
2-Source Dispersers for n
o(1) Entropy, and Ramsey Graphs Beating

the Frankl-Wilson Construction

Boaz Barak∗ Anup Rao† Ronen Shaltiel‡ Avi Wigderson§

July 22, 2008

Abstract

The main result of this paper is an explicit disperser for two independent sources on n bits,
each of min-entropy k = 2log1−α0 n, for some small absolute constant α0 > 0). Put differently,
setting N = 2n and K = 2k, we construct an explicit N ×N Boolean matrix for which no K ×K
sub-matrix is monochromatic. Viewed as the adjacency matrix of a bipartite graph, this gives an
explicit construction of a bipartite K-Ramsey graph of 2N vertices.

This improves the previous the previous bound of k = o(n) of Barak, Kindler, Shaltiel, Sudakov

and Wigderson [BKS+05]. As a corollary, we get a construction of a 22log1−α0 n

(non bipartite)

Ramsey graph of 2n vertices, significantly improving the previous bound of 2Õ(
√

n) due to Frankl
and Wilson [FW81].

We also give a construction of a new independent sources extractor that can extract from a
constant number of sources of polynomially small min-entropy with exponentially small error. This
improves independent sources extractor of Rao [Rao06], which only achieved polynomially small
error.

Our dispersers combine ideas and constructions from several previous works in the area together
with some new ideas. In particular, we rely on the extractors of Raz [Raz05] and Bourgain [Bou05]
as well as an improved version of the extractor of Rao [Rao06]. A key ingredient that allows us
to beat the barrier of k =

√
n is a new and more complicated variant of the challenge-response

mechanism of Barak et al. [BKS+05] that allows us to locate the min-entropy concentrations in a
source of low min-entropy.

Keywords: Extractors, Dispersers, Ramsey Graphs

∗Department of Computer Science, Princeton University, boaz@cs.princeton.edu. Supported by United States-Israel
Binational Foundation (BSF) grant .

†Institute for Advanced Study, Princeton, New Jersey, arao@ias.edu. Much of this work was done while the author
was a student at the University of Texas, visiting Princeton University and the Institute for Advanced Study. Supported
in part by an MCD fellowship from UT Austin and NSF Grant CCR-0310960.

‡Ronen Shaltiel, University of Haifa, Mount Carmel, Haifa, Israel, ronen@cs.haifa.ac.il. This research was sup-
ported by the United States-Israel Binational Science Foundation (BSF) grant 2004329.

§Institute for Advanced Study, Princeton, New Jersey, avi@math.ias.edu. Supported by NSF grant CCR 0324906.

Contents

1 Introduction 3

1.1 Ramsey and Bipartite Ramsey Graphs. 3
1.2 Randomness extractors. 4
1.3 Dispersers and their relation to Ramsey graphs . 6
1.4 Organization of this paper . 7

2 Techniques 7

2.1 Subsources . 7
2.2 Block-sources . 8
2.3 Existence of block-sources in general sources . 8
2.4 Identifying high entropy parts in the source . 9
2.5 On extending this argument to k <

√
n . 10

3 Preliminaries 10

3.1 Basic notations and definitions. 11
3.1.1 Extractors, dispersers and their friends. 12

3.2 Useful facts and lemmas. 13
3.2.1 Fixing functions and projections. 13
3.2.2 Convex combinations. 14
3.2.3 Conditional entropy. 14

3.3 Some results from previous works. 16

4 Ingredients 16

4.1 Extractor for one block-source and one general source 16
4.2 A 2-Source Somewhere Extractor with exponentially small error 17

5 Informal overview of the construction and analysis of the disperser 19

5.1 Challenge-Response Mechanism for Linear Min-Entropy 20
5.2 The Challenge-Response Mechanism in Our Application 23

6 Construction and analysis of the disperser 29

6.1 Parameters . 29
6.2 Formal Construction . 30

6.2.1 Components . 31
6.2.2 The Tree of Parts . 31
6.2.3 Operation of the algorithm Disp . 32

6.3 Formal Analysis . 32
6.3.1 Step 1: Preprocess X . 33
6.3.2 Step 2: Ensuring that challenges from the left family are properly responded. . 36
6.3.3 Step 3: Ensuring that challenges along the path are somewhere random 37
6.3.4 Step 4: Ensuring that Disp outputs both 0 and 1 38

7 Proof of Theorem 4.1 41

7.1 Achieving Small Error . 41
7.2 Extractor for general source and an SR-source with few rows 42

8 Open Problems 47

9 Acknowledgements 47

1 Introduction

In this paper we give new explicit constructions of certain combinatorial objects. The results can be
described in two equivalent ways. The first, which is simpler and has a longer history, is the language of
Ramsey graphs, graphs that do not have large cliques or independent sets. The second is the language
of randomness extractors and randomness dispersers. While a bit more complicated to state, this
latter form is key to both the Computer Science motivation of the problem, and our actual techniques.

1.1 Ramsey and Bipartite Ramsey Graphs.

We start by describing our results in the language of Ramsey graphs:

Definition 1.1. A graph on N vertices is called a K-Ramsey Graph if it contains no clique or
independent set of size K.

In 1928 Ramsey [Ram28] proved that there does not exist a graph on N = 2n vertices that is
n/2 Ramsey. In 1947 Erdős published his paper inaugurating the Probabilistic Method with a few
examples, including a proof that complemented Ramsey’s discovery: most graphs on 2n vertices are
2n-Ramsey. The quest for constructing Ramsey graphs explicitly has existed ever since and led to
some beautiful mathematics. By an explicit construction we mean an efficient (i.e., polynomial time)
algorithm that, given the labels of two vertices in the graph, determines whether there is an edge
between them.1

Prior to this work, the best record was obtained in 1981 by Frankl and Wilson [FW81], who

used intersection theorems for set systems to construct N -vertex graphs that are 2Ω̃(
√

n)-Ramsey 2.
This bound was matched by Alon [Alo98] using the Polynomial Method, by Grolmusz [Gro00] using
low rank matrices over rings, and also by Barak [Bar06] boosting Abbot’s method with almost k-
wise independent random variables (a construction that was independently discovered by others as
well). Remarkably all of these different approaches got stuck at essentially the same bound. In
recent work, Gopalan [Gop06] showed that other than the last construction, all of these can be viewed
as coming from low-degree symmetric representations of the OR function. He also shows that any
such symmetric representation cannot be used to give a better Ramsey graph, suggesting why these
constructions achieved such similar bounds. Indeed, as we will discuss in a later section, the

√
n

min-entropy bound initially looked like a natural obstacle even for our techniques, though eventually
we were able to surpass it.

One can make an analogous definition for bipartite graphs:

Definition 1.2. A bipartite graph on two sets of N vertices is a bipartite K-Ramsey Graph if it has
no K ×K complete or empty bipartite subgraph.

Given a bipartite K-Ramsey graph G on 2N vertices, one can easily transform it into a non-
bipartite K/2-Ramsey graph H on N vertices3. Thus, the problem of explicitly constructing bipartite
Ramsey graphs is at least as hard as the problem of constructing non-bipartite Ramsey graphs. Indeed,

1Almost all of the constructions mentioned below (including our own) achieve this definition, with the exception of
the papers [Bar06, PR04] that achieve a somewhat weaker notion of explicitness.

2We use Õ and Ω̃ notations when neglecting polylogarithmic factors.
3The N ×N adjacency matrix of a bipartite Ramsey graph is not necessarily symmetric and may contain ones on the

diagonal. This can be fixed by using only the upper triangle of the matrix (e.g., by placing an edge {a, b} in H , where
a < b, if the ath vertex on the left side is connected to the bth vertex on the right side in G). It is easy to verify that this
indeed yields a K/2-Ramsey graph.

3

while Erdős’ result on the abundance of 2n-Ramsey graphs holds as is for bipartite graphs, the best
explicit construction of bipartite Ramsey graphs only recently surpassed the bound of 2n/2 that is
given by the Hadamard matrix. The bound was first improved to o(2n/2) by Pudlak and Rődl [PR04]
and then to 2o(n) by Barak, Kindler, Shaltiel, Sudakov and Wigderson [BKS+05].

The main result of this paper is a new bound that improves the state of affairs for both the bipartite
and non-bipartite cases.

Theorem 1.3 (Main Theorem). There is an absolute constant α0 > 0 and an explicit construction of

a bipartite 22log1−α0 n
= 2no(1)

-Ramsey graph over 2 · 2n vertices, for every large enough n ∈ N.

As discussed above, this corollary follows easily:

Corollary 1.4. There is an absolute constant α0 > 0 and an explicit construction of a 22log1−α0 n
=

2no(1)
Ramsey graph over 2n vertices, for every large enough n ∈ N.

1.2 Randomness extractors.

We now describe our results in a different language — the language of randomness extractors and
randomness dispersers. We start with some background. The use of randomness in Computer Science
has gained tremendous importance in the last few decades. Randomness now plays an important role in
algorithms, distributed computation, cryptography and many more areas. Some of these applications
have been shown to inherently require a source of randomness. However, it is far from clear where the
randomness that is needed for these applications can be obtained.

An obvious approach is to use a natural source of unpredictable data such as users’ typing rates,
radioactive decay patterns, fluctuations in the stock market, etc. However, when designing randomized
algorithms and protocols, it is almost always assumed that a sequence of unbiased and independent
coin tosses is available, while natural unpredictable data do not necessarily come in that form.

One way to attempt to close this gap is to apply some kind of hash function that is supposed
to transform the unpredictable/high entropy data into a distribution that is equal (or at least close
to) the uniform distribution. To formalize this approach, let us model weak sources as probability
distributions over n bit strings that have sufficient min-entropy4k. Such a source is referred to as a
k-source. One then seeks a function f , called an extractor, that maps {0, 1}n to {0, 1}m (for m as
large as is feasible) such that for every random variable X with sufficient min-entropy, f(X) is close
to the uniform distribution. Unfortunately this goal can never be met: it is impossible even if we want
to output just a single bit from distributions of very high min-entropy (i.e., random variables over
{0, 1}n with min-entropy n − 1), as for every function f : {0, 1}n → {0, 1}, we can find 2n/2 inputs
on which f is constant. Thus, the uniform distribution over these inputs is a distribution on which f
fails to extract randomness.

One way to break out of this conundrum, suggested by Santha and Vazirani [SV86] and Chor
and Goldreich [CG88], is to use more than one input source of randomness. That is, we consider the
case that the extractor function gets samples from several independent sources of randomness. The
probabilistic method can be used to show that in principle two independent sources suffice — for every

4It turns out that min-entropy, and not Shannon entropy, is the right notion of entropy to use in this context. A
random variable X has min entropy at least k if for every x in X’s range Pr[X = x] ≤ 2−k. A special case is flat

distributions (these are distributions that are uniformly distributed over some subset of {0, 1}n which is of size 2k). Note
that for flat distributions, entropy and min-entropy coincide. Furthermore, any distribution with min-entropy k is a
convex combination of such flat distributions and therefore the reader can without loss of generality assume that all
sources of randomness are flat distributions.

4

n ∈ N, ǫ > 0 and k ≥ 2 log n + 10 log 1/ǫ there exists a function f : ({0, 1}n)2 → {0, 1}0.9k such that
for every two independent distributions X,Y each having min-entropy at least k, f(X,Y) is within
ǫ statistical distance5 to the uniform distribution over {0, 1}0.9k . Such a function f is called a two
source extractor. Formally, we make the following definition:

Definition 1.5. Let n, c, k ∈ N and ǫ > 0. A function f : ({0, 1}n)c → {0, 1}m is called a c-source
extractor for min-entropy k with error ǫ, if for every independent random variables X1, . . . ,Xc each
having min-entropy at least k,

|f(X1, . . . ,Xc)− Um| < ǫ ,

where Um denotes the uniform distribution over {0, 1}m.

The probabilistic method shows the existence of an excellent extractor in terms of all the param-
eters. However, to be useful in computer science applications, the extractor needs to be efficiently
computable. In other words, we need an explicit construction that matches, or at least gets close to,
the bounds achieved by the probabilistic method. Beyond the obvious motivations (potential use of
physical sources for randomized computation), extractors have found applications in a variety of areas
in theoretical computer science where randomness does not seem an issue, such as in efficient con-
structions of communication networks [WZ99, CRVW02], error correcting codes [TZ04, Gur03], data
structures [MNSW98] and more. (Many of the applications and constructions are for a related notion
called seeded extractors, which are two source extractor in which the second source is very short but
assumed to be completely uniform, see [Sha02] for a survey of much of this work.)

Until a few years ago, essentially the only known explicit construction for a constant number of
sources was the Hadamard extractor Had defined by Had(x, y) = 〈x, y〉 mod 2. It is a two-source
extractor for min-entropy k > n/2 as observed by Chor and Goldreich [CG88] and can be extended to
give Ω(n) output bits as observed by Vazirani [Vaz85]. Roughly 20 years later, Barak, Impagliazzo and
Wigderson [BIW04] constructed a c = O(log(n/k))-source extractor for min-entropy k with output
m = Ω(k). Note that this means that if k = δn for a constant δ, this extractor requires only a constant
number of sources. The main tool used by Barak et. al. was a breakthrough in additive number theory
of Bourgain, Katz and Tao [BKT04] who proved a finite-field sum product theorem, a result that has
already found applications in diverse areas of mathematics, including analysis, number theory, group
theory and ... extractor theory. Building on these works, Barak et al. [BKS+05] and Raz [Raz05]
independently gave constructions of extractors for just three sources with min-entropy k = δn for
any constant δ > 0. This was followed by a result of Rao [Rao06], who showed how to extract from
O(log n/ log k) independent k-sources. This is an extractor for O(c) sources as long as k is larger than
n1/c. His extractor did not rely on any of the new results from additive number theory. In this paper,
we extend Rao’s results by improving the error parameter from ǫ = k−Ω(1) to ǫ = 2−kΩ(1)

, a result that
was also obtained independently by Chung and Vadhan [CV].

Theorem 1.6. There is a polynomial time computable c-source extractor f : ({0, 1})c → {0, 1}Ω(k)

for min-entropy k > log10 n, c = O(log n
log k) and ǫ = 2−kΩ(1)

.

Rao also gave extractors that can extract randomness from two “block-sources” with O(log n/ log k)
blocks. An important ingredient in our main results is extending these results so that only one of the
sources needs to be a block-source while the other source can be a general source with min-entropy k.
We elaborate on block-sources and their role in our main construction later on.

5The statistical distance of two distributions W,Z over some range R, denoted by |W − Z|, is defined to be
1/2

P

r∈R |Pr[W = r] − Pr[Z = r]|.

5

While the aforementioned works achieved improvements for more than two sources, the only im-
provement for two source extractors over the Hadamard extractor is by Bourgain [Bou05], who broke
the “1/2 barrier” and gave such an extractor for min-entropy .4999n, again with linear output length
m = Ω(n).

Theorem 1.7 ([Bou05]). There is a polynomial time computable 2-source extractor f : ({0, 1}n)2 →
{0, 1}m for min-entropy .4999n, m = Ω(n) and ǫ = 2−Ω(n).

This seemingly minor improvement plays an important role in Rao’s extractor for two block-sources
and in our improvements.

1.3 Dispersers and their relation to Ramsey graphs

A natural relaxation of extractors is, rather than requiring that the output is statistically close to the
uniform distribution, simply requiring that it has large support. Such objects are called dispersers:

Definition 1.8. Let n, c, k ∈ N and ǫ > 0. A function f : ({0, 1}n)c → {0, 1}m is called a c-
source disperser for min-entropy k and error parameter ǫ, if for every independent random variables
X1, . . . ,Xc each having min-entropy at least k,

|f(X1, . . . ,Xc)| ≥ (1− ǫ)2m .

We remark that in the definition above it is sufficient to consider only flat sources X1, . . . ,Xc. In
other words an equivalent definition is that for any c sets S1, . . . , Sc ⊆ {0, 1}n such that all sets are of
size 2k, |f(S1 × . . . × Sc)| ≥ (1− ǫ)2m. Dispersers are easier to construct than extractors, and in the
past, progress on constructing extractors and dispersers has been often closely related.

Two source dispersers are particularly interesting as they are equivalent to bipartite Ramsey
graphs. More precisely, if f : ({0, 1}n)2 → {0, 1} is a two-source disperser with one-bit output for
min-entropy k and error parameter ǫ < 1/2, we consider the graph G on two sets of 2n vertices where
there we place an edge from x to y if f(x, y) = 1. Note that any 2k×2k subgraph of this graph cannot
be complete or empty as it must contain both an edge and a non-edge and therefore G is a bipartite
2k-Ramsey graph. Recall that this graph can be easily transformed into a (2k−1)-Ramsey graph on
2n vertices.

For 2 sources Barak et al. [BKS+05] were able to construct dispersers for sources of min-entropy
k = o(n):

Theorem 1.9 ([BKS+05]). There exists a polynomial time computable 2-source disperser f : ({0, 1}n)2 →
{0, 1} for min-entropy o(n) and ǫ < 1/2.

The main result of this paper is a polynomial time computable disperser for two sources of min-
entropy no(1), improving the results of Barak et al. [BKS+05] (that achieved o(n) min-entropy). By
the discussion above our construction yields both bipartite Ramsey graphs and Ramsey graphs for
K = 2no(1)

and improves on Frankl and Wilson [FW81], who built Ramsey Graphs with K = 2Õ(
√

n)

(which in this terminology is a disperser for two identically distributed sources for min-entropy Õ(
√

n)).

Theorem 1.10 (Main theorem, restated). There exists a constant α0 > 0 and a polynomial time

computable 2-source disperser D : ({0, 1}n)2 → {0, 1} for min-entropy 2log1−α0 n and error parameter
smaller than 1/2.

Even though our main result is a one output bit disperser, we will need to use the more gen-
eral definitions of multiple-source and larger outputs dispersers and extractors in the course of our
construction.

