
Is it possible to improve Yao’s XOR lemma using reductions that
exploit the efficiency of their oracle?

Ronen Shaltiel*

December 22, 2022

Abstract

Yao’s XOR lemma states that for every function f : {0, 1}k → {0, 1}, if f has hardness 2/3 for
P/poly (meaning that for every circuit C in P/poly, Pr[C(X) = f(X)] ≤ 2/3 on a uniform input X),
then the task of computing f(X1)⊕ . . .⊕ f(Xt) for sufficiently large t, has hardness 1

2 + ϵ for P/poly.
Known proofs of this lemma cannot achieve ϵ = 1

kω(1) , and even for ϵ = 1
k , we do not know how to

replace P/poly by AC0[PARITY] (the class of constant depth circuits with the gates {AND,OR,NOT,PARITY}
of unbounded fan-in).

Grinberg, Shaltiel and Viola (FOCS 2018) (building on a sequence of earlier works) showed that
these limitations cannot be circumvented by black-box reductions. Namely, by reductions Red(·) that
given oracle access to a function D that violates the conclusion of Yao’s XOR lemma, implement a
circuit that violates the assumption of Yao’s XOR lemma.

There are a few known reductions in the related literature on worst-case to average case reductions
that are non-black box. Specifically, the reductions of Gutfreund, Shaltiel and Ta-Shma (Computational
Complexity 2007) and Hirahara (FOCS 2018)) are “class reductions” that are only guaranteed to succeed
when given oracle access to an oracle D from some efficient class of algorithms. These works seem to
circumvent some black-box impossibility results.

In this paper we extend the previous limitations of Grinberg, Shaltiel and Viola to several types of
class reductions, giving evidence that class reductions cannot yield the desired improvements in Yao’s
XOR lemma. To the best of our knowledge, this is the first limitation on reductions for hardness ampli-
fication that applies to class reductions.

Our technique imitates the previous lower bounds for black-box reductions, replacing the inefficient
oracle used in that proof, with an efficient one that is based on limited independence, and developing
tools to deal with the technical difficulties that arise following this replacement.

*Department of computer science, University of Haifa. E-mail: ronen@cs.haifa.ac.il. This research was supported by
ISF grant 1628/17.
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1 Introduction

Yao’s XOR Lemma is a fundamental and celebrated result in complexity theory, that is extensively studied
(from various aspects) and has found many applications. See [GNW11] for a survey article.

Definition 1.1 (The XOR function). Given a function f : {0, 1}k → {0, 1}, and a number t, we define
f⊕t : {0, 1}t·k → {0, 1}, as follows: Given y ∈ {0, 1}t·k, we view y as (y1, . . . , yt) ∈ ({0, 1}k)t, and
define:

f⊕t(y) = f(y1)⊕ . . .⊕ f(yt)

Let Uk denote the uniform distribution on k bit strings. Loosely speaking, Yao’s XOR lemma says that
if a function f is “mildly hard on average” on input X ← Uk, then as t increases, computing f⊕t on input
Y ← Utk, becomes “very hard on average”.

Lemma 1.2 (Yao’s XOR lemma, for poly-size circuits). For every f : {0, 1}k → {0, 1}, and t ≤ poly(k)
such that t = ω(log k):

If, for every poly(k) size circuit C, PrX←Uk
[C(X) = f(X)] < 2

3 ,

Then, for every constant c, and every poly(k) size circuit D, PrY←Utk
[D(Y ) = f⊕t(Y )] < 1

2 + 1
kc .1

One weakness of Yao’s XOR lemma, is that it cannot be used to conclude a statement in which the
“hardness on average” 1

2 + 1
kc is replaced by 1

2 + 1
kω(1) . This holds, even if the number of repetitions t is

increased from slightly larger than log k (as is the case in Lemma 1.2) to the maximal choice of t = poly(k).
Specifically, the following question is wide open:

Open problem 1.3 (Yao’s XOR lemma for subpolynomial error?). Is it true that for every f : {0, 1}k →
{0, 1}, taking t = ω(log k) (or even the maximal choice of t = poly(k)) it holds that:

If, for every poly(k) size circuit C, PrX←Uk
[C(X) = f(X)] < 2

3 ,

Then, for every poly(k) size circuit D, PrY←Utk
[D(Y ) = f⊕t(Y )] < 1

2 + 1
kω(1) .

