying Lemma 2.6. We choose $R_1 = (\operatorname{Part}(X), F(X, y))$ and $R_2 = E(X)$. By Lemma 3.4 we have that $(R_1, R_2) \sim_{2\epsilon} (R_1 \otimes U_t)$. It follows from Lemma 2.6 that for every $b \in \{0, 1\}^t$, $(R_1|R_2 = b) \sim_{2\epsilon \cdot 2^{t+1}} R_1$. In particular choosing b = y we get that:

$$(\mathsf{Part}(X), F(X, y) | E(X) = y) \sim_{2\epsilon \cdot 2^{t+1}} (\mathsf{Part}(X), F(X, y))$$

as required.

We are now ready to prove the 1st item of Theorem 3.2.

$$(\mathsf{Part}(X), F(X, E(X))|E(X) = y) \sim (\mathsf{Part}(X), F(X, y)|E(X) = y) \sim_{\epsilon \cdot 2^{t+2}} (\mathsf{Part}(X), F(X, y))$$
 (1)

Where the last move is by Lemma 3.5. The 1st item follows. (We remark that for the 1st item we did not use the assumption that X is in C). We now prove the second item. This will follow by applying Lemma 2.4. For this purpose we add to our probability space an independent random variable Y that is uniformly distributed over $\{0, 1\}^t$. We choose:

•
$$R_1 = (\mathsf{Part}(X), F(X, E(X))).$$

- $R_2 = E(X)$.
- $V_1 = (\mathsf{Part}(X), F(X, Y)).$

•
$$V_2 = Y$$
.

By the assumption that X is in C and the fact that E is an ϵ -extractor for C we have that $R_2 \sim_{\epsilon} V_2$. By equation (1) we have that for every $y \in \{0,1\}^t$ $(R_1|R_2 = y) \sim_{\epsilon \cdot 2^{t+2}} (V_1|V_2 = y)$. (Here we also used the fact that Y is independent of X). Applying Lemma 2.4 gives that $(R_1, R_2) \sim_{(\epsilon \cdot 2^{t+2} + \epsilon)} (V_1, V_2)$. Note that $\epsilon \cdot 2^{t+2} + \epsilon \leq \epsilon \cdot 2^{t+3}$. We conclude that:

$$(\mathsf{Part}(X), F(X, E(X)), E(X)) \sim_{\epsilon \cdot 2^{t+3}} (\mathsf{Part}(X), F(X, Y), Y)$$

This concludes the proof of Theorem 3.2.

4 Extractors for two independent sources

In this section we focus on extractors for two independent sources. In Section 4.1 we suggest a way to get more mileage out of a given two source extractor. In Section 4.2 we prove the correctness of this construction. Finally, we show how to use this method to get improved two-source extractors in Section 4.3.

4.1 The transformation

We now show how to transform a given two-source extractor E that extracts few bits into a twosource extractor E' that extracts almost all the bits present in the source distribution.

The transformation below involves many parameters. The rough intuition is as follows: We start with a two-source extractor E that extracts t bits with error $\epsilon/2^t$. We require that this extractor is strong in the first source (that is that it extracts randomness from the second source). We use k_1 to denote the entropy threshold of the first source. We allow the extractor E to lose most of the bits that are present in the second source. More precisely, to extract t bits out of the second source we only require that the second source contains $t + \ell$ bits where ℓ (that may be much larger than t) is a parameter measuring the number of bits that E "loses". We now show how to transform E into an extractor E' which extracts many more bits with error ϵ . To achieve this goal we need the entropy thresholds of E' in the second source to be larger than that of E. More precisely, the entropy thresholds of E' are k_1 (which is the same as E) and k_2 which needs to be somewhat larger than the entropy threshold of E. The gain is that the extractor E' extracts $k_1 + k_2 - (\ell + O(t + \log(1/\epsilon)))$ bits. If we set k_2 large enough so that ℓ, t and $\log(1/\epsilon)$ are small compared to $k_1 + k_2$ we get that E' extracts almost all the $k_1 + k_2$ bits of randomness that are present in the source. The exact details are given below.

Construction 4.1.

Parameters:

- n_1, n_2 : The length of the two input sources.
- k_1, k_2 : The entropy threshold of the two input sources.
- ϵ : The required error.

Goal: Construct a $(k_1, k_2; \epsilon)$ -two-source extractor $E' : \{0, 1\}^{n_1} \times \{0, 1\}^{n_2} \rightarrow \{0, 1\}^m$ (for as large as possible m).

Ingredients: (note that the ingredients below involve additional parameters t, ℓ, m_1, m_2).

- A $(k_1, t + \ell; \epsilon/2^{t+10})$ -two-source extractor $E : \{0, 1\}^{n_1} \times \{0, 1\}^{n_2} \rightarrow \{0, 1\}^t$ that is strong in the first source.⁶
- A strong $(k_1, \epsilon/4)$ -extractor $E_1 : \{0, 1\}^{n_1} \times \{0, 1\}^t \to \{0, 1\}^{m_1}$.
- A strong $(k_2, \epsilon/4)$ -extractor $E_2 : \{0, 1\}^{n_2} \times \{0, 1\}^t \to \{0, 1\}^{m_2}$.

Requirements: $0 \le m_2 \le k_2 - (2t + \ell + \log(1/\epsilon) + 5).$

Description of E': $E'(x_1, x_2) = E_1(x_1, E(x_1, x_2)), E_2(x_2, E(x_1, x_2)), E(x_1, x_2).$

Output length of E': Note that this gives that the output length of E' is $m = m_1 + m_2 + t$. (We remark that appending $E(x_1, x_2)$ at the end is not required for our final results as we typically set t to be very small compared to $m_1 + m_2$). If we use seeded extractors E_1, E_2 such that: E_1 extracts all the entropy from X_1 (apart from the unavoidable $O(\log(1/\epsilon))$ entropy loss) and E_2 satisfies the requirement above on m_2 with an equality, we get that $m = k_1 + k_2 - (\ell + O(t + \log(1/\epsilon)))$. Thus, if ℓ , t and $\log(1/\epsilon)$ are small compared to $k_1 + k_2$ we extract almost all the $k_1 + k_2$ bits of randomness that are present in the source distribution.

⁶That is, E is strong with respect to the function $\mathsf{Part}(x_1, x_2) = x_1$.

We now state a Theorem that says that E' is a two-source extractor. We find this quite surprising as the output $E(X_1, X_2)$ is used as a seed to operate on *both* sources X_1, X_2 . This should be compared with the previous result of Dodis et al. [11] who observed that when Eis strong in the first source one can use $E(X_1, X_2)$ as a seed to operate on X_1 (this is because $E(X_1, X_2)$ is essentially independent of X_1). Note that this is *not* the case in our setting and $E(X_1, X_2)$ is inherently dependent on (X_1, X_2) .

Theorem 4.2. Given parameters and ingredients as in Construction 4.1 E' is a $(k_1, k_2; \epsilon)$ -two-source extractor.