6

1.4 Organization of this paper

Unfortunately, our construction involves many technical details. In an attempt to make this paper more
readable we also include some sections that only contain high level informal explanations, explanations
that are not intended to be formal proofs and can be safely skipped if the reader so wishes. The paper
is organized as follows:

In Section 2 we explain the high level ideas used in our construction without going into the details
or giving our construction. In Section 3 we give some definitions and technical lemmas. We also
state results from previous work that our work relies on. In Section 4 we present two variants of
extractors that are used in our construction. The first is an extractor that extracts randomness from
two independent sources where one of them is a block-source and the other is a general source. The
second is a “somewhere extractor” with special properties that when given two independent sources
of sufficient min-entropy outputs a polynomial number of strings where one of them is (close to)
uniformly distributed. In Section 5 we give a detailed informal explanation of our construction and
proof. We hope that reading this section will make it easier for the reader to follow the formal proof.
In Section 6 we present our disperser construction and prove its correctness. In Section 7 we show
how to construct the extractor from Section 4. Finally we conclude with some open problems.

2 Techniques

Our construction makes use of many ideas and notions developed in previous works as well as several
key new ones. In this section we attempt to survey some of these at a high level without getting into
precise details. In order to make this presentation more readable, we allow ourselves to be imprecise
and oversimplify many issues. We stress that the contents of this section are not used in later parts of
the paper. In particular, the definitions and theorems that appear in this section are restated (using
precise notation) in the technical sections of the paper. The reader may skip to the more formal parts
at any point if she wishes.

2.1 Subsources

Recall that the main goal of this research area is to design 2-source extractors for low min-entropy
k. As explained earlier, it is unknown how to achieve extractors for two sources with min-entropy
k < 0.4999n and this paper only gives constructions of dispersers (rather than extractors). In order
to explain how we achieve this relaxed goal, we first need the notion of subsources.

Definition 2.1 (Subsource). A distribution X ′ over domain {0, 1}n is a subsource of a distribution
X (over the same domain {0, 1}n) with deficiency d if there exists an event A ⊆ {0, 1}n such that
Pr[X ∈ A] ≥ 2−d and X ′ is the probability distribution obtained by conditioning X to A. (More
precisely, for every a ∈ A, Pr[X ′ = a] is defined to be Pr[X = a|X ∈ A] and for a 6∈ A, Pr[X ′ = a] = 0).

In the case X ′ is a subsource of a flat distribution (a distribution that is uniform on some subset)
X is simply a flat distribution on a smaller subset. It is also easy to see that if X is a k-source and
X ′ is a deficiency d subsource of X, then X ′ is a (k − d)-source.

We say that a function f : ({0, 1}n)2 → {0, 1} is a subsource extractor if for every two independent
k-sources X and Y there exist subsources X ′ of X and Y ′ of Y such that f(X ′, Y ′) is close to uniformly
distributed. While f is not necessarily an extractor, it certainly is a disperser, since f(X,Y) is both
zero and one with positive probability. Thus, when constructing dispersers, it is sufficient to analyze
how our construction performs on some subsources of the adversarially chosen sources.

7

Our analysis uses this approach extensively. Given the initial k-sources X and Y (which can be
arbitrary) we prove that there exist subsources of X,Y which have a certain “nice structure”. We then
proceed to design two-source extractors that extract randomness from sources with this nice structure.
When using this approach, we shall be very careful to ensure that the subsources we use have low
deficiency and remain a product distribution.

2.2 Block-sources

We now describe what we mean by sources that have nice structure. We consider sources that give
samples which can be broken into several disjoint “blocks” such that each block has min-entropy k
even conditioned on any value of the previous blocks. Called block-sources, these were first defined by
Chor and Goldreich [CG88].

Definition 2.2 (Block-sources [CG88]). A distribution X = (X1, . . . ,Xc) where each Xi is of length n
is a c-block-source of block min-entropy k if for every i ∈ [c], every x ∈ {0, 1}n and every x1, . . . , xi−1 ∈
({0, 1}n)i−1, Pr[Xi = x|X1 = x1 ∧ . . . ∧Xi−1 = xi−1] ≤ 2−k.

It is clear that any such block-source is a ck-source. However, the converse is not necessarily true.
Throughout this informal description, the reader should think of c as very small compared to k or
n so that values like ck, k and k/c are roughly the same. Block-sources are interesting since they
are fairly general (there is no deterministic way to extract from a block-source), yet we have a better
understanding of how to extract from them. For example, when the input sources are block-sources
with sufficiently many blocks, Rao proves that 2 independent sources suffice even for the case of lower
min-entropy, with polynomially small error:

Theorem 2.3 ([Rao06]). There is a polynomial time computable extractor f : ({0, 1}cn)2 → {0, 1}m
for 2 independent c-block-sources with block min-entropy k and m = Ω(k) for c = O((log n)/(log k)).

In this paper, we improve his result in two ways— only one of the 2 sources needs to be a c-block-
source and the error is exponentially small. The other source can be an arbitrary source with sufficient
min-entropy.

Theorem 2.4 (Block + General Source Extractor). There is a polynomial time computable extractor
B : ({0, 1}n)2 → {0, 1}m for 2 independent sources, one of which is a c-block-source with block min-
entropy k and the other a source of min-entropy k, with m = Ω(k), c = O((log n)/(log k)) and error

at most 2−kΩ(1)
.

This is a central building block in our construction. This extractor, like Rao’s extractor above,
relies on 2-source extractor constructions of Bourgain [Bou05] and Raz [Raz05]. We do not describe
how to construct the extractor of Theorem 2.4 in this informal overview. The details are in Section 4
and Section 7.

2.3 Existence of block-sources in general sources

Given that we know how to handle the case of block-sources, it is natural to try and convert a general
k-source into a block-source. Let us first restrict our attention to the case where the min-entropy is
high: k = δn for some constant δ > 0 (these are the parameters already achieved in the construction
of [BKS+05]). We make the additional simplifying assumption that for k = δn the extractor of
Theorem 2.4 requires a block-source with only two blocks (i.e. c = 2).

8

First consider a partition of the k-source X into t = 1/10δ consecutive blocks of length n/t and
denote the i’th block by Xi. We claim that there has to be an index 1 ≤ j ≤ t such that the blocks
(X1 ◦ . . . ◦Xj) and (Xj+1 ◦ . . . ◦Xt) are a 2-block-source with min-entropy k/4t ≈ δ2n. To meet the
definition of block-sources, we need to pad the two blocks above so that they will be of length n, but
we ignore such technicalities in this overview.

To see why something like this must be true, let us consider the case of Shannon entropy. For
Shannon entropy we have the chain rule H(X) =

∑

1≤j≤t H(Xj |X1, . . . ,Xj−1). Imagine going through
the blocks one by one and checking whether the conditional entropy of the current block is at least
k/4t. Since the total entropy is at least k, we must find such a block j. Furthermore, this block is of
length n/t and so has entropy at most n/t < k/10. It follows that the total entropy we’ve seen this
far is bounded by t · (k/4t) + k/10 < k/2. This means that the remaining blocks must contain the
remaining k/2 bits of entropy even when conditioned on the previous blocks.

Things become aren’t so straightforward when dealing with min-entropy instead of entropy. Unlike
Shannon entropy, min-entropy does not have a chain rule and the claim above does not hold in analogy.
Nevertheless, imitating the argument above for min-entropy gives that for any k-source X there exists
a small deficiency subsource X ′ of X such that there exist an index j for which the blocks (X ′1 ◦ . . .◦X ′j
and X ′j+1 ◦ . . . ◦X ′t are a 2-block-source with min-entropy k/4t ≈ δ2n. As we explained earlier, this is
helpful for constructing dispersers as we can forget about the initial source X and restrict our attention
to the “nicely structured” subsource X ′.

However, note that in order to use our extractors from Theorem 2.4 we need to also find the index
j. This seems very hard as the disperser we are constructing is only given one sample x out of the
source X and it seems impossible to use this information in order to find j. Moreover, the same sample
x can appear with positive probability in many different sources that have different values of j.

2.4 Identifying high entropy parts in the source

Barak et al. [BKS+05] devised a technique which they call “the challenge-response mechanism” that
in some sense allows the disperser to locate the high entropy block Xj in the source X. This method
also relies on the other k-source Y . An important contribution of this paper is improving their method
and extending it to detect blocks with much lower entropy. We will not attempt to describe how this
method works within this informal overview as the technique is somewhat complicated and it is hard
to describe it without delving into details. We do give a more detailed informal description (that still
avoids many technical issues) in the informal explanation in Section 5.

In this high level overview we will only explain in what sense the challenge-response method
finds the index j. Let us first recall the setup. The disperser obtains two inputs x and y from two
independent k-sources X and Y . We have that X has a subsource X ′ which is a block-source. More
precisely, there exists an index j such that the blocks (X ′1 ◦ . . . ◦ X ′j) and (X ′j+1 ◦ . . . ◦ X ′t) are a

2-block-source with min-entropy k/4t ≈ δ2n.
Using the challenge-response mechanism, one can explicitly construct a function FindIndex(x, y)

such that there exist low deficiency subsources Xgood of X ′ and Y good of Y such that:

• FindIndex(Xgood , Y good) outputs the correct index j (with high probability).

• Xgood is a 2-block-source according to the index j above.

Loosely speaking, this means that we can restrict our attention (in the analysis) to the independent
sources Xgood, Y good. These sources are sources from which we can extract randomness! More precisely,
when given x, y that are sampled from these sources we can compute FindIndex(x, y) and then run the

9

extractor from Theorem 2.4 on x, y using the index FindIndex(x, y). The properties above guarantee
that we have a positive probability to output both zero and one, which ensures that our algorithm is
a disperser.

2.5 On extending this argument to k <
√

n

In the informal discussion above we only handled the case when k = δn for some constant δ > 0,
though in this paper we are able to handle the case of k = no(1). It turns out that there are several
obstacles that need to be overcome before we can apply the strategy outlined above when k <

√
n.

Existence of block-sources in general sources The method we used for arguing that every k-
source has a subsource which is a 2-block-source does not work when k <

√
n. If we partition the

source X into t <
√

n blocks then the length of each block is n/t > k and it could be the case that all
the entropy lies in one block (and in that case the next blocks contain no conditional entropy). On
the other hand if we choose t >

√
n then our analysis only gives a block-source with entropy k/4t < 1

which is useless.
In order to handle this problem we use a “win-win” case analysis (which is somewhat similar to

the technique used in [RSW00]). We argue that either the source X has a subsource X ′ such that
partitioning X ′ according to an index j gives a 2-block-source with min entropy ≈ k/c, or there must
exist a block j which has entropy larger than ≈ k/c. We now explain how to handle the second case,
ignoring for now the issue of distinguishing which of the cases we are in. Note that we partition X
into t blocks of length n/t and therefore in the second case there is a block j where the min-entropy
rate (i.e. the ratio of the min-entropy to the length) increased by a multiplicative factor of t/c≫ 1.

Loosely speaking, we already have a way to locate the block j (by using the challenge-response
mechanism) and once we find it we can recursively call the disperser construction on xj and y. Note
that we are indeed making progress as the min-entropy rate is improving and it can never get larger
than one. This means that eventually the min-entropy rate will be so high that we are guaranteed to
have a block source, that we know how to handle.

It is also important to note that this presentation is oversimplified. In order to perform the strategy
outlined above we need to also be able to distinguish between the case that our source contains a block-
source and the case where it has a high entropy block. For this purpose we develop a new and more
sensitive version of the challenge-response mechanism that is also able to distinguish between the two
cases.

Lack of somewhere extractors for low entropy In this high level overview we did not discuss
the details of how to implement the function FindIndex using the challenge-response mechanism.
Still, we remark that the implementation in [BKS+05] relies on certain objects called “somewhere
extractors”. While we do not define these objects here (the definition can be found in the formal
sections), we mention that we do not know how to construct these objects for k <

√
n. To address this

problem we implement the challenge-response mechanism in a different way relying only on objects
that are available in the low-entropy case.

3 Preliminaries

The following are some definitions and lemmas that are used throughout this paper.

10

3.1 Basic notations and definitions.

Often in technical parts of this paper, we will use constants like 0.9 or 0.1 where we could really use
any sufficiently large or small constant that is close to 1 or 0. We do this because it simplifies the
presentation by reducing the number of additional variables we will need to introduce.

In informal discussions throughout this paper, we often use the word entropy losely. All of our
arguments actually involve the notion of min-entropy as opposed to Shannon entropy.

Random variables, sources and min-entropy. We will usually deal with random variables which
take values over {0, 1}n. We call such a random variable an n-bit source. The min-entropy of a
random variable X, denoted by H∞(X), is defined to equal minx{− log2(Pr[X = x])}, or equivalently
log2 (1/maxx{Pr[X = x]}). If X is an n-bit source with H∞(X) ≥ k and n is understood from the
context then we’ll call X a k-source.

Definition 3.1 (Statistical distance.). If X and Y are random variables over some universe U , the
statistical distance of X and Y , denoted by |X − Y | is defined to be 1

2

∑

u∈U |Pr[X = u]− Pr[Y = u]|.

We have the following simple lemma:

Lemma 3.2 (Preservation of strongness under convex combination). Let X,O,U,Q be random vari-
ables over the same finite probability space, with U,O both random variables over {0, 1}m. Let ǫ1, ǫ2 < 1
be constants s.t. :

Pr
q←RQ

[|(X|Q = q) ◦ (O|Q = q)− (X|Q = q) ◦ (U |Q = q)| ≥ ǫ1] < ǫ2

i.e. conditioned on Q being fixed and good, X ◦O is statistically close to X ◦ U .
Then we get that |X ◦O −X ◦ U | < ǫ1 + ǫ2.

Definition 3.3 (Subsource). Given random variables X and X ′ on {0, 1}n we say that X ′ is a
deficiency-d subsource of X and write X ′ ⊆ X if there exists a set A ⊆ {0, 1}n such that (X|A) = X ′

and Pr[X ∈ A] ≥ 2−d.

Definition 3.4 (Block-sources). A distribution X = X1 ◦ X2 ◦ · · · ◦ XC is called a (k1, k2, . . . , kC)-
block-source if for all i = 1, . . . ,C, we have that for all x1 ∈ X1, . . . , xi−1 ∈ Xi−1, H∞(Xi|X1 =
x1, . . . ,X

i−1 = xi−1) ≥ ki, i.e., each block has high min-entropy even conditioned on the previous
blocks. If k1 = k2 = · · · = kC = k, we say that X is a k-block-source.

Definition 3.5 (Somewhere Random Sources). A source X = (X1, ...,Xt) is (t×r) somewhere-random
if each Xi takes values in {0, 1}r and there is an i such that Xi is uniformly distributed.

Definition 3.6. We will say that a collection of somewhere-random sources is aligned if there is some
i for which the i’th row of every SR-source in the collection is uniformly distributed.

Since we shall have to simultaneously use the concept of block-sources and somewhere random
sources, for clarity we use the convention that the word block refers to a part of a block-source. The
word row will be used to refer to a part in a somewhere random source.

Definition 3.7 (Weak somewhere random sources). A source X = (X1, . . . ,Xt) is (t×r) k-somewhere-
random (k-SR-source for short) if each Xi takes values in {0, 1}r and there is an i such that Xi has
min-entropy k.

11

Often we will need to apply a function to each row of a somewhere source. We will adopt the
following convention: if f : {0, 1}r × {0, 1}r → {0, 1}m is a function and a, b are samples from (t× r)
somewhere sources, f(~a,~b) refers to the (t ×m) string whose first row is obtained by applying f to
the first rows of a, b and so on. Similarly, if a is an element of {0, 1}r and b is a sample from a (t× r)
somewhere source, f(a,~b) refers to the (t×m) matrix whose ith row is f(a, bi).

Many times we will treat a sample of a somewhere random source as a set of strings, one string
from each row of the source.

Definition 3.8. Given ℓ strings of length n, x = x1, . . . , xℓ, define Slice(x,w) to be the string x′ =
x′1, . . . , x

′
ℓ such that for each i x′i is the prefix of xi of length w.

3.1.1 Extractors, dispersers and their friends.

In this section we define some of the objects we will later use and construct. All of these objects will
take two inputs and produce one output, such that under particular guarantees on the distribution of
the input, we’ll get some other guarantee on the distribution of the output. Various interpretation of
this vague sentence lead to extractors, dispersers, somewhere extractors, block extractors etc..

Definition 3.9 (Two-source extractor). Let n1, n2, k1, k2,m, ǫ be some numbers. A function Ext :
{0, 1}n1×n2 → {0, 1}m is called an 2-source extractor with k1, k2 min-entropy requirement, n-bit input,
m-bit output and ǫ-statistical distance if for every independent sources X and Y over {0, 1}n1 and
{0, 1}n2 respectively satisfying

H∞(X) ≥ k1 and H∞(Y) ≥ k2 (1)

it holds that
∣

∣

∣
Ext(X,Y)− Um

∣

∣

∣
≤ ǫ (2)

In the common case of a seeded extractor we have n2 = k2 (and hence the second input distribution
is required to be uniform). A non-trivial construction will satisfy of course n2 ≪ m (and hence also
n2 ≪ k1 < n). Thus, two source extractors are strictly more powerful than seeded extractor. However,
the reason seeded extractors are more popular is that they suffice for many applications, and that (even
after this work) the explicit construction for seeded extractors have much better parameters than the
explicit constructions for 2-source extractors with k1 ≪ n1 , k2 ≪ n2. (Note that this is not the case
for non-explicit construction, where 2-source extractors with similar parameters to the best possible
seeded extractors can be shown to exist using the probabilistic method.)

Variants. We’ll use many variants of extractors in this paper to various similar combinatorial ob-
jects. Most of the variants are obtained by giving different the conditions on the input (Equation 1)
and the guarantee on the output (Equation 2). Some of the variants we will consider will be:

Dispersers. In dispersers, the output guarantee (Equation 2) is replaced with |Supp(Ext(X,Y))| ≥
(1− ǫ)2m,

Somewhere extractors. In somewhere extractors the output guarantee (Equation 2) is replaced
with the requirement that |Ext(X,Y)− Z| < ǫ where Z is a somewhere random source of t×m
rows for some parameter t.