Another weakness of Yao’s XOR Lemma is that known proofs fail to prove Yao’s XOR lemma when
replacing P/poly with many interesting constant depth circuit classes. An especially frustrating case is the
class AC0[PARITY] of poly-size constant depth circuits over the gates {AND,OR,NOT,PARITY} of unbounded
fan-in. There are known lower bounds showing explicit functions that have hardness 2

3 for AC0[PARITY] (or
even 1

2 + o(1) hardness) for circuits of depth d and size 2k
Ω(1/d)

[Raz87, Smo87]. However, we do not have
lower bounds for AC0[PARITY] that achieve hardness 1

2 + 1
k for a function on k bits, and the best bound by

Razborov [Raz87] achieves hardness 1
2 + 1√

k
.

This is a twenty five year old barrier that prevents us from “using the hybrid argument” when construct-
ing pseudorandom generators for AC0[PARITY] (and related classes). This barrier limits the best known
pseudorandom generators for AC0[PARITY] by [FSUV13] to very poor seeds. (See [FSUV13] for a discus-
sion of this limitation). Specifically, the following question is wide open:

Open problem 1.4 (Yao’s XOR lemma for constant depth circuits?). Let G be the set of gates {AND,OR,NOT,PARITY}
of unbounded fan-in. Is it true that for every f : {0, 1}k → {0, 1}, taking t = ω(log k) (or even the maximal
choice of t = poly(k)) it holds that:

1Naturally, in order to make this asymptotic statement precise, one needs to consider an infinite sequence of functions {fk}
with growing input length (so that terms like “poly-size”, “ω(log k)”, and “constant” are well defined). We allow ourselves to be
imprecise, as a more general, and quantitatively precise statement of Yao’s XOR lemma is given below in Lemma 1.5.
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If, for every poly(k) size, constant-depth circuit C with gates in G, PrX←Uk
[C(X) = f(X)] < 2

3 ,

Then, for every poly(k) size, constant-depth circuit D, with gates in G, PrY←Utk
[D(Y ) = f⊕t(Y )] <

1
2 + 1

tk .

1.1 Proofs of Yao’s Lemma as (nonuniform) black-box reductions

Before discussing the best known proofs of Yao’s XOR Lemma, let us state the lemma more precisely, in a
more general and quantitative form. The next formulation is achieved using Impagliazzo’s proof of Yao’s
XOR lemma [Imp95, GNW11] together with the quantitative improvement of Klivans and Servedio [KS03]
of Impagliazzo’s hard-core lemma [Imp95].

Lemma 1.5 (Yao’s XOR lemma, general version). There exist a constant c, and a polynomial p, such that

for every f : {0, 1}k → {0, 1}, every ϵ > 0, every 0 < δ < 1
2 , and every t ≥ c · log(1/ϵ)·log log

1
ϵ

δ , setting
q = c · log(1/δ)

ϵ2
, we have that:

If, for every circuit C of size s ≥ p(t, k, q), PrX←Uk
[C(X) = f(X)] < 1− δ,

Then, for every circuit D of size s′ = s
q , PrY←Utk

[D(Y ) = f⊕t(Y )] < 1
2 + ϵ.

Remark 1.6 (Other tradeoffs in the XOR lemma). Lemma 1.5 is not stated explicitly in [KS03]. However, it
immediately follows by “plugging in” the hard-core lemma of Klivans and Servedio [KS03] in Impagliazzo’s
proof of the XOR lemma [Imp95]. To the best of our knowledge, this version is the best known in the
parameter q (which is a focus of this paper). However, it uses t that is larger by a log · log(1/ϵ) multiplicative
factor, compared to other proofs. We remark that other proofs (see [GNW11] for a survey) can achieve
smaller t, namely, t = c · log(1/ϵ)

δ for some constant c, at the cost of using larger values for q. One
possible tradeoff is obtained by plugging the “min-max proof” of the hard-core lemma (attributed to Nisan
in [Imp95]) in Impagliazzo’s proof [Imp95] which gives t = c · log(1/ϵ)δ for q = c · log(1/(ϵδ)

ϵ2
.