We prove Theorem 4.2 in Section 4.2. Using off the shelf constructions of seeded extractors and fixing some of the parameters we obtain the following Corollary:

Corollary 4.3. There is a universal constant A > 0 such that: Let $t \ge \log^4 n$. Let $E : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^t$ be a $(k_1, t+\ell; 2^{-1.1\cdot t})$ -two-source extractor that is strong in the first source. Then for any $k_2 \ge \ell + At$ we can construct a $(k_1, k_2; 2^{-\Omega(t)})$ -two-source extractor $E' : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^m$ for $m = k_1 + k_2 - (\ell + O(t))$. Furthermore, if E is explicit then so is E'.

Note that for the particular setting of say $\ell = 100t$ (that is an extractor E that extracts a small yet constant fraction of the entropy present in the second source we get that by choosing k_2 such that $t = o(k_2)$ the extractor E' extracts a 1 - o(1) fraction of the entropy.

Remark 4.4. We are not making any attempt to present the most optimized or general corollary. The assumption that $t \ge \log^4 n$ is made so that there will be explicit constructions of strong seeded extractors that on entropy threshold k in a source of length n use a seed of length t to extract k - O(t) bits with error $2^{-\Omega(t)}$ (e.g., [28]). We also remark that 1.1 above can be replaced with any constant larger than 1 and yield the same result.

We now prove that Corollary 4.3 follows from Theorem 4.2.

Proof. (of Corollary 4.3) The corollary follows by fixing an "off the shelf" seeded extractor construction due to [28]. More precisely, we use a seeded extractor construction from [28] which for every k and ϵ gives a strong (k, ϵ) -seeded extractor with seed length $d = O(\log^3 n + \log(1/\epsilon))$ that extract $k - O(\log(1/\epsilon)$ bits. Let $\epsilon = 2^{-\alpha t}$ for a constant $0 < \alpha < 1$ to be chosen later. We choose E_1 to be the strong $(k_1, \epsilon/4)$ -extractor from [28] which extracts $m_1 = k_1 - O(\log(1/\epsilon))$ bits. We also choose E_2 to be the strong $(k_2, \epsilon/4)$ -extractor from [28]. However, we take a smaller output length $m_2 = k_2 - (2t + \ell + \log(1/\epsilon) + 5)$. In order to meet the requirements of Theorem 4.2 we need to make sure that $m_2 \ge 0$. For this purpose we choose A to be a sufficiently large constant so that $k_2 \ge \ell + At$ is large enough so that $m_2 \ge 0$. We now choose $\alpha > 0$ to be small enough so that the seed length of both E_1 and E_2 is at most t. This can be done because we have required that $t \ge \log^4 n$. We have that E has error $2^{-1.1 \cdot t} \le \epsilon \cdot 2^{t+10}$ for sufficiently small $\alpha > 0$. It follows that we can apply Theorem 4.2 and obtain a $(k_1, k_2; \epsilon)$ -two-source extractor that extracts $m_1 + m_2 + t \ge k_1 + k_2 - (\ell + O(t))$ bits.

4.2 **Proof of Correctness**

We now prove Theorem 4.2. We are given the parameters and ingredients in Construction 4.1. Let $n = n_1 + n_2$. When given an n bit string x, we use x_1 to denote the first n_1 bits of x and x_2

to denote the last n_2 bits of x. With this notation E is a function from n bits to t bits. Let X_1 and X_2 be independent random variables over $\{0,1\}^{n_1}$ and $\{0,1\}^{n_2}$ such that $H_{\infty}(X_1) \ge k_1$ and $H_{\infty}(X_2) \ge k_2$. Let $X = (X_1, X_2)$. Our goal is to prove that $E'(X_1, X_2)$ is ϵ -close to the uniform distribution on $\{0,1\}^m$. Let Y be an independent random variable that is uniformly distributed over $\{0,1\}^t$. We first prove the following Lemma which asserts that $E(X_1, X_2)$ can replace Y and be used as a seed for E_2 to extract randomness from X_2 .

Lemma 4.5. $(X_1, E_2(X_2, E(X_1, X_2)), E(X_1, X_2)) \sim_{\epsilon/4} (X_1, E_2(X_2, Y), Y).$

Proof. We define a function $F : \{0,1\}^n \times \{0,1\}^t \to \{0,1\}^{m_2}$ by $F(x,y) = E_2(x_2,y)$. We define a function Part : $\{0,1\}^n \to \{0,1\}^{n_1}$ by Part $(x_1,x_2) = x_1$. Let \mathcal{C} be the class of distributions Xover n bit strings such that X_1, X_2 are independent, $H_{\infty}(X_1) \ge k_1$ and $H_{\infty}(X_2) \ge t + \ell$. The lemma will follow by applying Theorem 3.2 on \mathcal{C} , E, F and Part. We first note that X belongs to \mathcal{C} because $k_2 \ge t + \ell$. We also observe that for every $y \in \{0,1\}^t$, $Part(X) = X_1$ is independent of $F(X,y) = E_2(X_2,y)$. To apply Theorem 3.2 we need to check that the "weak robustness condition" holds. We set $\rho = \epsilon/2^{t+5}$ and our goal will be to show that the condition holds when ρ plays the role of ϵ in Theorem 3.2. More precisely, we need to show that: for every $y \in \{0,1\}^t$ there exists a set $G_y \subseteq \{0,1\}^{m_2}$ such that:

- 1. $\Pr[F(X, y) \notin G_y] \le \rho$.
- 2. For every $a \in G_y$, (X|F(X,y) = a) belongs to \mathcal{C} .

Note that as X_1, X_2 are independent we have that for every $y \in \{0, 1\}^t$ and $a \in \{0, 1\}^{m_2}$:

$$(X|F(X,y) = a) \sim ((X_1, X_2)|E_2(X_2, y) = a) \sim (X_1 \otimes (X_2|E_2(X_2, y) = a))$$

This means that to prove that (X|F(X, y) = a) belongs to \mathcal{C} we only need to show that $H_{\infty}((X_2|E_2(X_2, y) = a)) \ge t + \ell$. To obtain G_y we use Lemma 2.3 choosing $R_1 = X_2$ and $R_2 = E_2(X_2, y)$ and using ρ . We indeed conclude that for every $y \in \{0, 1\}^t$ there exists a set G_y such that:

- 1. $\Pr[R_2 \notin G_y] \leq \rho$.
- 2. For every $a \in G_y$, $H_{\infty}((X_2|E_2(X_2,y)=a)) \ge k_2 (m_2 \log(1/\rho)) \ge t + \ell$.

where the inequality follows because we have required that $m_2 \leq k_2 - (2t + \ell + \log(1/\epsilon) + 5) = k_2 - (t + \ell + \log(1/\rho))$ which gives the inequality above.