12

Extractors for block-sources. In extractors for block-sources the input requirement (Equation 1)
is replaced with requirement that X and Y are block-sources of specific parameters. Similarly we
will define extractors for other families of inputs (i.e. somewhere random sources) and extractors
where each input should come from a different family.

Strong extractors. Many of these definition have also a strong variant, and typically constructions
for extractors also achieve this strong variant. An extractor is strong in the first input if the
output requirement (Equation 2) is replaced with |(X,Ext(X,Y))− (X,Um)| ≤ ǫ. Intuitively
this condition means that the output is uniform even on conditioning X. We define an extractor
to be strong in the second input similarly. If the extractor is strong in both inputs, we simply
say that it is strong.

Remark 3.10 (Input lengths). Whenever we have a two source extractor Ext : {0, 1}n1 × {0, 1}n2 →
{0, 1}m with inputs lengths n1, n2 and entropy requirement k1, k2 we can always invoke it on shorter
sources with the same entropy, by simply padding it with zeros. In particular if we have an extractor
with n1 = n2 we can still invoke it on inputs of unequal length by padding one of the inputs. The same
observation holds for the other source types we’ll use, namely block and somewhere random sources,
if the padding is done in the appropriate way (i.e., pad each block for block-sources, add all zero rows
for somewhere random sources), and also holds for all the other extractor-like objects we consider
(dispersers, somewhere extractors, and their subsource variant). In the following, whenever we invoke
an extractor on inputs shorter than its “official” input length, this means that we use such a padding
scheme.

3.2 Useful facts and lemmas.

Fact 3.11. If X is an (n, k)-source and X ′ is a deficiency d subsource of X then X ′ is an (n, k − d)-
source.

Fact 3.12. Let X be a random variable with H∞(X) = k. Let A be any event in the same probability
space. Then

H∞(X|A) < k′ ⇒ Pr[A] < 2k′−k

3.2.1 Fixing functions and projections.

Given a source X over {0, 1}n and a function F : {0, 1}n → {0, 1}m, we often will want to consider
subsources of X where F is fixed to some value, and provide some bounds on the deficiency. Thus,
the following lemma would be useful:

Lemma 3.13 (Fixing a function.). Let X be a distribution over {0, 1}n, F : {0, 1}n → {0, 1}m be a
function, and ℓ ≥ 0 some number. Then there exists a ∈ {0, 1}m and a deficiency m subsource X ′

of X such that F (x) = a for every x in X ′. Furthermore, for every a ∈ Supp(F (X)) let Xa be the
subsource of X defined by conditioning on F (X) = a. Then, if we choose a at random from the source
F (X) then with probability ≥ 1− 2−ℓ, the deficiency of Xa is at most m + ℓ.

Proof. Let ℓ > 0 be some number and let A be the set of a ∈ {0, 1}m such that Pr[F (x) = a] < 2−m−ℓ.
Since |A| ≤ 2m, we have that Pr[F (X) ∈ A] < 2−ℓ. If we choose a←R F (X) and a 6∈ A, we get that
X|F (X) = a has deficiency ≤ m + ℓ. Choosing ℓ = 0 we get the first part of the lemma, and choosing
ℓ = m we get the second part.

13

The following lemma will also be useful:

Lemma 3.14 (Fixing a few bits in X). Let X be an (n, k) source. Let S ⊆ [n] with |S| = n − n′.
Let X|S denote the projection of X to the bit locations in S. Then for every l, X|S is 2−l-close to a
(n− n′, k − n′ − l) source.

Proof. Let S be the complement of S.
Then X|S is a convex combination over X|S . For each setting of X|S = h, we condition the

distribution X|S|(X|S = h).

Define H = {h ∈ {0, 1}n′ |H∞(X|S |X|S = h) < n′ + k − l}. Notice that H∞(X|S |X|S = h) =

H∞(X|X|S = h). Then by Fact 3.12, for every h ∈ H, Pr[X|S = h] < 2k−n′−l−k = 2−(n′+l). Since

|H| ≤ 2n′
, by the union bound we get that Pr[X|S ∈ H] ≤ 2−l].

In some situations we will have a source that is statistically close to having high min-entropy, but
not close enough. We can use the following lemma to lose something in the entropy and get 0 error
on some subsource.

Lemma 3.15. Let X be a random variable over {0, 1}n s.t. X is ǫ-close to an (n, k) source, with
ǫ ≤ 1/4. Then there is a deficiency 2 subsource X ′ ⊆ X s.t. X ′ is a (n, k − 3) source.

Proof. Let t be a parameter that we will pick later. Let H ⊆ Supp(X) be defined as H = {x ∈
Supp(X)|Pr[X = x] > 2−t}. H is the set of heavy points of the distribution X. By the definition of
H, |H| ≤ 2t.

Now we have that Pr[X ∈ H] − 2−k|H| ≤ ǫ, since X is ǫ-close to a source with min-entropy k.
This implies that Pr[X ∈ H] ≤ ǫ + 2−k|H| ≤ ǫ + 2t−k.

Now consider the subsource X ′ ⊆ X defined to be X|X ∈ (Supp(X)\H). For every x ∈ Supp(X ′),
we get that

Pr[X ′ = x] = Pr[X = x|X /∈ H] ≤ Pr[X=x]
Pr[X /∈H] ≤ 2−t

1−(ǫ+2t−k)

Setting t = k − 2, we get that Pr[X ′ = x] ≤ 2−k+2

1−(ǫ+2−2)
≤ 2−k+3.

3.2.2 Convex combinations.

Definition 3.16 (Convex combination). Let X be a random variable and let {Yi}i∈U be a family of
random variables indexed by an element in some universe U . We say that X is a convex combination
of the family {Yi} if there exists a random variable I over U such that X = YI .

A key observation that is essential to our results is that random variables that are convex com-
binations of sources with some good property are usually good themselves. This is captured in the
following easy propositions:

Proposition 3.17. Let X,Z be random variables s.t. X is a convex combination of sources which
are ǫ-close to Z. Then X is ǫ-close to Z.

3.2.3 Conditional entropy.

If X = X1 ◦ · · · ◦Xt is a random variable (not necessarily a block-source) over {0, 1}n divided into t

blocks in some way, and x1, . . . , xi are some strings with 0 ≤ i < t, we use the notation X|x1, . . . , xi to
denote the random variable X conditioned on X1 = x1,. . .,Xi = xi. For 1 ≤ i < j ≤ t, we denote by
Xi,...,j the projection of X into the blocks Xi, . . . ,Xj . We have the following facts about such sources:

14

Lemma 3.18 (Typical prefixes). Let X = X1 ◦ · · · ◦Xt be a random variable divided into t blocks, let
X ′ = X|A be a deficiency d subsource of X, and let ℓ be some number. Then for every 1 ≤ i ≤ t, with
probability at least 1− 2−ℓ, a random prefix x1, . . . , xi in X ′ satisfies Pr[X ∈ A|x1, . . . , xi] ≥ 2−d−ℓ.

Proof. We denote by X1 the first i blocks of X. Let B be the event determined by X1 that Pr[X ∈
A|X1] < 2−d−ℓ. We need to prove that Pr[B|A] < 2−ℓ but this follows since Pr[B|A] = Pr[A∩B]

Pr[A] ≤
2d Pr[A ∩B]. However Pr[A ∩B] ≤ Pr[A|B] =

∑

x∈B Pr[A|X1 = x]Pr[X1 = x|B] < 2−d−ℓ.

As a corollary we get the following

Corollary 3.19 (Subsource of block-sources). Let X = X1 ◦ · · · ◦XC be a k-entropy C-block-source
(i.e., for every x1, . . . , xi ∈ Supp(X1,...,i), H∞(Xi+1|X1,...,i = x1, . . . , xi) > k) and X ′ be a deficiency d
subsource of X. Then X ′ is C2−l statistically close to being a k − d− l C-block-source.

Proof. Let X ′ = X|A and define B to be following the event over X ′: x = x1, . . . , xC ∈ B if for some
i ∈ [C], Pr[X ∈ A|x1, . . . , xi] < 2−d−l. By Lemma 3.18, Pr[X ′ ∈ B] < C2−l. However, for every
x = x1, . . . , xC ∈ B̄ = A \B, we get that Y ′ = X ′i+1|x1, . . . , xi−1 is a source with

H∞(Y ′) ≥ H∞(Y) − d − l ≥ k − d − l. Hence X ′|B̄ is a k − d − l-block-source of distance C2−l

from X ′.

If X = X1 ◦ · · · ◦Xt is a source divided into t blocks then in general, the entropy of Xi conditioned
on some prefix x1, . . . , xi−1 can depend on the choice of prefix. However, the following lemma tells us
that we can restrict to a low deficiency subsource on which this entropy is always roughly the same,
regardless of the prefix. Thus we can talk about the conditional entropy of a block Xi without referring
to a particular prefix of it.

Lemma 3.20 (Fixing entropies). Let X = X1 ◦X2 ◦ · · · ◦Xt be a t-block random variable over {0, 1}n,
and let 0 = τ1 < τ2 < · · · < τc+1 = n be some numbers. Then, there is a deficiency t2 log c subsource
X ′ of X and a sequence ē = e1, . . . , et ∈ [c]t such that for every 0 < i ≤ t and every sequence
x1, . . . , xi−1 ∈ Supp(X ′1,...,i−1), we have that

τei ≤ H∞(X ′i|x1, . . . , xi−1) ≤ τei+1 (3)

Proof. We prove this by induction. Suppose this is true for up to t− 1 block and we’ll prove it for t

blocks. For every x1 ∈ Supp(X1) define the source Y (x1) to be X2,...,i|x1. By the induction hypothesis
there exists a (t−1)2 log c deficiency subsource Y ′(x1) of Y (x1) source and ē(x1) ∈ [c]t−1 the sequence
such that Y ′(x1) satisfies Equation 3 with respect to ē(x1). Define the function f : X1 → [c]t−1 that
maps x1 to ē(x1) and pick a subsource X ′1 of X1 of deficiency (t−1) log c such that f is constant on X ′1.
That is, there are some values e2, . . . , et ∈ [c]t−1 such that F (x1) = e2, . . . , et with probability 1. We
let the source X ′ be X conditioned on the event that X1 ∈ supp(X ′1) and X2, . . . ,Xt ∈ supp(Y (X1)).

The deficiency of X ′ is indeed at most (t− 1) log c + (t− 1)2 log c < t2 log c.

Corollary 3.21. If X in the lemma above is a k-source, and ē is as in the conclusion of the lemma,
we must have that

∑t
i=1 τei+1 ≥ k − t2 log c.

Proof. If this was not the case, we could find some string in the support of X which is too heavy
(simply take the heaviest string allowed in each successive block).

Proposition 3.22. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a seeded (n, k, ǫ) strong extractor. Let X
be any (n, k) source. Let {0, 1}d = {s1, s2, . . . , s2d}. Then Ext(X, s1) ◦ Ext(X, s2) ◦ · · · ◦ Ext(X, s2d) is
ǫ-close to a (2d ×m) somewhere-random source.

Proof. This follows immediately from the definition of a strong seeded extractor (Definition 3.9).

15

3.3 Some results from previous works.

We’ll use the following results from some previous works.

Theorem 3.23. [LRVW03] For any constant α ∈ (0, 1), every n ∈ N and k ≤ n and every ǫ ∈ (0, 1)
where ǫ > exp(−

√
k), there is an explicit (k, ǫ) seeded extractor Ext : {0, 1}n×{0, 1}O(log n+log(n/k) log(1/ǫ)) →

{0, 1}(1−α)k .

Theorem 3.24 ([Tre01, RRV02]). For every n, k ∈ N, ǫ > 0, there is an explicit (n, k, ǫ)-strong

extractor Ext : {0, 1}n × {0, 1}d → {0, 1}k−O(log3(n/ǫ)) with d = O(log3(n/ǫ)).

Theorem 3.25 ([CG88, Vaz85]). For all n, δ > 0, there exists a polynomial time computable strong
extractor Vaz : {0, 1}n × {0, 1}n → {0, 1}m with m = Ω(n) and error ǫ = 2−Ω(n).

Theorem 3.26 ([Raz05]). For any n1, n2, k1, k2,m and any 0 < δ < 1/2 with

• n1 ≥ 6 log n1 + 2 log n2

• k1 ≥ (0.5 + δ)n1 + 3 log n1 + log n2

• k2 ≥ 5 log(n1 − k1)

• m ≤ δ min[n1/8, k2/40] − 1

There is a polynomial time computable strong 2-source extractor Raz : {0, 1}n1×{0, 1}n2 → {0, 1}m
for min-entropy k1, k2 with error 2−1.5m.

Theorem 3.27 ([Rao06]). There is a polynomial time computable strong extractor 2SRExt : {0, 1}tn×
{0, 1}tn → {0, 1}m such that for every constant γ < 1 and n, t with t = t(n), t < nγ there exists
a constant α(γ) < 1 such that 2SRExt succeeds as long as X is a (t × n) SR-source and Y is an
independent aligned (t× n) SR-source, with m = n− nα and error 2−n1−α

.

4 Ingredients

In this section we describe two new ingredients that are used in our construction.

4.1 Extractor for one block-source and one general source

We construct an extractor that works for two sources, given an assumption on one of the sources.
The assumption is that the first source is a block-source, which means that it is divided into C blocks
such that each block has entropy above a certain threshold even conditioned on all previous blocks. As
mentioned in the introduction, block-sources turn out to be very useful in many settings in randomness
extraction. Rao [Rao06] gave an extractor for 2 independent block-sources with few blocks. Here we
improve his construction in two ways, both of which are important for the application to our disperser
construction.

• We relax the hypothesis so that we need only one block-source. The second source can be
arbitrary.

• We improve the error of the construction from 1/poly(k) to 2−kΩ(1)
.

We will prove the following theorem (which is a formal restatement of Theorem 2.4).

16

Theorem 4.1 (Block + Arbitrary Source Extractor). There are constants c1, c2 and a polynomial
time computable function BExt : {0, 1}Cn×{0, 1}n → {0, 1}m such that for every n, k, with k > log10(n)
with C = O(log n

log k), if X = X1 ◦ · · · ◦XC is a k-block-source and Y is an independent k-source

|BExt(X,Y)− Um| < 2−kc1

with m = c2k.

The low error guaranteed by this theorem is important for applications that require a negligible
error. Since the concatenation of independent sources is a block-source, an immediate corollary of the
above theorem is a new extractor for independent sources with exponentially small error (the corollary
below is a formal restatement of Theorem 1.6).

Corollary 4.2 (Independent Source Extractor). There are constants c1, c2 and a polynomial time
computable function BExt : ({0, 1}n)C → {0, 1}m such that for every n, , k, with k > log10(n) with
C = O(log n

log k), if X1, . . . ,XC are independent (n, k) sources,

|BExt(X1, . . . ,XC)− Um| < 2−kc1

with m = c2k.

The proof of Theorem 4.1 appears in Section 7.

4.2 A 2-Source Somewhere Extractor with exponentially small error

A technical tool that we will need is a somewhere extractor from 2 independent sources which has
a polynomial number of output rows, but exponentially small error. This will be used to generate
the responses throughout our disperser construction. Note that we can get a polynomial number of
output rows by using a seeded extractor with just one of the sources, but in this case the errror would
not be small enough. In addition, in this section we will prove some other technical properties of this
construction which will be critical to our construction.

Theorem 4.3 (Low Error Somewhere Extractor). There is a constant γ and a polynomial time
computable function SE : ({0, 1}n)2 → ({0, 1}m)l such that for every n, k(n) > log10 n, log4 n < m < γk
and any two (n, k) sources X,Y , we have:

• Few rows l = poly(n).

• Small error SE(X,Y) is 2−10m-close to a convex combination of somewhere random distribu-
tions and this property is strong with respect to both X and Y . Formally:

Pr
y←RY

[SE(X, y) is 2−10m-close to being SR] > 1− 2−10m

• Hitting strings Let c be any fixed m bit string. Then there are subsources X̂ ⊂ X, Ŷ ⊂ Y of
deficiency 2m and an index i such that Pr[c = SE(X̂, Ŷ)i] = 1.

• Fixed rows on low deficiency subsources Given any particular row index i, there is a
subsource (X̂, Ŷ) ⊂ (X,Y) of deficiency 20m such that SE(X̂, Ŷ)i is a fixed string. Further,
(X,Y) is 2−10m-close to a convex combination of subsources such that for every (X̂, Ŷ) in the
combination,

17

– X̂, Ŷ are independent.

– SE(X̂, Ŷ)i is constant.

The {Hitting strings} and {Fixed rows on low deficiency subsources} properties may at
first seem quite similar. The difference is in the quantifiers. The first property guarantees that for
every string c, we can move to low deficiency subsources such there exists an index in the output of
SE where the string is seen with probability one. The second property guarantees that for every index
i, we can move to low deficiency subsources where the output in that index is fixed to some string.

Proof. The algorithm SE is the following:

Algorithm 4.4.

SE(x, y)
Input: x, y samples from two independent sources with min-entropy k.
Output: A ℓ×m boolean matrix.
Subroutines:

• A seeded extractor Ext with O(log n) seed length (for example by Theorem 3.23), setup to extract
from entropy threshhold 0.9k, with output length m and error 1/100.

• The extractor Raz from Theorem 3.26, setup to extract m bits from an (n, k) source using a
weak seed of length m bits with entropy 0.9m. We can get such an extractor with error 2−10m.

1. For every seed i to the seeded extractor Ext, output Raz(x,Ext(y, i)).

We will prove each of the items in turn.

• Few rows By construction.

• Small error We will argue that the strong error with respect to Y is small. Consider the set of
bad y’s,

B = {y : ∀i|Raz(X,Ext(y, i))− Um| ≥ 2−γ′k}

where here γ′ is the constant that comes from the error or Raz’s extractor.

We would like to show that this set is very small.

Claim 4.5. |B| < 20.9k

Suppose not. Let B denote the source obtained by picking an element of this set uniformly
randomly. Since Ext has an entropy threshhold of 0.9k, there exists some i such that Ext(B, i)
is 1/100 close to uniform. In particular, |Supp(Ext(B, i))| ≥ 0.992m > 20.9m. This is a contra-
diction, since at most 20.9m seeds can be bad for Raz.