The special case of Lemma 1.2 is obtained by taking s to be a polynomial in k, and δ = 1
3 . In order

to reduce the number of live parameters, we recommend that the reader focuses on these choices on a first
reading. We point out that s′ (which is the size of D) is smaller by a factor of q = Ω( 1

ϵ2
), than s (which is

the size of C). This implies that s′ ≤ O(ϵ2 · s), implying that ϵ ≥ Ω( 1√
s
), and it is impossible to get ϵ < 1

s

with current proofs. (This is a more quantitative way to state the phenomenon in open problem 1.3).
All known proofs of Yao’s XOR lemma work by reduction. That is, the proof shows a reduction that

transforms a circuit D such that

Pr
Y←Utk

[D(Y ) = f⊕t(Y )] ≥ 1

2
+ ϵ,

into a circuit C such that
Pr

X←Uk

[C(X) = f(X)] ≥ 1− δ.

We will use the concept of an “oracle circuit” to give a formal definition of a reduction.

Definition 1.7 (Oracle circuit). An oracle circuit R(·) is a circuit that in addition to standard gates also has
additional “oracle gates” (possibly of large fan-in m). For a function D : {0, 1}m → {0, 1}, the function
CD is defined by instantiating the oracle gates with D.
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All known proofs of Yao’s XOR lemma are “nonuniform black-box reductions”, meaning that they
provide a reduction (namely an oracle circuit Red(·)(x, α) where x is an input, and α is an “advice string”)
and the circuit C is obtained by C(x) = RedD(x, α) where α is a “nonuniform advice string” that may
depend on f and D.2 This is made precise in the next definition.

Definition 1.8 (Nonuniform black-box reduction for Yao’s XOR lemma). Let ϵ, δ > 0, and let k, t, a be
integers. A (12 + ϵ) → (1 − δ) black-box reduction for Yao’s XOR lemma (with input length k, t
repetitions and advice length a) is an oracle circuit Red(·)(x, α), where x ∈ {0, 1}k and α ∈ {0, 1}a, such
that for every f : {0, 1}k → {0, 1}, the following holds:

For every function D : {0, 1}tk → {0, 1}, such that PrY←Utk
[D(Y ) = f⊕t(Y )] ≥ 1

2 + ϵ,

there exists α ∈ {0, 1}a, such that PrX←Uk
[RedD(X,α) = f(X)] ≥ 1− δ.

The version of Yao’s XOR lemma stated in Lemma 1.5, follows by showing the following reduction:

Lemma 1.9 (Known black-box reductions for Yao’s XOR lemma). There exist a constant c, and a polyno-

mial p, such that for every integer k, every ϵ, δ > 0 such that 1−δ > 1
2 +ϵ, and every t ≥ c · log(1/ϵ)·log log

1
ϵ

δ ,
there is a (12 + ϵ) → (1− δ) black-box reduction Red(·)(x, α) for Yao’s XOR lemma with input length k, t
repetitions, and advice length a such that:

• Red makes at most q = c · log(1/δ)
ϵ2

queries to its oracle (meaning that on every input, and for every
function D, the number of “oracle calls” made to D is at most q).

• Red is an oracle circuit of size r = p(t, k, q), (and in particular, a ≤ r).

• Red is an oracle circuit of constant depth d over the gates {AND,OR,NOT} of unbounded fan-in and
also uses a single majority gate over q bits.

In order to understand the limitations that prevent known proofs from solving the aforementioned open
problems, it is instructive to see how Lemma 1.5 follows from Lemma 1.9. Specifically, assume (for con-
tradiction) that Lemma 1.5 does not hold and let D be a circuit of size s′ that is violating the conclusion.
By Lemma 1.9, there exists α ∈ {0, 1}a, such that the circuit C(x) = RedD(x, α) computes f(X) with
success 1− δ on X ← Uk. The size of C is bounded by s = r + a+ q · s′ ≥ q · s′, and the obtained circuit
C has depth at least d, and needs to compute majority on q bits. Summing up:

• The number of queries q made by the reduction is a lower bound on s
s′ , meaning that s′ ≤ s

q and as
the known reductions have q ≥ 1

ϵ2
we cannot expect ϵ < 1√

s
, and cannot solve open problem 1.3.