We have verified that the conditions of Theorem 3.2 are met and therefore using the second item of the Theorem we can conclude that

$$(\mathsf{Part}(X), F(X, E(X)), E(X)) \sim_{\rho \cdot 2^{t+3}} (\mathsf{Part}(X), F(X, Y), Y)$$

Which is exactly what we wanted:

$$(X_1, E_2(X_2, E(X)), E(X)) \sim_{\epsilon/4} (X_1, E_2(X_2, Y), Y)$$

We also need the following easy Lemma which asserts that applying Y as a seed on both X_1 and X_2 produces a distribution that is close to uniform.

Lemma 4.6. $(E_1(X_1, Y), E_2(X_2, Y), Y) \sim_{\epsilon/2} (U_{m_1} \otimes U_{m_2} \otimes U_t)$

Proof. We have that $(X_1, X_2, Y) \sim (X_1 \otimes X_2 \otimes U_t)$. Using Lemma 2.2 with the function $f(a_1, a_2, a_3) = a_1, E_2(a_2, a_3), a_3$ and using the fact that E_2 is a strong $(t + \ell, \epsilon/4)$ -extractor we have that:

$$(X_1, E_2(X_2, Y), Y) \sim_{\epsilon/4} (X_1 \otimes U_{m_2} \otimes U_t)$$

We now use Lemma 2.2 with the function $f(a_1, a_2, a_3) = E_1(a_1, a_3), a_2, a_3)$ and using the fact that E_1 is a strong $(k_1, \epsilon/4)$ -extractor we have that:

$$(E_1(X_1,Y),E_2(X_2,Y),Y) \sim_{(\epsilon/4+\epsilon/4)} (U_{m_1} \otimes U_{m_2} \otimes U_t)$$

We are now ready to prove Theorem 4.2.

Proof. (of Theorem 4.2) By Lemma 4.5 we have that

$$(X_1, E_2(X_2, E(X)), E(X)) \sim_{\epsilon/4} (X_1, E_2(X_2, Y), Y)$$

We consider the function $f(a_1, a_2, a_3) = (E_1(a_1, a_3), a_2, a_3)$. By applying Lemma 2.2 on the triples above we get that:

$$(E_1(X_1, E(X)), E_2(X_2, E(X)), E(X)) \sim_{\epsilon/4} (E_1(X_1, Y), E_2(X_2, Y), Y)$$

Using Lemma 4.6 we conclude that:

$$(E_1(X_1, E(X)), E_2(X_2, E(X)), E(X)) \sim_{\epsilon} (U_{m_1} \otimes U_{m_2} \otimes U_t)$$

and the Theorem follows.

4.3 Two source extractors which extract almost all the randomness

In this section we use the method from the previous section to get "more mileage" out of a recent extractor construction by Raz [27].

We use the following Theorem due to Raz. We first state the Theorem and then state a less general corollary which we use for our application.

Theorem 4.7. [27] For any n_1, n_2, b_1, b_2, m and any $0 < \delta < 1/2$, such that: $n_1 \ge 6 \log n_1 + 2 \log n_2$, $b_1 \ge (1/2 + \delta)n_1 + 3 \log n_1 + \log n_2$, $b_2 \ge 5 \log(n_1 - b_1)$, $m \le \delta \cdot \min(n_1/8, b_2/40) - 1$ there is an explicit $(b_1, b_2; 2^{-1.5m})$ -two-source extractor $E : \{0, 1\}^{n_1} \times \{0, 1\}^{n_2} \to \{0, 1\}^m$ that is strong in the first source.

We use the following Corollary of the Theorem above:

Corollary 4.8. For every $0 < \delta < 1/2$ and n such that $\delta n \ge 10 \log n$, let $b_1 = (1/2 + \delta)n$ and let b_2 be an integer such that $b_2 \ge 5 \log n$. There is an explicit $(b_1, b_2; 2^{-1.5t})$ -two-source extractor $E : \{0, 1\}^n \times \{0, 1\}^n \to \{0, 1\}^t$ with $t = \delta b_2/100$. Furthermore, E is strong in the first source.

Applying the method of Section 4.1 gives the following Theorem:

Theorem 4.9. There is a universal constant B > 0 such that for every $0 < \delta < 1/2$ there exists C > 0 such that: Let n be large enough, let $\epsilon \leq 2^{-\log^4 n}$, let $k_1 = (1/2 + \delta)n$, and let $k_2 \geq \frac{B \log(1/\epsilon)}{\delta}$. Then there is an explicit $(k_1, k_2; \epsilon)$ -two-source extractor $E : \{0, 1\}^n \times \{0, 1\}^n \to \{0, 1\}^m$ with $m = k_1 + k_2 - C \log(1/\epsilon)$.

Remark 4.10. We made no attempt to present the most general result. We can allow δ to be a function of n and in that case $C = O(1/\delta)$ and the Theorem holds as long as $\delta n \ge 10 \log n$.

In particular we obtain Theorem 1.6 as a corollary:

Corollary 4.11 (Theorem 1.6 restated). For every constant $\delta > 0$ there is a constant C > 0such that for large enough n, let $k_1 = k_2 = (1/2 + \delta)n$ and let $\epsilon \leq 2^{-\log^4 n}$ then there is an explicit $(k_1, k_2; \epsilon)$ -two-source extractor $E : \{0, 1\}^n \times \{0, 1\}^n \to \{0, 1\}^m$ for $m = k_1 + k_2 - C \log(1/\epsilon)$.

We now prove Theorem 4.9:

Proof. (of Theorem 4.9) Let $C_1 \ge 1$ be a universal constant to be chosen later. Let $t = C_1 \log(1/\epsilon)$. By the requirement on ϵ we have that $t \ge \log^4 n$. Let $b_2 = 100t/\delta$. By the fact that $t \ge \log^4 n$ we have that $b_2 \ge 5 \log n$. We conclude from Corollary 4.8 that there is an explicit $(k_1, b_2; 2^{-1.5t})$ two-source extractor $E : \{0, 1\}^n \times \{0, 1\}^n \to \{0, 1\}^t$ that is strong in the first source. We now set $\ell = b_2 - t$ and let A be the universal constant from Corollary 4.3. We assume that B is a large enough universal constant so that $k_2 \ge \frac{B \log(1/\epsilon)}{\delta} \ge At + b_2 \ge At + \ell$. This can be done because $At + b_2 = O(\frac{AC_1 \log(1/\epsilon)}{\delta})$. We meet the requirements of Corollary 4.3 and conclude that there is an explicit $(k_1, k_2; 2^{-\Omega(t)})$ -two-source extractor $E' : \{0, 1\}^n \times \{0, 1\}^n \to \{0, 1\}^m$ where $m = k_1 + k_2 - (\ell + O(t))$. Let C_1 be a large enough constant so that the error of E' is bounded from above by ϵ . Note that

$$\ell + O(t) \le b_2 + O(t) \le 100C_1 \log(1/\epsilon) / \delta + O(C_1) \log(1/\epsilon)$$
(2)

Let C be a constant depending on δ (and C_1) such that the expression in equation (2) is bounded from above by $C \log(1/\epsilon)$. We remark that $C = O(C_1/\delta)$. We conclude that $m = k_1 + k_2 - C \log(1/\epsilon)$ as required.