Thus we get that

Pr
y←RY

[|Raz(X,Ext(y, i)) − Um| < 2−kγ′

] < 20.9k/2k = 2−0.1k

Setting γ = γ′/10, we get that 10m < 10γk < γ′k and 10m < 0.1k.

18

• Hitting strings The proof for this fact follows from the small error property. Let Ỹ = Y |(Y /∈
B), where B is the set of bad y’s from the previous item. Then we see that for every y ∈ Supp(Ỹ),
there exists some i such that |Raz(X,Ext(y, i))−Um| < 2−10m. By the pigeonhole principle, there
must be some seed s and some index i such that:

Pr
y←RỸ

[Ext(y, i) = s] ≥ 1

l2m

Fix such an i and string s and let Ŷ = Ỹ |Ext(Ỹ , i) = s. This subsource has deficiency at most
1 + m + log l < 2m from Y . Thus Ext(Ŷ , i) is fixed and |Raz(X,Ext(y, i)) − Um| < 2−10m. Note
that the i’th element of the output of SE(X, Ŷ) is a function only of X. Thus we can find a
subsource X̂ ⊂ X of deficiency at most 2m and string c ∈ {0, 1}m such that SE(X̂, Ŷ)i = c.

• Fixed rows on low deficiency subsources Let i be any fixed row. For any m-bit string a,
let Ya ⊂ Y be defined as Y |(Ext(Y, i) = a). By Lemma 3.13, for any ℓ > 1,
Pra←RExt(Y,i)[Ya has deficiency more than m + ℓ] < 2−ℓ.

Let A = {a : Ya has deficiency more than m + ℓ}. Then, by Lemma 3.13, we see that Y is
2−ℓ-close to a source Y , where Pr[Ext(Y , i) /∈ A] = 1, and Y has min-entropy at least k − 1.

We break up Y into a convex combination of variables Ŷa = Y |(Ext(Y , i) = a), each of deficiency
at most m + ℓ.

Similarly we can argue that X is 2−ℓ-close to a random variable Xa with min-entropy k − 1,
where Xa is a convex combination of subsources X̂a,b with deficiency at most m + ℓ such that

Raz(X̂a,b, a) is constant and equal to b.

Thus we obtain our final convex combination. Each element X̂a,b, Ŷb of the combination is associ-

ated with a pair (a, b) of m bit strings. By construction we see that the i’th row SE(X̂a,b, Ŷb)i = a

and that X̂a,b, Ŷb each have min-entropy k −m− ℓ.

5 Informal overview of the construction and analysis of the disperser

In this section we give a detailed yet informal description of our construction and analysis. On the
one hand this description presents the construction and steps of the analysis in a very detailed way.
On the other hand, the fact that this section is not a formal proof allows us to abstract many tedious
technical details and parameters and to focus only on what we consider to be central. This section
complements Section 2 and provides a detailed explanation of the challenge-response mechanism.

The structure of this presentation closely imitates the way we formally present our construction
and proof in Section 6 and we make use of “informal lemmas” in order to imitate the formal presen-
tation and make the explanation more clear. We stress that these “informal lemmas” should not be
interpreted as formally claimed by this paper (and these lemmas typically avoid being precise regard-
ing parameters). We furthermore stress that the content of this section is not used in the latter part
of the paper and the reader may safely skip to the formal presentation in Section 6 if she wishes.

The setup We are given two input sources X,Y which have some min-entropy and would like to
output a non-constant bit.

19

The idea behind the construction is to try to convert the first source X into a block-source or at
least find a subsource (Definition 3.3) Xgood ⊂ X which is a block-source. Once we have such a block-
source, we can make use of some of the technology we have developed for dealing with block-sources
(for instance the extractor BExt of Theorem 4.1).

One problem with this approach is that there is no deterministic procedure that transforms a
source into a block-source, or even to a short (e.g. of length much less than n

k) list of sources, one
of which is guaranteed to be a block-source. Still, as we will explain shortly, we will manage to use
the second source Y to “convert” X into a block-source. Loosely speaking, we will show that there
exist independent subsources Xgood ⊂ X and Y good ⊂ Y such that Xgood is a block-source and our
construction “finds” this block-source when applied on Xgood, Y good. This task of using one source to
find the entropy in the other source while maintaining independence (on subsources) is achieved via
the “challenge-response mechanism”.

We describe our construction in two phases. As a warmup, we first discuss how to use the challenge-
response mechanism in the case when the two sources have linear min-entropy (this was first done by
Barak et al. [BKS+05]). Then we describe how to adapt the challenge-response mechanism for the
application in this paper.

5.1 Challenge-Response Mechanism for Linear Min-Entropy

The challenge-response mechanism was introduced in [BKS+05] as a way to use one source of ran-
domness to find the entropy in another source. Since they only constructed 2 source dispersers that
could handle linear min-entropy, they avoided several complications that we will need to deal with
here. Still, as an introduction to the challenge-response mechanism, it will be enlightening to revisit
how to use the mechanism to get dispersers for linear min-entropy. Below we will give a sketch of how
we might get such a disperser using the technology that is available to us at this point. Note that the
construction we discuss here is slightly different from the one originally used by Barak et al.

We remind the reader again of the high level scheme of our construction. We will construct a
polynomial time computable function Disp with the property that for any independent linear entropy
sources X,Y , there exist subsources Xgood ⊂ X,Y good ⊂ Y with the property that Disp(Xgood , Y good) is
both 0 and 1 with positive probability. Since Xgood, Y good are subsources of the original sources, this
implies that Disp is a disperser even for the original sources. Now let us describe the construction.

Let us assume that for linear min-entropy our extractor BExt requires only 2 blocks; so we have
at our disposal a function BExt : {0, 1}n × {0, 1}n → {0, 1} with the property that if X1 ◦ X2 is
a block-source with linear min-entropy, and Y is an independent block-source, BExt(X1 ◦ X2, Y) is
exponentially close to being a uniform bit.

We are given two sources X,Y which are independent sources with min-entropy δn, where δ is
some small constant. We would be in great shape if we were given some additional advice in the form
of an index j ∈ [n] such that X[j] ◦X is a block-source with min-entropy say δn/10 (i.e. the first j bits
of X have min-entropy δn/10 and conditioned on any fixing of these bits the rest of the source still
has min-entropy at least δn/10). In this case we would simply use our block-source extractor BExt

and be done. Of course we don’t have any such advice, on the other hand, the good news is that it
can be shown that such an index j does exist.

Step 1: Existence of a structured subsource We associate a tree of parts with the source X. In
this warmup this will be a tree of depth 1, with the sample from X at the root of the tree. We break
the sample from the source X into a constant t ≫ 1/δ number of equally sized parts x = x1, . . . , xt,

20

each containing n/t consecutive bits. These are the children of the root. Our construction will now
operate on the bits of the source that are associated with the nodes of this tree.

In the first step of the analysis, we use standard facts (Lemma 3.20 and Corollary 3.21) to show
that:

Informal Lemma 5.1. If X has min-entropy δn, there is a j ∈ [t] and a subsource X̂ ⊂ X in which:

• X̂i is fixed for i < j.

• H∞(X̂j) ≥ δ2n/10).

• (X̂j+1, . . . , X̂t) has conditional min-entropy at least δ2n/10 given any fixing of X̂j .

Given this lemma, our goal is to find this index j (which is the ’advice’ that we would like to
obtain). We will be able to do so on independent subsources of X̂ , Y . This is achieved via the
challenge-response mechanism.

Step 2: Finding the structure using the challenge-response mechanism Here are the basic
pieces we will use to find the index j:

1. A polynomial time computable function Challenge : {0, 1}n ×{0, 1}n → {0, 1}clen. In view of the
final construction, we view the output of this function as a matrix with 1 row of length clen. We
also require the following properties:

Output length is much smaller than entropy clen≪ δ20n.

Output has high min-entropy Given X̂, Ŷ which are independent sources with min-entropy
δ2n/100 each, Challenge(X̂, Ŷ) is statistically close to having min-entropy Ω(clen).

In extractor terminology, these conditions simply say that Challenge is a condenser for 2 in-
dependent sources. In [BKS+05] such a function (in fact a somewhere random extractor) was
constructed using results from additive number theory.

2. A polynomial time computable function Response : {0, 1}n×{0, 1}n → ({0, 1}clen)ℓ. We interpret
the output as a list of ℓ matrices that have the same dimensions as the challenge matrix given
by the Challenge function above. We use the somewhere extractors from Theorem 4.3 as the
function Response. Below we recall that this function satisfies the following properties (that will
also be used in our final construction):

• Few matrices ℓ = poly(n)6.

• Hitting matrices Given X̂, Ŷ , independent sources with min-entropy δ3n each and any
fixed matrix α ∈ {0, 1}clen, there there exists i and low deficiency subsources X ′ ⊂ X̂, Y ′ ⊂
Ŷ such that in these subsources Response(X ′, Y ′)i = α with probability 1.

• Fixed matrices on low deficiency subsources Given any index i and any independent
sources X̂, Ŷ , we can decomposse (X̂, Ŷ) into a convex combination of low deficiency inde-
pendent sources such that for every element of the combination X ′, Y ′, Response(X ′, Y ′)i
is fixed to a constant.

6In [BKS+05] the component they use for this step has an ℓ which is only constant. We can tolerate a much larger ℓ
here because of the better components available to us.

21

Given the explicit functions Challenge and Response satisfying the properties above, we can now
discuss how to use them to find the index j given samples x←R X and y ←R Y .

Definition 5.2. Given a challenge matrix and a list of response matrices, we say that the challenge
is responded by the response if the challenge matrix is equal to one of the matrices in the response.

To find the index j:

1. Compute the response Response(x, y).

2. For every i ∈ [t], compute a challenge Challenge(xi, y).

3. Set r to be the smallest i for which Challenge(xi, y) was not responded by Response(x, y).

We remind the reader that we will prove that the disperser works by arguing about subsources of
the original adversarially chosen sources X,Y . Recall that we are currently working with the subsource
X̂ ⊂ X which has the properties guaranteed by Informal Lemma 5.1. Using the functions Challenge

and Response, we can then prove the following lemma:

Informal Lemma 5.3. There exist low deficiency subsources Xgood ⊂ X̂, Y good ⊂ Y s.t. in these
subsources r = j with high probability.

Proof Sketch: The lemma will follow from two observations.

Informal Claim 5.4. There are subsources Xgood ⊂ X̂, Y good ⊂ Y in which for every i < j,
Challenge(Xgood

i , Y good) is responded by Response(Xgood , Y good) with probability 1. Furthermore Xgood is
a block-source (with roughly the same entropy as X) and Y good has roughly the same entropy as Y .

Proof Sketch: Note that for i < j, X̂i is fixed to a constant, so Challenge(X̂i, Y) is a function only
of Y . Since the output length of Challenge is only clen bits, this implies (by Lemma 3.13) that there
exists a subsource Ŷ ⊂ Y of deficiency at most clen · t such that Challenge(X̂i, Ŷ) is fixed for every
i < j.

We can then use the {Hitting matrices} property of Response to find smaller subsources X ′ ⊂
X̂, Y ′ ⊂ Y s.t. there exists an index h1 for which Pr[Challenge(X ′1, Y

′) = Response(X ′, Y ′)hi
] = 1.

Repeating this, we eventually get subsources Xgood ⊂ X̂, Y good ⊂ Y s.t. for every i < j, there exists an
index hi such that s.t. Pr[Challenge(Xgood

i , Y good) = Response(Xgood , Y good)hi
] = 1, i.e., the challenge of

every part of the source before the jth part is responded with probability 1 in these subsources.
The fact that Xgood remains a block-source follows from Corollary 3.19.

Informal Claim 5.5. Challenge(Xgood

j , Y good) is not responded by Response(Xgood , Y good) with high
probability.

Proof Sketch: The argument will use the union bound over ℓ events, one for each of the ℓ matrices
in the response. We want to ensure that each matrix in the response is avoided by the challenge.
Consider the ith matrix in the response Response(Xgood, Y good)i. By the {Fixed matrices on low

deficiency subsources} property of Response, we know that Xgood , Y good is a convex combination of
independent sources in which the ith matrix is fixed to a constant. For every element of this convex
combination, the probability that the challenge is equal to the ith response is extremely small by the
property that the output of Challenge has high min-entropy.

22

Step 3: Computing the output of the disperser The output of the disperser is then just
BExt(x[r] ◦x, y). To show that our algorithm outputs a distribution with large support, first note that
BExt(Xgood

[r] ◦ Xgood, Y good) is a subsource of BExt(X[r] ◦ X,Y). Thus it is sufficient to show that that

BExt(Xgood

[r] ◦Xgood, Y good) has a large support. However, by our choice of r, r = j with high probability

in Xgood, Y good. Thus BExt(Xgood

[r] ◦Xgood, Y good) is statistically close to BExt(Xgood

[j] ◦Xgood, Y good) and hence
is statistically close to being uniform.

5.2 The Challenge-Response Mechanism in Our Application

Let us summarize how the challenge-response mechanism was used for linear min-entropy. The first
step is to show that in any general source there is a small deficiency subsource which has some “nice
structure”. Intuitively, if the additional structure (in the last case the index j) was given to the
construction, it would be easy to construct a disperser. The second step is to define a procedure (the
challenge-response mechanism) which is able to “find” the additional structure with high probability,
at least when run on some subsource of the good structured subsource. Thus, on the small subsource it
is easy to construct a disperser. Since the disperser outputs two different values on the small subsource,
it definitely does the same on the original source.

Now we discuss our disperser construction. In this discussion we will often be vague about the
settings of parameters, but will give pointers into the actual proofs where things have been formalized.

There are several obstacles to adapting the challenge-response mechanism as used above to handle
the case of min-entropy k = no(1), which is what we achieve in this paper. Even the first step of the
previos approach is problematic when the min-entropy k is less than

√
n. There we found a subsource

of X which was block-source. Then we fixed the leading bits of the source to get a subsource which
has a leading part which is fixed (no entropy), followed by a part with significant (medium) entropy,
followed by the rest of the source which contains entropy even conditioned on the medium part.

When k <
√

n, on the one hand, to ensure that a single part of the source Xi cannot contain all
the entropy of the source (which would make the above approach fail), we will have to make each
part be smaller than

√
n bits. On the other hand, to ensure that some part of the source contains at

least one bit of min-entropy, we will have to ensure that there are at most
√

n parts, otherwise our
construction will fail for the situation in which each part of the source contains k/

√
n bits of entropy.

These two constraints clearly cannot be resolved simultaneously. Thus it seems like there is no simple
deterministic way to partition the source in a way which nicely splits the entropy of the source.

The fix for this problem is to use recursion. We will consider parts of very large size (say n0.9), so
that the parts may contain all the entropy of the source. We will then develop a finer grained challenge-
response mechanism that we can use to handle three levels of entropy differently: low, medium or high,
for each part of the source. If we encounter a part of the source that has low entropy, as before we can
fix it and ensure that our algorithm correctly identifies it as a block with low entropy. If we encounter
a part which has a medium level of entropy, we can use the fact that this gives a way to partition
the source into a block-source to produce a bit which is both 0 and 1 with positive probability. We
will explain how we achieve this shortly. We note that here our situation is more complicated than
[BKS+05] as we do not have an extractor that can work with a block-source with only two blocks for
entropy below

√
n. Finally, if we encounter a part of the source which has a high entropy, then this part

of the source is condensed, i.e. its entropy rate is significantly larger than that of the original source.
Following previous works on seeded extractors, in this case we run the construction recursively on that
part of the source (and the other source Y). The point is that we cannot continue these recursive calls
indefinitely. After a certain number of such recursive calls, the source that we are working with will

23

have to have such a high entropy rate that it must contain a part with a medium level of entropy.
Although this recursive description captures the intuition of our construction, to make the analysis

of our algorithm cleaner, we open up the recursion to describe the construction and do the analysis.
Now let us give a more concrete description of our algorithm. Let C(δ) be the number of blocks

the extractor BExt of Theorem 4.1 requires for entropy k = nδ and let t be some parameter to be
specified later (think of t as a very small power of k).

We define a degree-t tree with depth log n/ log t < log n tree Tn,t that we call the n, t partition tree.
The nodes of Tn,t are subintervals of [1, n] defined in the following way:

1. The root of the tree is the interval [1, n].

2. If a node v is identified with the interval [a, b] of length greater than k1/3, we let v1, . . . , vt denote
the t consecutive disjoint length-|v|/t subintervals of v. That is, vi = [a + b−a

t (i− 1), a + b−a
t i].

We let the ith child of v be vi.

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������

������
������
������

������
������
������

������
������
������

������
������
������

������
������
������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

����
����
����

����
����
����

high

med

high

med

V
med

X med

Fixed parts

Vb

par(V)med

Figure 1: Finding two related medium parts in Xmed

For a string x ∈ {0, 1}n and a set S ⊆ [1, n] we’ll denote by xS the projection of x onto the
coordinates of S. If v is a node in Tn,t then xv denotes the projection of x onto the interval v.

Step 1 of analysis In analogy with our discussion for the case of linear min-entropy, we can show
that any source X with min-entropy k contains a very nice structured low deficiency subsource X̂ .
We will show that there is a vertex vb in the tree s.t.:

• Every bit of X̂ that precedes the bits in vb is fixed.

24

• There are C children i1, . . . , iC of vb s.t. X̂i1 , X̂i2 , . . . , X̂iC is a C-block-source with entropy at
least

√
k in each block (even conditioned on previous blocks).

• There is an ancestor vmed of vb such that X̂vmed , X̂ is a block-source with k0.9 entropy in each
block.

These three properties are captured in Figure 1.
This is done formally in Step 1 of the analysis.
As in the case of linear min-entropy, we would be in great shape if we were given vb, vmed, i1, . . . , iC.

Of course we don’t know these and even worse, this time we will not even be able to identify all of these
with high probability in a subsource. Another obstacle to adapting the construction for linear min-
entropy to the case of k = no(1) is that we don’t have a simple replacement for the function Challenge

that we had for the case of linear min-entropy. However we will be able to use the components that
are available to us to compute challenge matrices which are still useful.