5 Extractors for Samplable distributions

In this section we focus on extractors for distributions samplable by poly-size circuits. In Section 5.2 we suggest a way to get more mileage out of a given extractor. In Section 5.3 we prove the correctness of this construction. Finally, we show how to use this method to get improved extractors in Section 5.4.

5.1 Preliminaries on Σ_i -circuits

We start with defining Σ_i -circuits.

Definition 5.1 (Σ_i -circuit). A Σ_i -circuit is a circuit which in addition to the standard boolean gates can also use gates that compute a function that is complete for Σ_i (e.g. QBF with i alternations).

We need the following result on Σ_1 -circuits which follows from results on "sampling of NP witnesses" [33, 17, 4].

Theorem 5.2 (Uniform Sampling of NP witnesses [4]). For every circuit T over $\{0,1\}^n$ of size t and $\epsilon > 0$ there exists a Σ_1 -circuit T' that takes inputs in $\{0,1\}^{poly(n)}$ and is of size poly(n,t) such that T' is a sampler for the distribution (Z|T(Z) = 1) where Z is random variable that is uniformly distributed over $\{0,1\}^n$.

5.2 The transformation

We now show how to transform a given extractor E that extracts few bits out of samplable distributions into an extractor E' that extracts almost all the bits present in the source distribution.

Trevisan and Vadhan [35] showed how to transform an extractor which extracts t > polylog(n)random bits into one which extracts many more bits. More precisely, implicit in the paper is a general transformation (inspired by Goldreich and Wigderson [16], see also Reingold, Vadhan and Wigderson [29]). A drawback of this transformation is that it only works when the entropy threshold is very high (say $k = (1 - \nu)n$ where $\nu > 0$ is some small constant). Loosely speaking, when given an extractor E for samplable distributions with entropy threshold $k = (1 - \nu)n$ the paper shows how to construct an extractor E' which extracts $m = (1 - O(\nu)n)$ random bits. It is important to notice the following subtlety: To make the argument go through and deduce that E'works on distributions samplable by deterministic circuits, one needs to assume that E extracts randomness even from distributions that are samplable by Σ_1 -circuits.⁷

We now present a different transformation which has essentially the same flavor (that is it transforms an extractor that extracts few bits from distributions samplable by Σ_1 -circuits into an extractor that extracts many bits from distributions that are samplable by deterministic circuits). The advantage is that this transformation works even when the min-entropy threshold k is very small.

In the transformation below we start with an extractor E that on entropy threshold $t + \ell$ loses ℓ bits and extracts only t bits. We transform this extractor into an extractor E' which for entropy threshold sufficiently larger than $t + \ell$ extracts essentially all the randomness from the source.

Construction 5.3.

Parameters:

- n : The length of the input sources.
- k : The entropy threshold of the input sources.

⁷Loosely speaking, the idea is that when the entropy threshold $k = (1 - \nu)n$ for a small $\nu > 0$ then one can partition the *n* bit source into two "blocks", X_1, X_2 where X_1 is of length say $(1 - 100\nu)n$ and X_2 is of length $100\nu n$, and it follows that there must be entropy in both blocks. More precisely it follows that X_1, X_2 form a block-wise source (block-wise sources were defined by [8]). Following [24] (see also [21, 22, 31]) in this setting one can hope to extract bits from X_2 and use the bits extracted as a seed for a seeded extractor that extracts all the randomness in X_1 . A subtlety is that for this argument to go through it is not sufficient that the initial extractor E can extract randomness from X_2 but rather that for every value x_1 of X_1 , E can extract randomness from $(X_2|X_1 = x_1)$. The fact that X_2 is samplable by deterministic circuits does not necessarily means that the distribution $(X_2|X_1 = x_1)$ is samplable by deterministic circuits. Nevertheless, it does follow from Theorem 5.2 that the distribution $(X_2|X_1 = x_1)$ is samplable by Σ_1 -circuits. This explains why the transformation requires that E works for distributions samplable by Σ_1 -circuits. We want to also stress that the argument above completely fails when k < n/2 as then there is no way to partition the source into two blocks and ensure that both of them "contain" entropy.

- ϵ : The required error.
- s : The size bound on the sampling circuit.
- **Goal:** Construct a $(k; \epsilon)$ -extractor $E' : \{0, 1\}^n \to \{0, 1\}^m$ for distributions samplable by size s circuits (for as large as possible m).

Ingredients: (note that the ingredients below involve additional parameters t, ℓ, m_1, s').

- A $(t + \ell, \epsilon/2^{t+10})$ -extractor $E' : \{0, 1\}^n \to \{0, 1\}^t$ for distributions samplable by size s' Σ_1 -circuits.
- An explicit strong $(k, \epsilon/2)$ -extractor $E_1 : \{0, 1\}^{n_1} \times \{0, 1\}^t \to \{0, 1\}^{m_1}$.

Requirements:

- $0 \le m_1 \le k (2t + \ell + \log(1/\epsilon) + 5).$
- $s' \ge q(s+n)$ where q is some fixed polynomial to be determined later.

Description of E': $E'(x) = E_1(x, E(x)), E(x)$.

Output length of E': Note that this gives that the output length of E' is $m = m_1 + t$. If we use a seeded extractor E_1 such that E_1 satisfies the requirement above on m_1 with an equality, we get that $m = k - (\ell + O(t + \log(1/\epsilon)))$. Thus, if ℓ, t and $\log(1/\epsilon)$ are small compared to k we extract almost all the k bits of randomness that are present in the source distribution.

Theorem 5.4. Given parameters and ingredients as in Construction 5.3, E' is a (k, ϵ) -extractor for distributions samplable by size s circuits.

5.3 **Proof of correctness**

We now prove Theorem 5.4. We are given the parameters and ingredients in Construction 5.3. Let X be a random variable taking values in $\{0,1\}^n$ that is samplable by a size s circuit C and $H_{\infty}(X) \ge k$. Our goal is to show that E'(X) is ϵ -close to the uniform distribution on m bit strings. We start with the following lemma:

Lemma 5.5. There exists some polynomial q such that For every $y \in \{0,1\}^t$ and $a \in \{0,1\}^{m_1}$ the distribution $(X|E_1(X,y)=a)$ is samplable by a size $q(s+n) \Sigma_1$ -circuit.

Proof. Consider the circuit

$$T(z) = \begin{cases} 1 & E_1(C(z), y) = a \text{ and } C(z) \neq \bot \\ 0 & \text{otherwise} \end{cases}$$

Note that as E_1 is explicit, we have that T(x) is a (deterministic) circuit of size poly(n, s). By Theorem 5.2 we get that there exists a Σ_1 circuit T' of size poly(n, s) and an independent random variable Z that is uniformly distributed such that T' is a sampler for the distribution (Z|T(Z) = 1). Consider the Σ_1 -circuit

$$T''(z) = \begin{cases} C(T'(z)) & T'(z) \neq \bot \\ \bot & T'(z) = \bot \end{cases}$$

It follows that T'' is a sampler for

$$(C(Z)|T(Z) = 1) \sim (C(Z)|E_1(C(Z), y) = a \text{ and } C(z) \neq \bot) \sim (X|E_1(X, y) = a)$$

and thus this distribution is samplable by a Σ_1 -circuit of size poly(n+s).

We now prove Theorem 5.3

Proof. (of Theorem 5.3) We define a function $F : \{0,1\}^n \times \{0,1\}^t \to \{0,1\}^{m_1}$ by $F(x,y) = E_1(x,y)$. Let \mathcal{C} be the class of distributions over n bit strings that are samplable by size $s' \Sigma_1$ -circuits and have min-entropy at least $t + \ell$. Let $\mathsf{Part}(x)$ be a constant function. The theorem will follow by using Theorem 3.2 on \mathcal{C} , E and F. We first note that X belongs to \mathcal{C} because $k \geq t + \ell$ and $s \leq s'$. To apply the Theorem we need to check that the "weak robustness condition" holds. We set $\rho = \epsilon/2^{t+5}$ and our goal will be to show that the condition holds when choosing ρ as ϵ . More precisely, we need to show that: for every $y \in \{0,1\}^t$ there exists a set $G_y \subseteq \{0,1\}^{m_2}$ such that:

- 1. $\Pr[F(X, y) \notin G_y] \leq \rho$.
- 2. For every $a \in G_y$, (X|F(X,y) = a) belongs to \mathcal{C} .

To obtain G_y we use Lemma 2.3 choosing $R_1 = X$ and $R_2 = E_1(X, y)$ and using ρ . We indeed conclude that for every $y \in \{0, 1\}^t$ there exists a set G_y such that:

- 1. $\Pr[R_2 \notin G_y] \leq \rho$.
- 2. For every $a \in G_y$, $H_{\infty}((X|E_1(X,y)=a)) \ge k (m_1 \log(1/\rho)) \ge t + \ell$.

where the inequality follows because we have required that $m_1 \leq k - (2t + \ell + \log(1/\epsilon) + 5) = k - (t + \ell + \log(1/\epsilon))$ which gives the inequality above. By Lemma 5.5 we have that for every $a \in G_y$, $(X|E_1(X,y) = a)$ is samplable by a size $q(s+n) \leq s' \Sigma_1$ -circuit. Thus, we conclude that (X|F(X,y) = a) belongs to C.

We have verified that the conditions of Theorem 3.2 are met. We add an independent random variable Y that is uniformly distributed over $\{0,1\}^t$ to our probability space. By the second item of the Theorem we can conclude that:

$$(F(X, E(X)), E(X)) \sim_{\rho \cdot 2^{t+3}} (F(X, Y), Y)$$

Or in other words that:

$$(E_1(X, E(X)), E(X)) \sim_{\epsilon/4} (E_1(X, Y), Y) \sim_{\epsilon/2} (U_{m_1} \otimes U_t)$$

5.4 Extractors for samplable distributions that extract almost all the randomness

In order to use the transformation of Theorem 5.4 we need an extractor for distributions samplable by Σ_1 -circuits. By observing that Lemma 1.10 relativizes we can "go up a level in the hierarchy" and get the following corollary:

Corollary 5.6. Let $G: \{0,1\}^n \to \{0,1\}^t$ be a function such that for any Σ_2 -circuit D of size s:

$$|\Pr_{X \in_R\{0,1\}^n}[D(X, G(X)) = 1] - \Pr_{X \in_R\{0,1\}^n, Y \in_R\{0,1\}^t}[D(X, Y) = 1]| \le \epsilon$$

If $t \leq \log s - 1$ then for any $\Delta > 0$, G is an $(n - \Delta, O(2^{\Delta} \epsilon))$ -extractor for distributions samplable by size $(2^{\Delta} \epsilon s)^{\Omega(1)} \Sigma_1$ -circuits.

Combining Corollary 5.6 with Theorem 5.4 and using an explicit seeded extractor by [19] we obtain the following corollary:

Corollary 5.7. For every constant $\alpha > 0$ there is a constant C > 1 such that suppose that there exist a function $G = \{G_n\}$ such that $G_n : \{0,1\}^n \to \{0,1\}^{C \log n}$ is computable in time poly(n) and for any Σ_2 -circuit D of size $s(n) > n^{3C}$:

$$|\Pr_{X \in_R\{0,1\}^n}[D(X, G(X)) = 1] - \Pr_{X \in_R\{0,1\}^n, Y \in_R\{0,1\}^t}[D(X, Y) = 1]| \le \epsilon(n)$$

then for every $k(n) \ge n - \log(1/\epsilon(n)) + O(C \log n)$ and constant $0 < \alpha < 1$ there is a function polynomial time computable function $E = \{E_n\}$ such that for every n, $E_n : \{0,1\}^n \to \{0,1\}^{m(n)}$ is a (k(n), 1/100)-extractor for distributions samplable by circuits of size $s(n)^{\Omega(1)}$ with $m(n) = (1 - \alpha)k(n) - (n - \log(1/\epsilon(n)) + O(C \log n)).$

If the assumption of the Theorem holds with $\epsilon = 2^{-(1-\beta)n}$ for some constant $0 < \beta < 1$ then we get a (k(n), 1/100)-extractor that extracts $(1 - \alpha)k(n) - \beta n - O(\log n)$ random bits.

We remark that we can improve the error of the final extractor from 1/100 to $s(n)^{-\Omega(1)}$ (which by increasing s(n) can be made n^{-c} for an arbitrary constant c). However, in this case we need to use a different seeded extractor which has both seed $O(\log n)$ and error $n^{-\Omega(1)}$. At the moment the best constructions for this setup [32, 19] do not extract $\Omega(k)$ bits but rather k/polylogk bits and as a consequence our final extractor will extract fewer bits.

Proof. (of Corollary 5.7) Let n be a large enough integer. We use a seeded extractor construction from [19] which gives that for every constant $\alpha > 0$ there is a constant C > 1 such that for any k there is a strong explicit (k, 1/1000)-extractor with seed length $t = C \log n$ and output length $(1 - \alpha)k$. Let $\Delta = \log(1/\epsilon(n)) - 2C \log n$ and let $\ell = (n - \Delta)$. By the assumption on G and Corollary 5.6 we have that G is a $(t + \ell, O(n^{-2C}))$ -extractor for distributions samplable by size $(s(n)n^{-2C})^{\Omega(1)} \Sigma_1$ -circuits. We let E_1 be the (k(n), 1/1000)-extractor of [19] taking output length $m_1 = k(n) - (2t + \ell + \log 100 + 5)$. We want to use Theorem 5.4 on G and E_1 . We need to verify that $m_1 \ge 0$. This follows because we have required that k(n) is large. We also verify that the error of G is $O(n^{-2C}) \le (1/100)/2^{t+10}$. Thus, we obtain a (k, 1/100)-extractor for distributions samplable by size $(s(n)n^{-2C})^{\Omega(1)}/poly(n+s(n))$ which is $s(n)^{\Omega(1)}$ by the requirement that $s(n) \ge n^{3C}$. We have that this extractor extracts $m_1 \ge (1 - \alpha)(k(n) - (2t + \ell + O(1)) \ge$ $(1 - \alpha)k(n) - (n - \log(1/\epsilon(n)) + O(C \log n))$.