The construction will proceed as follows:

1. For every vertex v of the tree, we will compute a small (nrows×clen) challenge matrix Challenge(xv, y)
of size len = nrows · clen, that is a function only of the bits that correspond to that vertex in x
and all of y.

2. For every vertex v of the tree, we will associate a response Response(xv, y) which is interpreted
as a list of poly(n) matrices each of size len = nrows · clen.

For every vertex v in the tree, we will call the set of vertices whose intervals lie strictly to the left
of v (i.e. the interval does not intersect v and lies to the left of v), and whose parent is an ancestor
of v, the left family of v. In Step 2 of the formal analysis, we will find low deficiency subsources
Xgood ⊂ X̂, Y good ⊂ Y s.t. for every vertex v which is in the left family of vb, Challenge(Xgood

v , Y good) is
a fixed matrix that occurs in Response(Xgood

par(v), Y
good) with probability 1.

In Step 3 of the formal analysis, we will show that for every vertex v which lies on the path from
vb to the root Challenge(Xgood

v , Y good) is statistically close to being somewhere random. For technical
reasons we will actually need a property which is stronger than this. We will actually show that for
every vertex v which lies on the path from vb to the root and all low deficiency subsources X ′ ⊂
Xgood, Y ′ ⊂ Y good, Challenge(X ′v, Y

′) is statistically close to being somewhere random.
At this point we will have made a lot of progress in the construction and analysis. We have found

subsources Xgood, Y good s.t. the challenges for all the vertices that occur to the left of the path to vb

have been fixed. Moreover the challenges for vertices on this good path have high min-entropy, even if
we move to any subsources of small deficiency X ′, Y ′. In some sense we will have identified the good
path that goes to vb in these subsources, though we still don’t know where vb, vmed are on this path.
From here we will need to do only a little more work to compute the output of the disperser.

Now let us describe how we compute the challenges and ensure the properties of Xgood, Y good that
we discussed above more concretely. We will need the following components:

1. To generate the challenges, we will need a polynomial time computable function BExt : ({0, 1}n)C×
{0, 1}n → {0, 1}clen that is an extractor for a (C,

√
k) block-source and an independent

√
k source.

Here think of clen as roughly k0.9.

2. The second component is exactly the same as the second component from the case of linear
min-entropy and will be used to generate the responses. We need a polynomial time computable
function Response : {0, 1}n × {0, 1}n → ({0, 1}len)ℓ (the output is interpretted as a list of ℓ
nrows× clen matrices) with the property that:

25

• Few outputs ℓ = poly(n).

• Hitting matrices Given X̂, Ŷ , independent sources with min-entropy
√

k each and any
fixed nrows×clen matrix c, there there exists i and low deficiency subsources X ′ ⊂ X̂, Y ′ ⊂ Ŷ
such that in these subsources Response(X ′, Y ′)i = c with probability 1.

• Fixed matrices on low deficiency subsources Given any independent sources X̂, Ŷ ,
and an index i, (X̂, Ŷ) is a convex combination of low deficiency independent sources such
that for every element (X ′, Y ′) of the combination, Response(X ′, Y ′)i is fixed to a constant.

As before, we will use the function SE promised by Theorem 4.3 for this component.

We define for every node v of the tree a relatively small challenge matrix Challenge(xv, y) with nrows

rows of length clen each. We will set up the size of these challenge matrices as roughly len = k0.9.
Let xv1 , . . . , xvt be the division of xv to t sub-parts. Then, we let Challenge(xv, y) contain one row

that is equal to BExt(xvi1
◦ . . . ◦ xviC

, y) for every possible C-tuple 1 ≤ i1 < i2 < · · · < iC ≤ t. If v is
a leaf then Challenge(xv, y) has no other rows and we will pad the matrix with 0’s to make it of size
nrows · clen. If v is a non-leaf then we let Challenge(xv1 , y), . . . ,Challenge(xvt , y) be the challenges of all
the children of v in the tree. We will append the rows of Challenge(xvi , y) to Challenge(xv , y) where i
is the smallest index such that Challenge(xvi , y) does not equal any of the matrices in Response(xv, y).
Again, if the matrix we obtain contains fewer than nrows rows, we pad it with 0s to ensure that it is
of the right size.

Note that in this way every challenge Challenge(xv, y) is indeed only a function of the bits in xv, y.
This will be crucial for our analysis.

Step 2 of analysis: ensuring that challenges are responded in left family The following
claim is proved in Step 2 of the analysis (Claim 6.12).

Informal Claim 5.6 (Left family challenges are responded). There are subsources Xgood ⊂ X̂, Y good ⊂
Y in which for every vertex w to the left of vb whose parent par(w) lies on the path from vb to the
root, Challenge(Xgood

w , Y good) is responded by Response(Xgood

par(w), Y
good) with probability 1.

Proof Sketch: Note that for w which is to the left of vb, X̂w is fixed to a constant, so Challenge(X̂w, Y) is
a function only of Y . Since the output length of Challenge is only len bits, this implies (by Lemma 3.13)
that there exists a subsource Ŷ ⊂ Y of deficiency at most len · t log n such that Challenge(X̂w, Ŷ) is
fixed for every such w. Then, since X̂v, Ŷ are still high entropy sources for every v on the path from
vb to the root, we can repeatedly use the {Hitting matrices} property of Response to find smaller
subsources Xgood ⊂ X̂, Y good ⊂ Ŷ s.t. for every w to the left of v, ∃l s.t. Pr[Challenge(X̂w, Ŷ) =
Response(X̂par(w), Ŷ)l] = 1.

Step 3 of analysis: ensuring that challenges along the good path are somewhere random

We argue that the challenges along the good path are statistically close to being somewhere random
in Xgood, Y good. This is done formally in Step 3 in Lemma 6.13. The intuition for this is that first
the challenge associated with the vertex vb is somewhere random since vb has children that form a
block-source. We will then show that with high probability this challenge of vb appears in the challenge
matrix of every ancestor of vb.

Informal Claim 5.7 (Challenges along path to vb are somewhere random). For all low deficiency sub-
sources X ′ ⊂ Xgood , Y ′ ⊂ Y good and any vertex v that’s on the path from vb to the root, Challenge(X ′v , Y

′)
is statistically close to being somewhere random.

26

Proof Sketch: We will prove this by induction on the distance of the vertex v from vb on the path.
When v = vb, note that Challenge(X ′

vb , Y
′) contains BExt(xvi1

◦. . .◦xviu
, y) for every C-tuple of children

vi1 , . . . , viC of vb. By the guarantee on X̂, we know that there exist i1, . . . , iC s.t. X̂vi1
, . . . , X̂viC

is a

C-block-source. Since X ′ is a low deficiency subsource of X̂ , X ′vi1
, . . . , X̂ ′viC

must also be close to a C

block-source by Corollary 3.19. Thus we get that Challenge(X ′
vb , Y

′) is statistically close to somewhere
random.

To do the inductive step we show that Challenge(X ′
par(v), Y

′) is close to being somewhere random

given that Challenge(X ′′v , Y ′′) is somewhere random for even smaller subsources X ′′ ⊂ X ′, Y ′′ ⊂ Y ′.
The argument will use the union bound over ℓ events, one for each of the ℓ strings in the response.

We want to ensure that each string in the response is avoided by the challenge. Consider the ith string
in the response Response(X ′

par(v), Y
′)i. By the {Fixed matrices on low deficiency subsources}

property of Response, we know that X ′, Y ′ is a convex combination of independent sources in which
the ith string is fixed to a constant.

Now every element of this convex combination X ′′, Y ′′ is a subsource of the original sources, the
probability that Challenge(X ′′v , Y ′′) is equal to the ith response is extremely small by the property that
the output of Challenge(X ′′v , Y ′′) has high min-entropy. Thus with high probability Challenge(X ′

par(v), Y
′)

contains Challenge(X ′v, Y
′) as a substring. This implies that Challenge(X ′

par(v), Y
′) is statistically close

to being somewhere random.

Step 4 of analysis: ensuring that the disperser outputs both 0 and 1 The output for
our disperser is computed in a way that is very different from what was done for the case of linear
min-entropy. The analyis above included two kinds of tricks:

• When we encountered a part of the source which had a low amount of entropy, we went to
a subsource where the part was fixed and the corresponding challenge was responded with
probability 1.

• When we encountered a part of the source which had a high level of entropy, we went to a
subsource where the corresponding challenge is not responded with high probability

The intuition for our disperser is that if we encounter a part of source (such as vmed above) which
both has high min-entropy and such that fixing that part of the source still leaves enough entropy in
the rest of the source, we can ensure that the challenge is both responded and not responded with
significant probability. We will elaborate on how to do this later on. This is very helpful as it gives us
a way to output two different values! By outputting “0” in case the challenge is responded and “1” in
case it is not we obtain a disperser. Now let us be more concrete.

Definition 5.8. Given two nrows× clen matrices and an integer 1 ≤ q ≤ clen, we say that one matrix
is q-responded by the other if the first q columns of both matrices are equal.

The first observation is the following claim which is proved formally in Step 4 (Lemma 6.14). The
claim will be used with q ≪ clen, len.

Below we use the symbol ∼< to denote an inequality that is only approximate in the sense that in
the formal analysis there are small error terms (which may be ignored for the sake of intuition) that
show up in the expressions.

Informal Claim 5.9. For every vertex v on the path from vb to the root,

Pr[Challenge(Xgood

v , Y good) is q-responded by Response(Xgood

par(v), Y
good)] ∼< 2−q

27

Proof Sketch: As before, we will use the {Fixed matrices on low deficiency subsources} property
of Response and the fact that Challenge(X ′v, Y

′) is somewhere random for any low deficiency subsources
X ′ ⊂ Xgood, Y ′ ⊂ Y good to argue that the probability that for every index q,

Pr[Challenge(Xgood

v , Y good) is q-responded by Response(Xgood

par(v), Y
good)q] ∼< 2−q

Then we just apply a union bound over the poly(n) response strings to get the claim.

Next we observe that for the vertex vmed, its challenge is reponded with a probability that behaves
very nicely. In particular, note that we get that the challenge is both responded and not responded
with noticeable probability. This is Lemma 6.16 in the formal analysis.

Informal Claim 5.10.

2−q·nrows
∼< Pr[Challenge(Xgood

vmed , Y
good) is q-responded by Response(Xgood

par(vmed)
, Y good)] ∼< 2−q

Proof Sketch: The idea is that Xgood

par(vmed)
is a convex combination of sources X ′

par(vmed)
in which X ′

par(vmed)

is fixed, but X ′ still has a significant amount of entropy. Thus we are in the situation where we
proved Claim 5.6. We can then show that X ′, Y good are a convex combination of sources X ′′, Y ′′ s.t.
Challenge(X ′′

vmed , Y
′′) is fixed to a constant. Thus

Pr[Challenge(X ′′vmed , Y
′′) is q-responded by Response(X ′′

par(vmed), Y
′′) ∼> 2−q·nrows

This implies that

Pr[Challenge(Xgood

vmed , Y
good) is q-responded by Response(Xgood

par(vmed)
, Y good) ∼> 2−q·nrows

The upper bound is just a special case of Claim 5.9.

Given these two claims, here is how we define the output of the disperser:

1. We define a sequence of decreasing challenge lengths: clen ≫ clen1,0 ≫ clen1,1 ≫ clen1,2 ≫
clen2,0 ≫ clen2,1 ≫ clen2,2 ≫ clen3,0 · · · .

2. If v is not a leaf, let v1, . . . , vt be v’s t children. Let q be the depth of v. If for every i
Challenge(xvi , y) is clenq,0-responded by Response(xvi , y), set val(xv, y) = 0, else let i0 be the
smallest i for which this doesn’t happen. Then,

(a) If Challenge(xvi0
, y) is clenq,1-responded by Response(xv , y), set val(xv, y) = 1.

(b) Else if Challenge(xvi0
, y) is clenq,2-responded but not clenq,1-responded by Response(xv, y),

set val(xv, y) = 0.

(c) Else set val(xv, y) = val(xvi0
, y).

3. The disperser outputs val(x, y).

Let h be the depth of vmed. The correctness is then proved by proving two more claims:

Informal Claim 5.11. The probability that val(Xgood

vmed , Y
good) differs from val(Xgood , Y good) is bounded

by 2−clenh,0.

28

Proof Sketch: In fact we can argue that with high probability, val(Xgood

vmed , Y
good) = val(Xgood

par(vmed)
, Y good) =

val(Xgood

par(par(vmed))
, Y good) = · · · = val(Xgood , Y good). The reason is that by Claim 5.9, for any vertex v on

the path from vmed to the root at depth q,

Pr[val(Xgood

v , Y good) 6= val(Xgood

par(v))] ∼< 2−clenq,0 ≪ 2−clenh,0

Thus, by the union bound, we get that with high probability all of these are in fact equal.

Next, we will argue that val(Xgood

vmed , Y
good) is both 0 and 1 with significant probability. This will

complete the proof, since this will show that val(Xgood , Y good) is both 0 and 1 with significant probability.

Informal Claim 5.12.

Pr[val(Xgood

vmed , Y
good)] = 1] ∼> 2−clenh,1

Pr[val(Xgood

vmed , Y
good)] = 0] ∼> 2−clenh,2

Proof Sketch: This follows from Claim 5.10. The probability that val(Xgood

vmed , Y
good) = 1 is lowerbounded

by the probability that Challenge(Xgood

vmed , Y
good) is clenh,1-responded by Response(Xgood

par(vmed)
, Y good) mi-

nus the probability that Challenge(Xgood

vmed , Y
good) is clenh,0-responded by Response(Xgood

par(vmed)
, Y good). By

Claim 5.10, we can ensure that this difference is significantly large.
The argument for the 0 output is very similar.

These two claims then ensure that overall Pr[val(Xgood , Y good) = 1] ∼> 2−clenh,1 and Pr[val(Xgood , Y good) =
0] ∼> 2−clenh,2 .

Thus val(X,Y) = {0, 1} as required.

6 Construction and analysis of the disperser

In this section we present the construction of the new 2-source disperser. We also prove that this
construction works (thus proving our main theorems Theorem 1.10,Theorem 1.3 and Corollary 1.4.
The formal presentation below closely follows the informal overview in Section 5.

6.1 Parameters

Setting the parameters We will first list the various parameters involved in the construction and
say how we will set them.

• Let n be the length of the samples from the sources.

• Let k be the entropy of the input sources. Set k = 2log0.9 n.

• Let c1 be the error constant from Theorem 4.1.

• Let C = O
(

log n
log k

)

be the number of blocks that the extractor BExt of Theorem 4.1 requires to

extract from
√

k entropy. (See Corollary 6.2 below for the precise parameters we use BExt for.)
Without loss of generality, we assume that c1 ≫ 1/C.

• We use t to denote the branching factor of the tree. We set t = n1/C4
.

• We use nrows = tC log n to denote the maximum number of rows in any challenge matrix.

29

Name Description Restrictions Notes

n Input length

k Entropy k Assume k ≥ 2log0.9 n

C Number of blocks for BExt O(log n/ log k) We always invoke BExt with
entropy ≥

√
k

t Degree of partition tree t = n1/C4

c1 Error parameter of BExt Inherited from BExt Corol-
lary 6.2.

nrows No. of rows in challenges and
responses

nrows ≤ (log n)tC

clen Length of each row in chal-
lenges and responses

clen = n1/C2

clenq,r Shorter challenge lengths clenq,r = n
1

(3q+r)C2

Table 1: Parameters used in the construction

• We use clen to denote the length of every row in a challenge matrix. We set clen = n1/C2
.

• We use len = nrows · clen to denote the total size of the challenge matrices.

• We use clenq,r to denote smaller challenge lengths and analogously define lenq,r = nrows · clenq,r.

We set clenq,r = n
1

(3q+r)C2 .

Constraints needed in analysis Here are the constraints that the above parameters need to satisfy
in the analysis.

• t1/C4 ≥ 20C, used in the proofs of Lemma 6.9 and Lemma 6.10.

• k
(10t2·C)2 ≥ k0.9, used at the end of Step 1 in the analysis.

• clen3 = o(k0.9), use at the end of Step 1 in the analysis and in the proof of Lemma 6.13.

• clen = o(kc1), used in the proof of Lemma 6.15.

• t · len · log n = o(clen2.1)⇔ tC+1 · log2 n = o(clen1.1), used at the end of Step 2 in the analysis.

• For any positive integers q, r, nrows = o(clenq,r/clenq,r+1) and nrows = o(clenq,r+2/clenq+1,r),
used in the proof of Lemma 6.17.

6.2 Formal Construction

Definition 6.1. Given a challenge string Challenge interpretted as a d × len boolean matrix with
d ≤ nrows, a response string Response interpretted as a nrows × len boolean matrix, and a parameter
q, we say that Challenge is q-responded by Response, if the d× q sub-matrix of Challenge obtained by
taking the first q bits from each row is equal to the d× q sub-matrix of Response obtained by taking
the first q bits each from the first d rows of Response.

30

6.2.1 Components

Block extractor We’ll use the following corollary of Theorem 4.1:

Corollary 6.2 (Block Extractor). There is a constant c1 and a polynomial-time computable
function BExt : {0, 1}Cn × {0, 1}n → {0, 1}out s.t. if the parameters C, n, k are as above,

For every every independent sources X ∈ {0, 1}Cn and Y ∈ {0, 1}n with H∞(Y) ≥
√

k and
X = X1 ◦ · · · ◦XC a

√
k block-source,7

∣

∣

∣
BExt(X,Y)− Uclen

∣

∣

∣
< 2−kc1

Somewhere extractor with small error We will use the following corollary of Theorem 4.3 to
generate our responses. We will set up SE to work on strings with entropy

√
k with output

length clen. For every string x of length at most n (if the input is shorter we will pad it to make
it long enough), string y ∈ {0, 1}n, we define Response(x, y) to be the list of strings obtained
from SE(x, y), by interpretting each row of the output of SE(x, y) as an nrows × clen boolean
matrix.