6 Discussion and open problems

We hope that presenting the transformation in general form will allow finding more applications. We now discuss several future directions for this research.

6.1 Can we get more mileage from seeded extractors?

We were able to get more mileage out of various kinds of deterministic extractors. It is natural to ask whether it is possible to get more mileage from seeded extractors. More specifically, the current situation in explicit construction of seeded extractors (see [31] for precise details) is that explicit constructions can optimize any of the two main parameters (seed length and output length) at the expense of losing in the other parameter. A natural approach to achieve optimality in both parameters simultaneously is to take an explicit extractor $E : \{0,1\}^n \times \{0,1\}^d \to \{0,1\}^t$ with tbeing sufficiently larger than d such that there is an explicit seeded extractor $E_1 : \{0,1\}^n \times \{0,1\}^t \to \{0,1\}^m$ which extracts the maximum possible amount of random bits from the source. It is natural to ask whether $E'(x, y) = E_1(X, E_2(x, y))$ can yield an extractor. Following our paradigm one may ask whether there exist properties of E that will allow such a transformation to go through.

We now show that for any extractor E there is an extractor E_1 so that the suggeted transformation completely fails. In fact, we state the following more general lemma.

Lemma 6.1 (Impossibility result). Let $E : \{0,1\}^n \times \{0,1\}^d \to \{0,1\}^t$ be any function and let $F : \{0,1\}^n \to \{0,1\}^t \to \{0,1\}^m$ be any function. There exists a function $F' : \{0,1\}^n \times \{0,1\}^t \to \{0,1\}^m \cup \{\bot\}$ such that:

- For every random variable X over $\{0,1\}^n$, $F(X \otimes U_t) \sim_{2^{d-t}} F'(X \otimes U_t)$.
- For every $x \in \{0,1\}^n$ and $y \in \{0,1\}^d$, $F'(x, E(x,y)) = \bot$.

The Lemma says for example that no matter how you pick E, if F is a seeded extractor then there exist a function F' that behaves like F when given a uniform seed (and therefore is also an extractor E_1 with essentially the same parameters). Furthermore, when trying to use E(x, y)instead of a uniformly chosen seed in $E_1 = F'$ one always gets a worthless constant.

Proof. We define F' as follows:

$$F'(x,z) = \begin{cases} \bot & \exists y \in \{0,1\}^d : z = E(x,y) \\ F(x,y) & \text{otherwise} \end{cases}$$

It is immediate that the two conditions in the Lemma hold.

6.2 Research directions for two-source extractors

Our technique may be useful to get more mileage out of two-source extractors for low entropy threshold once such extractors are explicitly constructed. Note that to apply our transformation directly we require extractors that are strong in the first source and can tolerate a low-entropy threshold in the second source.

We remark that there are recent constructions of two-source dispersers for entropy threshold $k = \Omega(n)$ [2]. We believe that our technique is also applicable in that setting. However, it seems that showing this may require specific properties of these dispersers. We do not know to apply our techniques directly on an arbitrary two-source disperser.

6.3 Research directions for samplable distributions

We showed that given an explicit extractor for distributions samplable by poly-size Σ_1 -circuits we can get get more mileage from it (at least for distributions samplable by standard circuits). We have very few techniques for constructing such extractors.

An important problem is to find minimal assumptions sufficient to construct extractors for samplable distributions and in particular obtain constructions that only rely on worst-case hardness. Trevisan and Vadhan [35] present such a construction (assuming worst-case hardness for Σ_5 -circuits) but their construction only works for very large values of k. Interestingly, a barrier that prevents achieving constructions for lower entropy threshold is that any such construction (with certain black-box properties) translates into a two-source extractor. (This follows essentially in the same way that certain pseudorandom generators yield extractor [34] and was observed in [35]). It is natural to expect that recent advances in two-source extractors and dispersers can be translated to this framework and yield extractors for samplable distributions.

Finally, it is natural to ask whether the assumption of Lemma 1.10 is stronger than that of Theorem 1.9. We remark that following [23] it is often the case that a function that is hard on average entails a pseudorandom generator. However, this is not known for the range of parameters we are considering.

Acknowledgements

I am grateful to Boaz Barak, Ariel Gabizon, Oded Goldreich, Russell Impagliazzo, Guy Kindler, Ran Raz, Omer Reingold, Benny Sudakov, Amnon Ta-Shma, Chris Umans, Salil Vadhan, Avi Wigderson and David Zuckerman for many discussions on various aspects of randomness extractors. I also want to thank Oded Regev and Amnon Ta-Shma for their encouragement. I am grateful to Zeev Dvir and Anup Rao for helpful comments. Finally, I'd like to thank anonymous referees for helpful comments.

References

- B. Barak, R. Impagliazzo, and A. Wigderson. Extracting randomness from few independent sources. In Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, pages 384–393, 2004.
- [2] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson. Simulating independence: New constructions of condenesers, ramsey graphs, dispersers, and extractors. In *Proceedings* of the 37th Annual ACM Symposium on Theory of Computing, pages 1–10, 2005.
- [3] B. Barak, A. Rao, R. Shaltiel, and A. Wigderson. 2-source dispersers for sub-polynomial entropy and ramsey graphs beating the frankl-wilson construction. In *Proceedings of the 38th Annual ACM Symposium on Theory of Computing*, pages 671–680, 2006.
- [4] M. Bellare, O. Goldreich, and E. Petrank. Uniform generation of NP-witnesses using an NPoracle. INFCTRL: Information and Computation (formerly Information and Control), 163, 2000.