Corollary 6.3 (Somewhere Extractor to generate Responses). For every n, k, len that satisfy
the constraints above, there is a polynomial time computable function Response : ({0, 1}n)2 →
({0, 1}len)ℓ (here the output is interpretted as a nrows × clen matrix) with the property that for
any two (n,

√
k) sources X,Y ,

• Few outputs ℓ = poly(n).

• Small error Response(X,Y) is 2−10len-close to a convex combination of somewhere random
distributions and this property is strong with respect to both X and Y . Formally:

Pr
y←RY

[Response(X, y) is 2−10len-close to being SR] > 1− 2−10len

• Hitting matrices Let c be any fixed nrows × clen matrix. Then there are deficiency 2len
subsources X̂ ⊂ X, Ŷ ⊂ Y such that Pr[c ∈ SE(X̂, Ŷ)] = 1.

• Fixed matrices on low deficiency subsources Given any particular index i, there are
20len deficiency subsources X̂ ⊂ X, Ŷ ⊂ Y such that Response(X̂, Ŷ)i is a fixed matrix.
Further, X,Y is 2−10len-close to a convex combination of subsources such that for every
X̂, Ŷ in the combination,

– X̂, Ŷ are independent.

– Response(X̂, Ŷ)i is constant.

– X̂, Ŷ are of deficiency at most 20len.

6.2.2 The Tree of Parts

We define a degree-t with depth log n/ log t < log n tree Tn,t that we call the n, t partition tree. The
nodes of Tn,t are subintervals of [1, n] defined in the following way:

1. The root of the tree is the interval [1, n].

7That is, for every i < C and x1, . . . , xi ∈ Supp(X1,...,i), H∞(Xi+1|x1, . . . , xi) > 10clen5.

31

2. If a node v is identified with the interval [a, b] of length greater than k1/3, we let v1, . . . , vt denote
the t consecutive disjoint length-|v|/t subintervals of v. That is, vi = [a + b−a

t (i− 1), a + b−a
t i].

We let the ith child of v be vi.

For a string x ∈ {0, 1}n and a set S ⊆ [1, n] we’ll denote by xS the projection of x onto the
coordinates of S. If v is a node in Tn,t then xv denotes the projection of x onto the interval v.

6.2.3 Operation of the algorithm Disp

Algorithm 6.4.

Disp(x, y)
Inputs: x, y ∈ {0, 1}n, Output: 1 bit.

1. On inputs x, y ∈ {0, 1}n, the algorithm Disp, working from the leaves upwards, will define for
each node v in the tree Tn,t a boolean challenge matrix (Challenge(xv, y)) with at most nrows

rows, each of length clen in the following way:

(a) If v is a leaf then Challenge(xv, y) is the matrix with a single all 0s row.

(b) If v is not a leaf then Challenge(xv, y) is computed as follows:

i. For each C-tuple 1 ≤ i1 < i2 < · · · < iC ≤ t let S = vi1 ∪ vi2 ∪ · · · ∪ viC and append the
row BExt(xS , y) to the matrix Challenge(xv, y).

ii. Let v1, . . . , vt be v’s t children. If there exists an i such that Challenge(xvi , y) is not
clen-responded by Response(xv, y), let i0 be the smallest such i and append all the rows
of Challenge(xvi0

, y) to Challenge(xv , y).

2. Next Disp will make a second pass on the tree, again working from the leaves upwards. This
time it will define for each node v in the tree Tn,t a bit val(xv, y) in the following way:

(a) If v is a leaf then val(xv, y) = 0.

(b) If v is not a leaf, let v1, . . . , vt be v’s t children. Let q be the depth of v. If for every i
Challenge(xvi , y) is clenq,0-responded by Response(xvi , y), set val(xv, y) = 0, else let i0 be
the smallest i for which this doesn’t happen. Then,

i. If Challenge(xvi0
, y) is clenq,1-responded by Response(xv , y), set val(xv, y) = 1.

ii. Else if Challenge(xvi0
, y) is clenq,2-responded but not clenq,1-responded by Response(xv, y),

set val(xv, y) = 0.

iii. Else set val(xv, y) = val(xvi0
, y).

3. The output of Disp is val(x[1,n], y).

6.3 Formal Analysis

We now prove Theorem 1.10 which is the main Theorem of this paper. We need to prove that Disp is
a 2-source disperser for min-entropy k = 2log0.9 n. and error parameter ǫ < 1/2. We show that given
two independent k-sources X and Y over n bits, Disp(X,Y) outputs both zero and one.

The analysis proceeds in several steps. In each step we make a restriction on one or both of the
input sources. When we’re done, we’ll get the desired subsources Xgood, Y good.

32

Definition 6.5 (Path to a vertex). Given a partition tree Tn,t and a vertex v, let Pv to denote the
path from the vertex v to the root in the tree Tn,t. That is, the set of nodes (including v) on the path
from v to the root.

Definition 6.6 (Parent of a vertex). Given a partition tree Tn,t and a vertex v, let par(v) denote the
parent of v.

Definition 6.7 (Left family of v). Given a partition tree Tn,t and a vertex v, let Lv denote the left
family of v, i.e. if v is the interval [c, d], define Lv = {[a, b] ∈ Tn,t : a ≤ c and par(w) ∈ Pv}.

Note that for every vertex v, |Lv| = O(t log n), since the number of vertices in Pv is at most log n.

6.3.1 Step 1: Preprocess X

The first step involves only the first source X. We’ll restrict X to a subsource Xmed that will have
some attractive properties for us: we will ensure that in Xmed there are a couple of parts which have
entropy but do not have all the entropy of the source. We first prove a general lemma — Lemma 6.8
— and then use it to prove Lemma 6.9 and Lemma 6.10 to show that we obtain the desired subsource
Xmed.

Lemma 6.8 (Two-types lemma.). Let X be a general k source over {0, 1}n divided into t parts
X = X1 ◦ · · · ◦ Xt. Let C be some positive integer and let k′ < k be such that (C + 1)k′ + 4t2 ≤ k.
Then, there exists a subsource X ′ ⊆ X of deficiency at most d = Ck′ + 2t2 that satisfies one of the
following properties:
Either

Somewhere high source — one high part There exists i ∈ [t] such that the first i− 1 parts of X ′

(namely X ′1, . . . ,X
′
i−1) are constant, and H∞(X ′i) ≥ k′.

or

Somewhere block-source — C medium parts There exist 0 < i1 < i2 < · · · < iC ≤ t such that
the first i1 − 1 parts of X ′ are constant for every j ∈ [C], and X ′i1 ,X

′
i2

, . . . ,X ′iC is a (C, k′/t)
block-source.

Proof. We let τ1 = 0, τ2 = k′/t, τ3 = k′ and τ4 = n and use Lemma 3.20 to reduce X to a deficiency 2t2

source X ′′ such that for every i ∈ [t] and every x1, . . . , xi−1 ∈ Supp(X ′′1,...,i−1), the conditional entropy
H∞(X ′′i |x1, . . . , xi−1) always falls into the same interval of [0, k′/t], [k′/t, k′] and [k′, n] regardless of
the choice x1, . . . , xi.

We call parts where this conditional entropy falls into the interval [0, k′/t) low, parts where this
entropy falls into the interval [k′/t, k′) medium and parts where it is at least k′ high. We divide to two
cases:

Case 1: if there are at most C − 1 medium parts before the first high part, we let i be the position
of the first high part and fix the first i − 1 parts to their most typical values. The conditional
entropy X1 given this prefix is still at least k′. Furthermore, since we fixed at most t low parts
and at most C medium parts the overall deficiency is at most (C− 1)k′ + tk′/t = Ck′.

Case 2: If there are at least C medium parts in the source, we let i be the position of the first medium

part and fix the first i − 1 parts to their most typical value. All medium parts remain medium

conditioned on this prefix and the entropy we lose is at most tk′/t ≤ k′.

33

We’ll now use Lemma 6.8 to show that we can restrict the input source X to a subsource X sb (for
“somewhere block”) satisfying some attractive properties:

Lemma 6.9. Let X be a source over {0, 1}n with min-entropy k. Let C, t be values satisfying t1/C4 ≥
20C. Then, there exists a deficiency k/10 + 4t2 log n subsource X sb of X and a vertex vmed of Tn,t with
the following properties:

• For every v ∈ Lvmed, X sb
v is fixed to a constant.

• The source X sb

par(vmed)
is a (C, k

20tCn1/C4)-somewhere block-source.

• X sb

vmed is the first block of the block-source in X sb

par(vmed)
.

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

������
������
������
������

������
������
������
������

����
����
����

����
����
����

high

high

med

V
med

Xsb

Fixed parts

par(V)med

Figure 2: Finding a medium part in X sb

Proof. We prove the lemma by induction on ⌈log(n/k)⌉ = ⌈log n− log k⌉. If n = k then this is the
uniform distribution and everything is trivial. We invoke Lemma 6.8 with parameter k′ = k/(20C) to
obtain a deficiency k/20 + 4t2 subsource X ′ that is either k′-somewhere high or (C, k′/t)-somewhere
block-source.

If X ′ is (C, k′/t)-somewhere block-source then set X sb = X ′, par(vmed) = [1, n] and vmed correspond-
ing to the first part of the block-source given by Lemma 6.8. Since k′/t = k/(20tC) we have that
X sb, vmed satisfy the properties in the conclusion of the lemma.

The second possibility is that X ′ is a k′-somewhere high source. We let i be the index of the
high block of entropy k′, and let vi be the corresponding interval. Note that X ′vj

attains some fixed

value with probability 1, for all j < i. Let n′ = |vi| = n/t. Since n′

k′ = n
k

20C
t

< n
4k we have that

log(n′/k′) < log(n/k)− 2 and so can assume by the induction hypothesis that the statement holds for
the source Z = X ′vi

. This means that we have a subsource Z ′ ⊂ Z of deficiency k′/10 + 4t2 log n′ of Z

and a node par(vmed) in the tree Tn′,t such that (below we use that t1/C4 ≥ 20C):

34

• For every v ∈ Lvmed , Z ′v is fixed to a constant.

• The source Z ′
par(vmed)

is a (C, k′

20tCn′1/C4 = k

20tCn1/C4 · t1/C4

20C ≥ k

20tCn1/C4)-somewhere block-source.

• Z ′
vmed is the first block of the block-source in Z ′

par(vmed)
.

We define X sb to be the natural extension of the subsource Z ′ to a subsource of X ′. Then we see
that X sb ⊂ X ′ is of deficiency at most k′/10 + 4t2 log n′. Since log n′ ≤ log n − 1 and k′/10 < k/20,
k′/10+4t2 log n′ ≤ k/20+4t2(log n−1). Hence X sb ⊂ X is a source of deficiency at most k/10+4t2 log n.
It is clear that X sb and par(vmed) satisfy our requirements.

Note that by our setting of parameters, the entropy of the medium part promised by the above
lemma is actually k

20tCn1/C4 = k
20t2C

.

Next we show that by invoking the above lemma twice, we can move to a subsource Xmed that has
even more structure.

Lemma 6.10. Let X be a source over {0, 1}n with min-entropy k. Let C, t be as above. Then, there
exists a deficiency k/5 + 8t2 log n subsource Xmed of X and three vertices par(vmed), vmed and vb = [a, b]
of Tn,t with the following properties:

• vmed is an ancestor of vb.

• The source Xmed

par(vmed)
is a (C, k

40tCn1/C4)-somewhere block-source, and Xmed

vmed is the first medium

block in this source.

• The source Xmed

vb is a (C, k

(20tCn1/C4)2
)-somewhere block-source.

• There is a value x ∈ {0, 1}a−1 such that Xmed

[1,a−1] = x with probability 1.

Proof. We prove this lemma by invoking Lemma 6.9 twice. We start with our source X and invoke
Lemma 6.9 to find a subsource X sb and vertices par(vmed), vmed as in the conclusion of the lemma. Next
we apply the lemma again to X sb

vmed .

Since X sb

vmed is a source on n′ < n bits with min-entropy k

20tCn1/C4 , we get that there is a subsource

Xmed ⊂ X sb with deficiency at most k

400tCn1/C4 + 4t2 log n and a vertex vb which is a somewhere block-

source. Since X sb ⊂ X was of deficiency at most k/10+ 4t2 log n, we get that Xmed ⊂ X is a subsource
of X with deficiency at most k/5 + 8t2 log n. Further note that H∞(Xmed

vmed) ≥ k

20tCn1/C4 − k

400tCn1/C4 −
4t2 log n ≥ k

30tCn1/C4 − 4t2 log n ≥ k

40tCn1/C4 by our choice of parameters.

We apply Lemma 6.10 to the input source X with our parameters k, t as chosen in Section 6.1. We
obtain a deficiency k/4 subsource (since 4t2 = o(k)) Xmed of X, and three nodes par(vmed), vmed, vb = [a, b]
in the tree Tn,t satisfying (by our choice of parameters):

Result of Step 1: A deficiency k/4 subsource Xmed ⊂ X satisfying:

vmed is the leading block in a block-source: Xmed

par(vmed)
is a (C, k

40tCn1/C4 ≥ k0.9)-somewhere block-

source, with a sub-block Xmed

vmed which is the first non-constant “good” sub-block.

Xmed

vb has a block-source: The source Xmed

vb is a (C, k
(10t2C)2

≥ k0.9)-somewhere block-source.

Fixed left family: For every w ∈ Lvb (Definition 6.7), Xmed
w is fixed.

35

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

������
������
������

������
������
������

������
������
������

������
������
������

������
������
������

������
������
������

������
������
������

������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

����
����
����
����

high

med

high

med

V
med

X med

Fixed parts

Vb

par(V)med

Figure 3: Finding two related medium parts in Xmed

6.3.2 Step 2: Ensuring that challenges from the left family are properly responded.

Our desired good subsources Xgood and Y good will be deficiency clen3 subsources of Xmed and Y . We will
ensure that in the final subsources, for every element w ∈ Lvb , Challenge(Xgood

w , Y good) is clen-responded
by the response Response(Xgood

par(w), Y
good) with probability 1.

First we will show that we can move to a subsource where the relevant challenges are fixed.

Claim 6.11. There is a subsource Y ′ ⊂ Y of deficiency at most t · len · log n s.t. every challenge
Challenge(Xmed

w , Y ′) for w ∈ Lvb is fixed to a constant string in the subsources Xmed, Y ′.

Proof. By the {Fixed left family} property after Step 1, we have that for every w ∈ Lvb , Xmed
w

is fixed. Note that Challenge(Xmed
w , Y) is a function only of Xmed

w and Y . Thus, for every w ∈ Lvb ,
Challenge(Xmed

w , Y) is a function only of Y .
There are at most |Lvb | ≤ t log n challenges to consider, each of length len bits. Thus by Lemma 3.13,

we can ensure that there is a deficiency t · len · log n subsource Y ′ ⊂ Y in which all the challenges are
also fixed.

Next we will prove that there are even smaller subsources in which each of these challenges is
responded with probability 1.

Claim 6.12. There are subsources Xgood ⊂ Xmed and Y good ⊂ Y ′ of deficiency at most O(t · len · log n)
in which every challenge Challenge(Xgood

w , Y good), w ∈ Lvb is clen-responded with probability 1 by the
response Response(Xgood

par(w), Y
good) .

36

Proof. Let Lvb = {w1, w2, . . . , wd}. We will prove the stronger statement that for every i with
1 ≤ i ≤ d, there are subsources X ′′ ⊂ Xmed, Y ′′ ⊂ Y ′ of deficiency at most 2leni in which each
Challenge(X ′′wj

, Y ′′) is clen-responded by Response(X ′′
par(wj)

, Y ′′) for 1 ≤ j ≤ i. We prove this by

induction on i.
For the base case of i = 1, note that Challenge(Xmed

w1
, Y ′) is fixed to a constant in the source Xmed.

Since H∞(Xmed

par(w1)) ≥ H∞(Xmed

vb) ≥ k0.9 and H∞(Y ′) ≥ k− t · len · log n ≥ k0.9, we get that Xmed

par(w), Y
′

are sources that have enough entropy for our somewhere extractor SE to succeed. By the {Hitting

matrices} property of Corollary 6.3, we can then ensure that there are deficiency 2len subsources
X ′′ ⊂ Xmed, Y ′′ ⊂ Y ′ in which Challenge(X ′′w1

, Y ′′) is clen-responded by the Response(X ′′
par(w1),Y ′′ with

probablity 1.
For i > 1, we use the inductive hypothesis to find subsources X̂ ⊂ Xmed, Ŷ ⊂ Y ′ of deficiency at

most 2len(i− 1) on which all the previous challenges are clen-responded. Then, since H∞(X̂par(wi)) ≥
H∞(Xmed

vb)−2len(i−1) ≥ k0.9 and H∞(Ŷ) ≥ k− t · len · log n−2len(i−1) ≥ k0.9, we get that X̂par(w), Ŷ
are sources that have enough entropy for our somewhere extractor SE to succeed. Thus we can find
deficiency 2len · i subsources X ′′ ⊂ Xmed, Y ′′ ⊂ Y ′ in which even Challenge(X ′′wi

, Y ′′) is clen-responded
by Response(X ′′

par(wi)
, Y ′′).

Together the claims give that Xgood ⊂ Xmed, Y good ⊂ Y are subsources in which all the challenges of
the left family are responded with probability 1 and are of deficiency at most O(t · len · log n) < clen2.1

by our choice of parameters.
Since we only went down to a clen2.1 deficiency subsource of Xmed in all of these steps, by Corol-

lary 3.19, we still retain the block-source structure of Xmed

vb . In particular, the corollary implies that

Xgood

vb is 2−19clen3
close to being a (C, k0.9 − 20clen3 ≥ k0.8)-somewhere block-source.

Similarly H∞(Xgood

vmed) ≥ H∞(Xmed

vmed) − clen3 ≥ k0.9 − clen3 ≥ k0.8 and conditioned on any fixing of
Xgood

vmed , H∞(Xgood

par(vmed)
) ≥ k0.9, since Xmed

par(vmed)
was shown to be a block-source with min-entropy k0.9.