- [5] M. Ben-Or and N. Linial. Collective coin flipping. ADVCR: Advances in Computing Research, 5:91–115, 1989.
- [6] M. Blum. Independent unbiased coin flips from a correlated biased source: a finite state Markov chain. In Proceedings of the 25th Annual IEEE Symposium on Foundations of Computer Science, pages 425–433, 1984.
- [7] J. Bourgain. On the construction of affine extractors. Geometric and functional analysis, 36(1):33-57, 2007.
- [8] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic communication complexity. *SIAM Journal on Computing*, 17(2):230–261, April 1988.
- [9] B. Chor, O. Goldreich, J. Hastad, J. Friedman, S. Rudich, and R. Smolensky. The bit extraction problem or t-resilient functions. In Proceedings of the 26th Annual IEEE Symposium on Foundations of Computer Science, pages 396–407, 1985.
- [10] A. Cohen and A. Wigderson. Dispersers, deterministic amplification, and weak random sources. In Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science, pages 14–25, 1989.
- [11] Y. Dodis, A. Elbaz, R. Oliviera, and R. Raz. Improved randomnness extractors from two independent sources. In *Proceedings of thw 8th International Workshop on Randomization* and Computation, 2004.
- [12] A. Elbaz. Improved constructions for extracting quasi-random bits from sources of weak randomness. Master's thesis, Weizmann institute, August 2003.
- [13] A. Gabizon and R. Raz. Deterministic extractors for affine sources over large fields. In Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, 2005.
- [14] A. Gabizon, R. Raz, and R. Shaltiel. Deterministic extractors for bit-fixing sources by obtaining an independent seed. In *Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science*, 2004.
- [15] O. Goldreich. A sample of samplers a computational perspective on sampling. Electronic Colloquium on Computational Complexity (ECCC), 4(20), 1997.
- [16] O. Goldreich and A. Wigderson. Tiny families of functions with random properties: A qualitysize trade-off for hashing. RSA: Random Structures and Algorithms, 11, 1997.
- [17] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of combinatorial structures from a uniform distribution. *Theoretical Computer Science*, 43(2-3):169–188, 1986.
- [18] J. Kamp and D. Zuckerman. Deterministic extractors for bit-fixing sources and exposureresilient cryptography. In *Proceedings of the 44th Annual IEEE Symposium on Foundations* of Computer Science, pages 92–101, 2003.
- [19] C. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Extractors: Optimal up to constant factors. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, 2003.

- [20] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University press, 1995.
- [21] N. Nisan. Extracting randomness: How and why: A survey. In Proceedings of the 11th Annual IEEE Conference on Computational Complexity, pages 44–58, 1996.
- [22] N. Nisan and A. Ta-Shma. Extracting randomness: A survey and new constructions. Journal of Computer and System Sciences, 58(1):148–173, 1999.
- [23] N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Computer and System Sciences, 49(2):149–167, October 1994.
- [24] N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of Computer and System Sciences, 52(1):43–52, 1996.
- [25] J. Radhakrishnan and A. Ta-Shma. Bounds for dispersers, extractors, and depth-two superconcentrators. SIAM Journal on Discrete Mathematics, 13(1):2–24, February 2000.
- [26] A. Rao. Extractors for a constant number of polynomially small min-entropy independent sources. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pages 497–506, 2006.
- [27] R. Raz. Extractors with weak random seeds. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages 11–20, 2005.
- [28] R. Raz, O. Reingold, and S. Vadhan. Error reduction for extractors. In *Proceedings of the* 40th Annual IEEE Symposium on Foundations of Computer Science, pages 425–433, 1999.
- [29] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product, and new constant-degree expanders and extractors. In *Proceedings of the 41st Annual IEEE Symposium* on Foundations of Computer Science, 2000.
- [30] M. Santha and U. V. Vazirani. Generating quasi-random sequences from semi-random sources. Journal of Computer and System Sciences, 33:75–87, 1986.
- [31] R. Shaltiel. Recent developments in explicit constructions of extractors. *Bulletin of the EATCS*, 77:67–95, 2002.
- [32] R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new pseudo-random generator. In Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science, 2001.
- [33] L. Stockmeyer. The complexity of approximate counting. In *Proceedings of the fifteenth annual* ACM Symposium on Theory of Computing, pages 118–126, 1983.
- [34] L. Trevisan. Construction of extractors using pseudorandom generators. In Proceedings of the 31st ACM Symposium on Theory of Computing, 1999.
- [35] L. Trevisan and S. Vadhan. Extracting randomness from samplable distributions. In Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science, pages 32–42, 2000.

- [36] E. Upfal and M. Mitzenmacher. *Probability and computing*. Cambridge university press, 2005.
- [37] S. Vadhan. Randomness extractors and their many guises. In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, pages 9–12, 2002.
- [38] U. Vazirani. Efficient considerations in using semi-random sources. In Proceedings of the 19th Annual ACM Symposium on the Theory of Computing, pages 160–168, 1987.
- [39] U. Vazirani. Strong communication complexity or generating quasi-random sequences from two communicating semi-random sources. *Combinatorica*, 7:375–392, 1987.
- [40] U. V. Vazirani and V. V. Vazirani. Random polynomial time is equal to semi-random polynomial time. In Proceedings of the 26th Annual IEEE Symposium on Foundations of Computer Science, pages 417–428, 1985.
- [41] J. von Neumann. Various techniques used in connection with random digits. Applied Math Series, 12:36–38, 1951.
- [42] D. Zuckerman. General weak random sources. In Proceedings of the 31st Annual IEEE Symposium on Foundations of Computer Science, pages 534–543, 1990.
- [43] D. Zuckerman. Simulating BPP using a general weak random source. Algorithmica, 16(4/5):367–391, October/November 1996.

A Proofs of standard technical lemmas

For completeness we provide proofs of the technical Lemmas on probability distributions.

Lemma 2.2 restated: Let R_1, R_2 be random variables taking values in A. Let $f : A \to B$ be some function. If $R_1 \sim_{\epsilon} R_2$ then $f(R_1) \sim_{\epsilon} f(R_2)$.

Proof: For any set $E \subseteq B$ define the set $E' \subseteq A$ by $E' = \{a : f(a) \in B\}$. Note that for $i \in \{1, 2\}$, $\Pr[f(R_i) \in E] = \Pr[R_i \in A]$. Therefore if $f(R_1)$ is not ϵ -close to $f(R_2)$ then R_1 is not ϵ -close to R_2 .

Lemma 2.3 restated: Let R_1 be a random variable taking values in A_1 and R_2 be a random variable taking values in $\{0,1\}^v$. Assume that $H_{\infty}(R_1) \ge k$. Then for every $\rho > 0$ there exists a set $G \subseteq \{0,1\}^v$ such that:

- 1. $\Pr[R_2 \in G] \ge 1 \rho$.
- 2. For every $a \in G$, $H_{\infty}((R_1|R_2 = a)) \ge k (v + \log(1/\rho))$.

Proof: Let $G = \{a : \Pr[R_2 = a] \ge 2^{-(v + \log(1/\rho))}\}$. The first item follows as $\Pr[R_2 \notin G] \le 2^v \cdot 2^{-(v + \log(1/\rho))}$. For the second item note that for any $a \in G$ and any $b \in A_1$.

$$\Pr[R_1 = b | R_2 = a] \le \frac{\Pr[R_1 = b]}{\Pr[R_2 = a]} \le \frac{2^{-k}}{2^{-(v + \log(1/\rho))}} = 2^{-(k - (v + \log(1/\rho)))}$$

Lemma 2.4 restated: Let R_1, V_1 be random variables taking values in A_1 and R_2, V_2 be random variables taking values in A_2 . Suppose that:

- 1. $R_2 \sim_{\epsilon_2} V_2$.
- 2. For every $a \in A_2$, $(R_1|R_2 = a) \sim_{\epsilon_1} (V_1|V_2 = a)$.