Result of Step 2: At this point we have Xgood and Y good, which are deficiency k/4+clen3 subsources
of the sources X and Y satisfying:

Xgood

vmed ◦Xgood is a block-source: H∞(Xgood

vmed) ≥ k0.8 and Xgood

par(vmed)
has entropy greater than k0.9 even

conditioned on any fixing of Xgood

vmed .

Xgood

vb has a block-source: The source Xgood

vb is 2−19clen3
close to being a (C, k0.8)-somewhere block-

source.

Low blocks are correctly identified: For every w ∈ Lvb Challenge(Xgood
w , Y good) is clen-responded

with probability 1 by Response(Xgood

par(w), Y
good).

6.3.3 Step 3: Ensuring that challenges along the path are somewhere random

We argue that in Xgood, Y good, for every w ∈ Pvb , Challenge(Xgood
w , Y good) is 2log2 n(2−kc1 + 2−clen)-close

to having min-entropy clen. In fact something even stronger is true:

Lemma 6.13 (The challenges along the good path are somewhere random). Let X ′ ⊂ Xgood, Y ′ ⊂
Y good be any deficiency 20len subsources. Then in these subsources, if w ∈ Pvb is an ancestor of vb,
Challenge(X ′w, Y ′) is 2log2 n(2−kc1 + 2−clen)-close to being somewhere random.

37

Proof. We will prove the lemma by induction on the vertices in Pvb , starting from vb and moving up
the path.

Let h be the depth of vb in the tree (note that h = O(log n)). Let ℓ be the number of matrices
in the output of Response (note that ℓ = poly(n) by Corollary 6.3). For w ∈ Pvb at a distance of i
from vb, we will prove that as long as X ′ ⊂ Xgood , Y ′ ⊂ Y good are of deficiency at most (h− i− 1)20len,
Challenge(X ′w, Y ′) is (2ℓ)i(2−kc1 + 2−clen)-close to being somewhere random.

For the base case note that by Corollary 3.19, X ′
vb is 2−19clen3

+ 2−20clen3
< 2−18clen3

-close to being

a (C, k0.8− (h−1)20len−20clen3 >
√

k) somewhere block-source and Y ′ is an independent source with
min-entropy k− (k/4+ clen3 + (h− 1)20len) >

√
k. Thus, in the subsources X ′, Y ′, Challenge(X ′

vb , Y
′)

is 2−18clen3
+ 2−kc1 < (2−clen + 2−kc1)-close to being somewhere random by Corollary 6.2.

Now let w be an ancestor of vb and let w′ be its child on the path to vb. We want to show that
the challenge has entropy even on deficiency (h− i− 1)20len subsources X ′ ⊂ Xgood, Y ′ ⊂ Y good.

We will show that with high probability Challenge(X ′w, Y ′) contains Challenge(X ′w′ , Y ′) as a sub-
string. By the induction hypothesis we will then get that Challenge(X ′w, Y ′) must be statistically close
to being somewhere random also. By our construction, to ensure that this happens we merely need
to ensure that Challenge(X ′w′ , Y ′) is clen unresponded by Response(X ′w, Y ′). We will argue this using
the union bound. Fix an index j and consider the j’th response string Response(X ′w, Y ′)j .

By the {Fixed matrices on low deficiency subsources} property of Corollary 6.3, we get that
X ′, Y ′ is 2−10len close to a convex combination of independent sources X̂, Ŷ , where each element of
the convex combination is of deficiency at most 20len and the j’th response string Response(X̂w, Ŷ)j is
fixed to a constant on these subsources. Each element of this convex combination then has a deficiency
of at most (h− i− 1)20len + 20len = (h− (i− 1)− 1)20len from Xgood , Y good.

By the induction hypothesis, we get that Challenge(X̂w′ , Ŷ) is (2ℓ)i−1(2−kc1 +2−clen)-close to being
somewhere random. Thus, the probability that Challenge(X ′w′ , Y ′) i responded by Response(X ′w, Y ′)
is at most 2−clen + (2ℓ)i−1(2−kc1 + 2−clen) < 2 · (2ℓ)i−1(2−kc1 + 2−clen). Thus by the union bound
over the ℓ response strings, we get that the probability that the challenge is responded is at most
(2ℓ)i(2−kc1 + 2−clen).

Note that the length of the path to vb from the root is o(log(n)), so we will need to repeat the

induction only log(n) times. We get that the challenge is (2ℓ)h(2−kc1 +2−clen) < 2log2 n(2−kc1 +2−clen)-
close to being somewhere random.

Result of Step 3: At this point we have Xgood and Y good, which are deficiency k/4+clen3 subsources
of the sources X and Y satisfying:

Challenges along the path are somewhere random, even on subsources If X ′ ⊂ Xgood, Y ′ ⊂
Y good are deficiency 20clen subsources, Challenge(X ′w, Y ′) is 2log2 n(2−kc1 + 2−clen) close to being
somewhere random in X ′, Y ′, for every vertex w ∈ Pvmed .

6.3.4 Step 4: Ensuring that Disp outputs both 0 and 1

We will ensure that our disperser outputs both 1 and 0 with significant probability. There are two
remaining steps:

• We will ensure that in our good subsources Xgood , Y good, with high probability (say 1 − γ)
val(Xgood

[1,n], Y
good) = val(Xgood

vmed , Y
good).

• We will ensure that in our good subsources Xgood, Y good, val(Xgood

vmed , Y
good) is both 0 and 1 with

significant probability (say γ1/10).

38

By the union bound these two facts imply that the disperser outputs both 0 and 1 with positive
probability.

Lemma 6.14. For every vertex v on the path from vmed to the root and for any 1 ≤ q ≤ clen,

Pr[Challenge(Xgood

v , Y good) is q-responded by Response(Xgood

par(v), Y
good)] ≤ 2−q + 2log2 n(2−kc1

+ 2−clen)

Proof. By the {Fixed matrices on low deficiency subsources} property of Corollary 6.3, we
get that Xgood, Y good is 2−10len-close to a convex combination of independent sources, where each el-
ement X ′, Y ′ of the convex combination is of deficiency at most 20len and the j’th response string
Response(X ′

par(v), Y
′)j is fixed to a constant on these subsources. Thus by Lemma 6.13,

Pr[Challenge(X ′v , Y
′) is q-responded by Response(X ′par(v), Y

′)] < 2−q + 2log2 n(2−kc1
+ 2−clen)

Lemma 6.15 (val(Xgood

vmed , Y
good) propagates to the root). Let h be the depth of vmed in the tree. Then

Pr
Xgood ,Y good

[val(xvmed , y) 6= val(x[1,n], y)] < 2−clenh,0

Proof. We will show that for every w ∈ Pvmed , w 6= [1, n], Pr[val(Xgood
w , Y good) 6= val(Xgood

par(w), Y
good)] <

2−clenh,0/ log2 n. Then we will apply a union bound over all the edges in the path from the root to vmed

to get the bound for the lemma.
Let h′ be the depth of w in the tree. Now note that by our construction

Pr[val(Xgood

w , Y good) 6= val(Xgood

par(w), Y
good)]

< Pr[Challenge(Xgood

w , Y good) is clenh′,2-responded by Response(Xgood

par(w), Y
good)]

≤ 2−clenh′,2 + 2log2 n(2−kc1
+ 2−clen)

Where the last inequality is by Lemma 6.14. Using the union bound over all poly(n) response
strings, we then get that the probability that the challenge is responded is at most poly(n)(2−clenh′,2 +

2log2 n(2−kc1 + 2−clen) + 2−10len) < (1/ log2 n)2−clenh,0 by our choice of parameters. Aplying a union
bound over the path from the root of the tree to vmed, we get the bound claimed by the lemma.

Finally we argue that the probability that val(xvmed , y) is 0 or 1 is significantly higher than 2−clenh,0 .
We do this by showing that for any q, the probability that Challenge(Xgood

vmed , Y
good) is q-responded by

Response(Xgood

par(vmed)
, Y good) can be bounded from above and below:

Lemma 6.16. Let p = Pr[Challenge(Xgood

vmed , Y
good) is q-responded by Response(Xgood

par(vmed)
, Y good)]. Then,

2−q·nrows − 2−10len − 2−20len ≤ p ≤ 2−q + 2log2 n(2−kc1
+ 2−clen)

Proof. In Step 2 of the analysis we showed that Xgood

vmed ◦Xgood

par(vmed)
is block-source with block entropy

k0.9. Thus Xgood is a convex combination of sources where for every element of the combination X̂,

• X̂vmed is fixed

• X̂par(vmed) has min-entropy k0.8

39

For every such subsource X̂, Challenge(X̂med
v , Y good) is a function only of Y good. Thus by Lemma 3.13,

for every such subsource X̂, Y good is 2−20len close to a convex combination of sources where for each
element of the combination Ŷ is of deficiency at most 21len and Challenge(X̂med

v , Ŷ) is fixed to a
constant. Thus overall we get a convex combination of sources where for each element of the convex
combination:

• In X̂, Ŷ , Challenge(X̂med
v , Ŷ) is fixed.

• X̂par(vmed), Ŷ are independent sources with min-entropy k0.8 each.

By Corollary 6.3 we get that Response(X̂par(vmed), Ŷ) is 2−10len-close to being somewhere ran-

dom, implying that the challenge is q-responded with probability at least 2−q·nrows − 2−10len in these
subsources. Thus we get that PrChallenge(Xgood

vmed , Y
good) is q-responded by Response(Xgood

vmed , Y
good)] ≥

2−q·nrows − 2−10len − 2−20len.
The upper bound follows from Lemma 6.14.

This lemma then implies that val(Xgood

vmed , Y
good) takes on both values with significant probability:

Lemma 6.17 (val(Xgood

vmed , Y
good) is both 0 and 1 with significant probability).

Pr[val(Xgood

vmed , Y
good) = 1] > (0.5)2−lenh,1

Pr[val(Xgood

vmed , Y
good) = 0] > (0.5)2−lenh,2

Proof. Note that

Pr[val(Xgood

vmed , Y
good) = 1]

≥ Pr[Challenge(Xgood

vmed , Y
good) is clenh,1-responded by Response(Xgood

par(vmed)
, Y good)]

− Pr[Challenge(Xgood

vmed , Y
good) is clenh,0-responded by Response(Xgood

par(vmed)
, Y good)]

≥ 2−clenh,1·nrows − 2−10len − 2−20len

− 2−clenh,0 + 2log2 n(2−kc1
+ 2−clen)

≥ 2−lenh,1 − 2−10len − 2−20len − 2 · 2−clenh,0

≥ (0.5)2−lenh,1

Similarly,

Pr[val(Xgood

vmed , Y
good) = 0]

≥ Pr[Challenge(Xgood

vmed , Y
good) is clenh,2-responded by Response(Xgood

vmed , Y
good)]

− Pr[Challenge(Xgood

vmed , Y
good) is clenh,1-responded by Response(Xgood

vmed , Y
good)]

≥ 2−lenh,2 − 2−10len − 2−20len − 2 · 2−clenh,1

> (0.5)2−lenh,2

This concludes the proof that Disp(X,Y) outputs both zero and one proving Theorem 1.10.

40

7 Proof of Theorem 4.1

In this section we prove Theorem 4.1 (that gives an extractor for one block-wise source and one general
source). Our techniques rely on those of Rao [Rao06]. In particular, we will obtain our extractor by
reducing the problem to the one of constructing an extractor for two independent somewhere random
sources, a problem that was solved in [Rao06].

We first discuss the new ideas that come into obtaining the improvement in the error parameter
(which can be also be applied directly to Rao’s [Rao06] extractor). We then give the full construction
for the new extractor.

7.1 Achieving Small Error

The lower error is achieved by a careful analysis of our construction. A somewhat similar observation
was made by Chung and Vadhan [CV], who noted that the construction of Rao can more directly be
shown to have low error.

In our construction, we will actually prove the following theorem, which gives an extractor for a
block-source and an independent somewhere random source.

Theorem 7.1 (Somewhere random + Block-source Extractor). There exist constants α, β, γ < 1 and
a polynomial time computable function SR + BExt : {0, 1}Cn × {0, 1}tk → {0, 1}m such that for every
n, t, k, with k > log10 t, k > log10 n with C = O(log t

log k) s.t. , if X = X1 ◦ · · · ◦ XC is a (k, . . . , k)

block-source and Y is an independent (t× k) (k − kβ)-SR-source,

|X ◦ SR + BExt(X,Y)−X ◦ Um| < ǫ

|Y ◦ SR + BExt(X,Y)− Y ◦ Um| < ǫ

where Um is independent of X and Y , m = k − kα, ǫ = 2−kγ
.

Note that we can get an extractor from a block-source and a general independent source from
Theorem 7.1 by using the fact that a general source can be tranformed into a somewhere random source
(Proposition 3.22). However, using this transformation spoils the error, since the transformation has
only polynomially small error. In order to bypass this difficulty, we use a more careful analysis. We
first use Theorem 7.1 to prove the following theorem which is weaker than Theorem 4.1. We will then
obtain Theorem 4.1.

Theorem 7.2 (Block + Arbitrary Source Extractor). There exist absolute constants c1, c2, c3 > 0
and a polynomial time computable function BExt : {0, 1}Cn × {0, 1}n′ → {0, 1}m such that for every
n, n′, k, with k > log10(n + n′) with C = c1

log n
log k , such that if X = X1 ◦ · · · ◦XC is a k block-source and

Y is an independent (n′, k)-source, there is a deficiency 2 subsource Y ′ ⊆ Y s.t.

|X ◦ BExt(X,Y ′)−X ◦ Um| < ǫ

|Y ′ ◦ BExt(X,Y ′)− Y ′ ◦ Um| < ǫ

where Um is independent of X and Y , and for m = c2k and ǫ = 2−kc3 .

41

Proof. The idea is to reduce to the case of Theorem 7.1. We convert the general source Y into an
SR-source. To do this we will use a strong seeded extractor and the Proposition 3.22. If we use a
strong seeded extractor that requires only O(log n) bits of seed, the SR-source that we get will have
only poly(n) rows. This adds a polynomial amount of error. By Lemma 3.15, we can go to a deficiency
2 subsource Y ′ ⊆ Y which has high entropy in some row. This is good enough to use our extractor
from Theorem 7.1 and get the better error.

Proof of Theorem 4.1. We prove the theorem by showing that any extractor that satisfies the con-
clusions of Theorem 7.2 (i.e. low strong error on a subsource), must satisfies the seemingly stronger
conclusions of Theorem 4.1.

Let BExt be the extractor from Theorem 7.2, set up to extract from a k/2 block-source and a
k/2 − 2 general source. Then we claim that when this extractor is run on a k block-source and a k
general source, it must succeed with much smaller error.

Given the source X let BX ⊂ {0, 1}n
′
be defined as BX = {y : |BExt(X, y)− Um| ≥ ǫ}. Then,

Claim 7.3. |BX | < 2k/2

Proof. The argument for this is by contradiction. Suppose |BX | ≥ 2k/2. Then define Z to be the
source which picks a uniformly random element of BX . By the definition of BX , this implies that
|Z ′ ◦ BExt(X,Z ′)− Z ′ ◦ Um| ≥ ǫ for any subsource Z ′ ⊂ Z. This contradicts Theorem 7.2.

Thus Pr[Y ∈ BX] < 2k/2−k = 2−k/2.
This implies that |BExt(X,Y)− Um| < ǫ + 2−k/2, where ǫ is the ǫ from Theorem 7.2.

Remark 7.4. In fact the above proof actually implies the extractor from Theorem 4.1 is strong with
respect to Y , i.e. |Y ◦ BExt(X,Y)− Y ◦ Um| < ǫ + 2−k/2.

7.2 Extractor for general source and an SR-source with few rows

Here we will construct the extractor for Theorem 7.1. The main step in our construction is the
construction of an extractor for a general source and an independent SR-source which has few rows.
Once we have such an extractor, it will be relatively easy to obtain our final extractor by iterated
condensing of SR-sources.

First, we prove the following theorem:

Theorem 7.5. There are constants α, β < 1 and a polynomial time computable function BasicExt :
{0, 1}n ×{0, 1}kγ+1 → {0, 1}m such that for every n, k(n) with k > log10 n, and constant 0 < γ < 1/2,
if X is an (n, k) source and Y is a (kγ × k) (k − kβ)-SR-source,

|Y ◦ BasicExt(X,Y)− Y ◦ Um| < ǫ

and
|X ◦ BasicExt(X,Y)−X ◦ Um| < ǫ

where Um is independent of X,Y , m = k − kΩ(1) and ǫ = 2−kα
.

Proof. We are trying to build an extractor that can extract from one (kγ × k) kβ-SR-source Y and an
independent (n, k) source X. We will reduce this to the case of two independent aligned SR-sources
with few rows, for which we can use Theorem 3.27.

The plan is to use the structure in the SR-source Y to impose structure on the source X. We will
first use Y and X to get a list of candidate seeds, such that one seed in the list is close to uniformly

42

random and independent of both X and Y . Once we have this list, we can readily reduce the problem
to that of extracting from independent aligned SR-sources with few rows.

In the following discussion, the term slice refers to a subset of the bits coming from an SR-source
that takes a few bits of the SR-source from every row (Definition 3.8). We also remind the reader of
the following notation: if f : {0, 1}r ×{0, 1}r → {0, 1}m is a function and a, b are samples from (t× r)
somewhere sources, f(~a,~b) refers to the (t × m) matrix whose ith row is f(ai, bi). Similarly, if c is
an element of {0, 1}r and b is a sample from a (t× r) somewhere source, f(c,~b) refers to the (t×m)
matrix whose ith row is f(c, bi).

We first write down the algorithm for our extractor. Then we shall describe the construction in
words and give more intuition.

Algorithm 7.6.

BasicExt(x, y)
Input: x, a sample from an (n, k) source and y a sample from a (kγ × k) kβ-somewhere random

source.
Output: z
Let w,w′, w′′, l, d, β1 be parameters that we will pick later. These will satisfy w′′ > w > kγ and

w − kγ > w′.
Let Raz1 : {0, 1}n × {0, 1}w → {0, 1}w′

be the extractor from Theorem 3.26 setup to extract w′

bits from an (n, k) source, using a (w, 0.9w) source as seed.
Let Raz2 : {0, 1}w′ × {0, 1}w′′ → {0, 1}d be the extractor from Theorem 3.26, setup to extract d

bits from a (w′, w′) source and an independent (w′′, 0.9w′′) source.