Then $(R_1, R_2) \sim_{(\epsilon_1 + \epsilon_2)} (V_1, V_2).$

Proof: For every $a_1 \in A_1$ and $a_2 \in A_2$:

$$|\Pr[R_1 = a_1, R_2 = a_2] - \Pr[V_1 = a_1, V_2 = a_2]| =$$
$$|\Pr[R_2 = a_2] \Pr[R_1 = a_1 | R_2 = a_2] - \Pr[V_2 = a_2] \Pr[V_1 = a_1 | V_2 = a_2]|$$

by adding and subtracting
$$\Pr[R_2 = a_2] \Pr[V_1 = a_1 | V_2 = a_2]$$
 we get that

$$\leq T_1(a_1, a_2) + T_2(a_1, a_2)$$

where

$$T_1(a_1, a_2) = |\Pr[R_2 = a_2] \Pr[R_1 = a_1 | R_2 = a_2] - \Pr[R_2 = a_2] \Pr[V_1 = a_1 | V_2 = a_2]|$$

and

$$T_2(a_1, a_2) = |\Pr[R_2 = a_2] \Pr[V_1 = a_1 | V_2 = a_2] - \Pr[V_2 = a_2] \Pr[V_1 = a_1 | V_2 = a_2]|$$

Therefore,

$$\frac{1}{2} \cdot \sum_{a_1, a_2} |\Pr[R_1 = a_1, R_2 = a_2] - \Pr[V_1 = a_1, V_2 = a_2]| \le \frac{1}{2} \cdot \sum_{a_1, a_2} T_1(a_1, a_2) + \frac{1}{2} \cdot \sum_{a_1, a_2} T_2(a_1, a_2) + \frac{1}{2} \cdot \sum_{a_1,$$

We now bound these two sums. We start with the first one.

$$\frac{1}{2} \cdot \sum_{a_1, a_2} T_1(a_1, a_2) = \frac{1}{2} \cdot \sum_{a_1, a_2} \Pr[R_2 = a_2] \cdot |\Pr[R_1 = a_1 | R_2 = a_2] - \Pr[V_1 = a_1 | V_2 = a_2]|$$
$$= \sum_{a_2} \Pr[R_2 = a_2] \cdot \frac{1}{2} \cdot \sum_{a_1} |\Pr[R_1 = a_1 | R_2 = a_2] - \Pr[V_1 = a_1 | V_2 = a_2]| \le 1 \cdot \epsilon_1$$

We now bound the second sum.

$$\frac{1}{2} \cdot \sum_{a_1, a_2} T_2(a_1, a_2) = \frac{1}{2} \cdot \sum_{a_1, a_2} \Pr[V_1 = a_1 | V_2 = a_2] \cdot |\Pr[R_2 = a_2] - \Pr[V_2 = a_2]|$$

$$\frac{1}{2} \cdot \sum_{a_2} |\Pr[R_2 = a_2] - \Pr[V_2 = a_2]| \sum_{a_1} \Pr[V_1 = a_1 | V_2 = a_2] \le \frac{1}{2} \cdot \sum_{a_2} |\Pr[R_2 = a_2] - \Pr[V_2 = a_2]| \le \epsilon_2$$

and the lemma follows.

=

Lemma 2.5 restated: Let R_1, V_1 be random variables taking values in A_1 and R_2 be a random variable taking values in A_2 . Suppose that V_1 and R_2 are independent and that there exists a set $G \subseteq A_2$ such that:

- 1. $\Pr[R_2 \in G] \ge 1 \epsilon_2$.
- 2. For every $a \in G$, $(R_1|R_2 = a_2) \sim_{\epsilon_1} V_1$.

Then $(R_1, R_2) \sim_{(\epsilon_1 + \epsilon_2)} (V_1, R_2).$

Proof: For every $a_1 \in A_1$ and $a_2 \in A_2$:

$$|\Pr[R_1 = a_1, R_2 = a_2] - \Pr[V_1 = a_1, R_2 = a_2]|$$

=
$$|\Pr[R_2 = a_2] \Pr[R_1 = a_1 | R_2 = a_2] - \Pr[R_2 = a_2] \Pr[V_1 = a_1]|$$

=
$$\Pr[R_2 = a_2] |\Pr[R_1 = a_1 | R_2 = a_2] - \Pr[V_1 = a_1]|$$

Therefore,

$$\frac{1}{2} \cdot \sum_{a_1, a_2} |\Pr[R_1 = a_1, R_2 = a_2] - \Pr[V_1 = a_1, R_2 = a_2]| \le \frac{1}{2} \cdot \sum_{a_2 \in G} \Pr[R_2 = a_2]| \sum_{a_1} \Pr[R_1 = a_1 | R_2 = a_2] - \Pr[V_1 = a_1]| + \frac{1}{2} \cdot \sum_{a_2 \notin G} \Pr[R_2 = a_2] \le \sum_{a_2 \in G} \Pr[R_2 = a_2] \cdot \epsilon_1 + \epsilon_2 \le \epsilon_1 + \epsilon_2$$

Lemma 2.6 restated: Let R_1 be a random variable taking values in A_1 and R_2 be a random variable taking values in $\{0,1\}^t$. Assume that $(R_1, R_2) \sim_{\epsilon} (R_1 \otimes U_t)$. Then for every $b \in \{0,1\}^t$, $(R_1|R_2 = b) \sim_{\epsilon \cdot 2^{t+1}} R_1$.

proof:

Proof. Assume for the purpose of contradiction that there exists some $b^* \in \{0, 1\}^t$ such that the distribution $(R_1|R_2 = b^*)$ is not α -close to R_1 for $\alpha = \epsilon \cdot 2^{t+1}$. Then there is an event D such that

$$|\Pr_{(R_1|R_2=b^*)}[D] - \Pr_{R_1}[D]| > \alpha$$

By complementing D if necessary we can w.l.o.g. remove the absolute value from the inequality above. We define an event D' over $A_1 \times \{0,1\}^t$. The event $D' = \{(a,b)|b = b^*, a \in D\}$. We have that:

$$\Pr_{(R_1, U_t)}[D'] = \Pr_{R_1}[D] \cdot 2^{-t}$$

And similarly,

$$\Pr_{(R_1,R_2)}[D'] = \Pr_{(R_1|R_2=b^*)}[D] \Pr_{R_2}[b^*]$$

We know that R_2 is ϵ -close to U_t and therefore $\Pr_{R_2}[b^*] \geq 2^{-t} - \epsilon$. Thus,

$$\Pr_{(R_1,R_2)}[D'] - \Pr_{(R_1,U_t)}[D'] = \Pr_{(R_1|R_2=b^*)}[D] \Pr_{R_2}[b^*] - \Pr_{R_1}[D] \cdot 2^{-t}$$

$$\geq \Pr_{(R_1|R_2=b^*)}[D](2^{-t}-\epsilon) - \Pr_{R_1}[D] \cdot 2^{-t} \geq 2^{-t}[\Pr_{(R_1|R_2=b^*)}[D] - \Pr_{R_1}[D]] - \epsilon$$

By our assumption the expression in square brackets is at least α and thus,

$$> 2^{-t}\alpha - \epsilon = \epsilon$$

Thus, we get a contradiction.