Let Ext1 : {0, 1}n × {0, 1}d → {0, 1}k−kβ1 and Ext2 : {0, 1}k1+γ × {0, 1}d → {0, 1}k−2kβ1 be strong
seeded extractors from Theorem 3.24, each set up to extract from min-entropy k − kβ1 with error
2−kΩ(1)

.
Let 2SRExt : {0, 1}kγ (k−2kβ1) × {0, 1}kγ (k−2kβ1) → {0, 1}m be the extractor from Theorem 3.27,

setup to extract from two aligned (kγ × k − 2kβ1) SR-sources.
Let Slice be the function defined in Definition 3.8.

1. Set s = Slice(y,w).

2. Treating s as a list of kγ seeds, use it to extract from x to get q = Raz1(x,~s). The result is a
string with kγ rows, each of length w′.

3. Set r = Slice(y,w′′).

4. Let h = Raz2(~q,~r), i.e. h is a list of kγ strings, where the ith string is Raz2(qi, ri).

5. Let x′ = Ext1(x,~h), y′ = Ext2(y,~h).

6. Use 2SRExt to get z = 2SRExt(x′, y′).

The first target in the above algorithm is to generate a list of candidate seeds (S) from the sources,
one of which will be close to uniformly random. To generate the list of seeds that we want, we will
first take a small slice of the bits from Y , i.e. we take Slice(Y,w), where w is a parameter that we will
pick later (think of w as kµ for small µ). We will be able to guarantee that at least one of the rows of
Slice(Y,w) has high entropy. We can then use Raz’s extractor Theorem 3.26 with these bits to extract
from X. This gives us a (kγ ×w′) SR-source Q, where w′ = kθ(1) ≫ w is some parameter that we will
pick later. The two sources that we have now (Q and Y) are not independent, but note that when we
fix the slice of bits (S) that we used, we get two independent sources. Y conditioned on the value of

43

S could potentially lose entropy in its high entropy row. Still, we can expect this high entropy row to
have about k − kβ − wkγ bits of entropy, since we fixed only wkγ bits of Y in S. In the next step we
take a wider slice of Y and call it R = Slice(Y,w′′). Note that on fixing S to a typical value, we get
that Q,R are two independent aligned somewhere high entropy sources. We then use Raz’s extractor
again to convert Q,R into a somewhere random source H, by applying the extractor to each pair of
rows from Q,R. Since Raz’s extractor is strong, we will be able to guarantee that one of the rows in
the resulting SR-source is independent of both input sources. Further, we can fix a random variable
which determines the value of H, yet does not break the independence between X,Y .

Thus, once we have H, we can use it with a strong seeded extractor to extract from both X and
Y to get independent aligned SR-sources of the type that Theorem 3.27 can handle.

We will prove the following lemma:

Lemma 7.7. For every (n, k) source X and a (kγ × k) kβ-somewhere random source Y as in The-

orem 7.5, we can pick w,w′, w′′, l, d, β1 and a constant β s.t. (X ◦ Y) is 2−kΩ(1)
-close to a convex

combination of sources s.t. for any source in the convex combination, (X ′ ◦ Y ′) in step 5 above:

1. X ′ is independent of Y ′

2. X ′ is a (kγ × k − kβ) SR-source

3. Y ′ is a (kγ × k − kβ) SR-source

Given the lemma, we have reduced the problem to one of extracting from aligned somewhere
random sources. Theorem 7.5 then follows by the properties of 2SRExt.

Proof of Lemma 7.7. We assume that we have some fixed random variables X,Y that satisfy the
hypotheses of the lemma. We will make several claims about the various random variables involved
in the construction, setting w,w′, w′′, l, d, β1 along the way to ensure that our lemma is true. In the
rest of this proof, a capital letter represents the random variable for the corresponding small letter in
the construction above.

Recall that kβ (we are allowed to set β < 1 to anything we want) is the randomness deficiency of
the random row in Y . Note that:

Claim 7.8. For any w > 2kβ , S is 2−kβ
close to a (kγ × w) (w − 2kβ)-SR-source

Proof. This follows from an application of Lemma 3.14.

We set w = kα1 for some constant α1 s.t. α1 + γ < 1 and α1 > β and set w′ = w/10. Note that
Theorem 3.26 does give an extractor for a (w,w − 2kβ) source and an independent (n, k) source with
output length w/10.

Now Q is correlated with both X and Y . However, when we fix S, Q becomes independent of Y ,
i.e.: (X ◦Q)|S =s is independent of Y |S =s for any s. Since Raz1 is a strong extractor, Q still contains
a random row for a typical fixing of S.

Claim 7.9. There exists some constant α2 < 1 s.t. Prs←RS [Q|S = s is 2−kα2 close to a (kγ ×
w′) SR-source] > 1− 2−kα2 .

Thus with high probability Q is independent upto convex combinations from Y .
Next, set w′′ = kα3 , where 1 > α3 > α1 + γ is any constant. Now consider the random variable R.

Claim 7.10. R is 2−kβ
close to a (kγ × w′′) (w′′ − 2kβ)-SR-source.

44

Proof. This follows from an application of Lemma 3.14.

Now we assume that R is in fact a w′′ − 2kβ-SR-source (we will add 2−kβ
to the final error).

After we fix S, R can lose entropy in its random row, but not much. We can expect it to lose as
many bits of entropy as there are in S, which is only kα1+γ . Since we picked w′′ = kα3 ≫ kα1+γ , we
get that R still contains entropy.

Claim 7.11. Prs←RS [R|S =s is a (kγ × w′′) (w′′ − 2kα3)-SR-source] > 1− 2−kα3 .

Proof. By Fact 3.12, we get that Prs←RS [R|S =s is a (kγ × w′′) (w′′ − kα1+β − l)-SR-source] > 1−2l.
Setting l = kα3 gives the claim.

Thus, upto a typical fixing of S, (Q,R) are statistically close to two aligned sources, Q a (kγ ×w′)
SR-source, and R an independent (kγ × w′′) (0.1w′′)-SR source. If we set d = w′/10, we see that our
application of Raz2 above succeeds. In the aligned good row, Raz2 gets two independent (after fixing
S) sources which are statistically close to having extremely high entropy.

The result of applying Raz2 is the random variable H.

Claim 7.12. H is 2−Ω(d) close to a (kγ ,Ω(d)) SR-source.

In addition, we argue that the random row of H is independent of both X and Y . Without loss
of generality, assume that H1 is the random row of H. Let α4 > 0 be a constant s.t. 2−kα4 is
an upperbound on the error of Ext1,Ext2. Then for a typical fixing of Q,R, we get that X,Y are
independent sources, and the random row of H (which is determined by (Q,R)) is a good seed to
extract from both sources.

Claim 7.13. With high probability H contains a good seed to extract from each of the sources:

Pr
(q,r)←R(Q,R)

[|Ext2((Y |R=r), h1(q, r))− Um| ≥ 2−kα4
]] < 2−kα4

and

Pr
(q,r)←R(Q,R)

[|Ext1((X|S =s(r), Q=q), h1(q, r))− Um| ≥ 2−kα4
] < 2−kα4

Sketch of proof. There are two ways in which the claim can fail. Either S,Q,R steal a lot of entropy
from X,Y , or they produce a bad seed in H to extract from X|S = s,Q= q or Y |R= r. Both events
happen with small probability.

Specifically,we have that there exist constants β1, β2 s.t.

• By Lemma 3.13, Prr←RR[H∞(Y |R = r) < k − kβ1] < 2−kβ2

• By Lemma 3.13, Pr(q,r)←RR[H∞(X|R = r,Q = q) < k − kβ1] < 2−kβ2

• By our earlier claims, Prr←RR[H|R = r is 2−kβ2 -close to being somewhere random]

• By our earlier claims, Pr(s,q)←R(S,Q)[H|S = s,Q = q is 2−kβ2 -close to being somewhere random]

• By the properties of the strong seeded extractor Ext1, for any s, q such that H∞(X|S = s,Q =

q) ≥ k − kβ1 and H|S = s,Q = q is 2−kβ2 -close to being somewhere random,

Pr
h←RH|Q=q,S=s

[|Ext1((X|S = s,Q = q), (H|S = s,Q = q))− Um| ≥ 2−kβ2
] < 2 · 2−kβ2

45

• By the properties of the strong seeded extractor Ext2, for any r such that H∞(Y |R = r) ≥ k−kβ1

and H|R = r is 2−kβ2 -close to being somewhere random,

Pr
h←RH|R=r

[|Ext2((Y |R = r), (H|R = r))− Um| ≥ 2−kβ2
] < 2 · 2−kβ2

Thus we can use the union bound to get our final estimate.

This concludes the proof of Theorem 7.5.

Proof of Theorem 7.1. As in [Rao06], the theorem is obtained by repeated condensing of SR-sources.
In each condensing step, we will consume one block of X to reduce the number of rows of the SR-source
by a factor of kΩ(1). Thus after O(log t/ log k) steps, we will have reduced the number of rows to just
1, at which point extraction becomes trivial.

Algorithm 7.14.

Cond(x, y) Set γ ≪ 1/2 to some constant value. Let β be the constant guaranteed by Theorem 7.1.
For these γ, β, let BasicExt be the function promised by Theorem 7.5. Let m, ǫ be the output

length and error of BasicExt respectively.
Input: x = x1 ◦x2 ◦ · · · ◦xC, a sample from a block-source and y a sample from a (t×k) SR-source.
Output: z = x2 ◦ x3 ◦ · · · ◦ xC and y′ a ((t/kγ) × m) sample that we will claim comes from a

SR-source.

1. Partition the t rows of y equally into t/kγ parts, each containing kγ rows. Let y(j) denote the
j’th such part.

2. For all 1 ≤ j ≤ t/kγ , let y′j = BasicExt(x1, y(j)).

3. Let y′ be the string with rows y′1, y
′
2, . . . , y

′
t/kγ .

Given X = X1 ◦ · · · ◦XC and Y , the above algorithm uses X1 to condense Y . Even though this
introduces dependencies between X and Y , once we fix X1, the two output distributions are once
again independent. Formally we will argue that after applying the condenser, the output random
variables Z and Y ′ above are statistically close to a convex combination of independent sources, where
Z is a block-source with one less block than X, and Y ′ is an SR-source with much fewer rows than Y .

Lemma 7.15. Let X,Y be as above. Let ǫ be the error of BasicExt. Then (Z = X2 ◦ . . . ◦XC, Y ′) is
2
√

ǫ-close to a convex combination of sources where each source in the combination has

1. Z is a (k, . . . , k) block-source

2. Y ′ is a (t/kγ ,m) SR-source

3. Z is independent of Y ′

Proof. Let h ∈ [t/kγ] be such that Y (h) contains the random row. Consider the random variable X1.
We will call x1 good if |BasicExt(Y (h), x1)− Um| <

√
ǫ, where m, ǫ are the output length and error of

BasicExt respectively.
Then we make the following easy claims:

Claim 7.16. For good x1,

46

1. Z|X1 = x1 is a (k, . . . , k) block-source

2. Y ′|X1 = x1 is a
√

ǫ-close to being a ((t/kγ)×m) SR-source

3. Z|X1 = x1 is independent of Y ′|X1 = x1

Proof. The first and third property are trivial. The second property is immediate from the definition
of good.

Claim 7.17. Pr[X1 is not good] <
√

ǫ

Proof. This is an immediate consequence of Theorem 7.5.

These two claims clearly imply the lemma.

Now we use Cond repeatedly until the second source contains just one row. At this point we use
the one row with Raz’s extractor from Theorem 3.26 with X to get the random bits.

To see that the bits obtained in this way are strong, first note that Raz’s extractor is strong in
both inputs. Let O be the random variable that denotes the output of our function BExt(X,Y). Let
Q denote the concatenation of all the blocks of X that were consumed in the condensation process.
Let Um denote a random variable that is independent of both X,Y . Then we see that these variables
satisfy the hypothesis of Lemma 3.2, i.e. on fixing Q to a good value, Raz’s extractor quarantees
that the output is independent of both inputs, thus we must have that the output is close to being
independent of both inputs. The dominant error term in BExt comes from the first step, when we
convert Y to an SR-source.

8 Open Problems

Better Independent Source Extractors A bottleneck to improving our disperser is the block ver-
sus general source extractor of Theorem 2.4. A good next step would be to try to build an ex-
tractor for one block-source (with only a constant number of blocks) and one other independent
source which works for polylogarithmic entropy, or even an extractor for a constant number of
sources that works for sub-polynomial entropy.

Simple Dispersers While our disperser is polynomial time computable, it is not as explicit as one
might have hoped. For instance the Ramsey Graph construction of Frankl-Wilson is extremely
simple: For a prime p, let the vertices of the graph be all subsets of [p3] of size p2 − 1. Two
vertices S, T are adjacent if and only if |S ∩ T | ≡ −1 mod p. It would be nice to find a good
disperser that beats the Frankl-Wilson construction, yet is comparable in simplicity.

9 Acknowledgements

We would like to thank David Zuckerman for useful comments.

47

References

[Alo98] N. Alon. The Shannon Capacity of a Union. Combinatorica, 18, 1998.

[Bar06] B. Barak. A Simple Explicit Construction of an nÕ(log n)-Ramsey Graph. Technical report,
Arxiv, 2006. http://arxiv.org/abs/math.CO/0601651.

[BIW04] B. Barak, R. Impagliazzo, and A. Wigderson. Extracting Randomness Using Few Inde-
pendent Sources. In Proceedings of the 45th Annual IEEE Symposium on Foundations of
Computer Science, pages 384–393, 2004.

[BKS+05] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson. Simulating Indepen-
dence: New Constructions of Condensers, Ramsey Graphs, Dispersers, and Extractors. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages 1–10,
2005.

[Bou05] J. Bourgain. More on the sum-product phenomenon in prime fields and its applications.
International Journal of Number Theory, 1:1–32, 2005.

[BKT04] J. Bourgain, N. Katz, and T. Tao. A Sum-Product Estimate in Finite Fields, and Appli-
cations. Geometric and Functional Analysis, 14:27–57, 2004.

[CRVW02] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson. Randomness Conductors and
Constant-Degree Lossless Expanders. In Proceedings of the 34th Annual ACM Symposium
on Theory of Computing, pages 659–668, 2002.

[CG88] B. Chor and O. Goldreich. Unbiased Bits from Sources of Weak Randomness and Proba-
bilistic Communication Complexity. SIAM Journal on Computing, 17(2):230–261, 1988.

[CV] K.-M. Chung and S. Vadhan. Personal Communication.

[FW81] P. Frankl and R. M. Wilson. Intersection theorems with geometric consequences. Combi-
natorica, 1(4):357–368, 1981.

[Gop06] P. Gopalan. Constructing Ramsey Graphs from Boolean Function Representations. In
Proceedings of the 21th Annual IEEE Conference on Computational Complexity, 2006.

[Gro00] V. Grolmusz. Low Rank Co-Diagonal Matrices and Ramsey Graphs. Electr. J. Comb, 7,
2000.

[Gur03] V. Guruswami. Better Extractors for Better Codes? Electronic Colloquium on Computa-
tional Complexity (ECCC), (080), 2003.

[LRVW03] C. J. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Extractors: Optimal up to Constant
Factors. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing,
pages 602–611, 2003.

[MNSW98] P. Miltersen, N. Nisan, S. Safra, and A. Wigderson. On data structures and asymmetric
communication complexity. Journal of Computer and System Sciences, 57:37–49, 1 1998.

[PR04] P. Pudlak and V. Rodl. Pseudorandom sets and explicit constructions of Ramsey graphs.
Submitted for publication, 2004.

48

[Ram28] F. P. Ramsey. On a Problem of Formal Logic. Proceedings of the London Mathematical
Society, Series 2, 30(4):338–384, 1928.

[Rao06] A. Rao. Extractors for a Constant Number of Polynomially Small Min-entropy Indepen-
dent Sources. In Proceedings of the 38th Annual ACM Symposium on Theory of Comput-
ing, 2006.

[Raz05] R. Raz. Extractors with Weak Random Seeds. In Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, pages 11–20, 2005.

[RRV02] R. Raz, O. Reingold, and S. Vadhan. Extracting all the Randomness and Reducing the
Error in Trevisan’s Extractors. jcss, 65(1):97–128, 2002.

[RSW00] O. Reingold, R. Shaltiel, and A. Wigderson. Extracting Randomness via Repeated Con-
densing. In Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer
Science, pages 22–31, 2000.

[SSZ98] M. Saks, A. Srinivasan, and S. Zhou. Explicit OR-Dispersers with Polylog Degree. Journal
of the ACM, 45:123–154, 1998.

[SV86] M. Santha and U. V. Vazirani. Generating Quasi-Random Sequences from Semi-Random
Sources. Journal of Computer and System Sciences, 33:75–87, 1986.

[Sha02] R. Shaltiel. Recent Developments in Explicit Constructions of Extractors. Bulletin of the
European Association for Theoretical Computer Science, 77:67–95, 2002.

[TS02] A. Ta-Shma. Almost Optimal Dispersers. Combinatorica, 22(1):123–145, 2002.

[TZ04] A. Ta-Shma and D. Zuckerman. Extractor Codes. IEEE Transactions on Information
Theory, 50, 2004.

[Tre01] L. Trevisan. Extractors and Pseudorandom Generators. Journal of the ACM, pages 860–
879, 2001.

[Vaz85] U. Vazirani. Towards a Strong Communication Complexity Theory or Generating Quasi-
Random Sequences from Two Communicating Slightly-random Sources (Extended Ab-
stract). In Proceedings of the 17th Annual ACM Symposium on Theory of Computing,
pages 366–378, 1985.

[WZ99] A. Wigderson and D. Zuckerman. Expanders that Beat the Eigenvalue Bound: Explicit
Construction and Applications. Combinatorica, 19(1):125–138, 1999.

49