• The fact that the best known reductions require a majority gate on q ≥ 1
ϵ inputs, means that we

need to assume hardness against a class that can perform this computation. For ϵ = 1/k, Razborov’s
lower bound [Raz87] (see also [OSS19]) shows that for every depth d′, majority on k bits, cannot be
computed by circuits of depth d′ and size 2k

Ω(1/d′)
over the gates {AND,OR,NOT,PARITY}, explaining

why current reductions cannot solve open problem 1.4.
2There is a formal connection between “black box hardness amplification” and list-decodable error correcting code [STV01],

see for example the discussion in [SV10, GSV18]. Using this connection, it is known that black-box reductions for Yao’s XOR
lemma, must be nonuniform and use an advice string if 1− δ > 1

2
+ ϵ and ϵ < 1

4
.
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Limitations on black-box reductions. A sequence of works [Vio06, SV10, GR08, AS14, AASY16] cul-
minating in [GSV18], shows that known black-box reductions for Yao’s XOR lemma must suffer from
the limitations above: They require q = Ω( log(1/δ)

ϵ2
) queries, and require computing majority on input

length Ω(1ϵ ).
3

1.2 Class reductions

On a closer examination, black-box reductions seem to be an overkill for the task of proving Yao’s XOR
lemma. For proving Yao’s XOR lemma, we don’t need Red(·) to succeed given oracle access to every
function D such that PrY←Utk

[D(Y ) = f⊕t(Y )] ≥ 1
2 + ϵ. It is sufficient that Red succeeds only given

oracle access to functions D that are efficiently computable and belong to the class D of circuits with size
s′ (if we’re in the setup of open problem 1.3) and size s′ with constant depth (if we’re in the setup of open
problem 1.4).

This motivates a notion of class reduction (suggested for example in [GT07]) in which reductions are
only required to succeed if given oracle access to a function D that belongs to some class D of “efficient
circuits”, and do not need to succeed when given oracle access to a function D that does not belong to D.
The definition of class D reduction below is identical to definition 1.8 with the single exception (that is
underlined for emphasis) being that we only require the reduction to succeed when given oracle access to a
function D from the class D.

Definition 1.10 (Nonuniform class reduction for Yao’s XOR lemma). Let ϵ, δ > 0 and let k, t, a be integers,
and let D be some class of functions D : {0, 1}tk → {0, 1}. A (12 + ϵ) → (1 − δ) class D reduction for
Yao’s XOR lemma (with input length k, t repetitions and advice length a) is an oracle circuit Red(·)(x, α),
where x ∈ {0, 1}k and α ∈ {0, 1}a, such that for every f : {0, 1}k → {0, 1}, the following holds:

For every function D : {0, 1}tk → {0, 1} in the class D, such that PrY←Utk
[D(Y ) = f⊕t(Y )] ≥ 1

2 + ϵ,

there exists α ∈ {0, 1}a, such that PrX←Uk
[RedD(X,α) = f(X)] ≥ 1− δ.

Note that a black-box reduction is a special case of a class reduction where D is the class of all boolean
functions on tk bits. This raises the following questions:

1. Are there reductions in the literature that are class reductions but not black-box reductions?

2. Can class reductions circumvent the limitations on black-box reductions and solve open problem 1.3
or open problem 1.4?

The answer to the first question is affirmative in the sense that there are at least two examples that we are
aware of, where a worst-case to average case amplification is proven by a reduction that is not black-box.
Furthermore, in both cases, the reduction is a class reduction, and there is strong evidence that it cannot be
made black-box.

The first example is a worst-case hardness to average case hardness tradeoff for SAT (with respect to
a distribution sampled in quasipolynomial time) by Gutfreund, Shaltiel and Ta-Shma [GST07] (see also a
related work [Ats06, Gut06, GT07]). The correctness of the reduction of [GST07] relies on the efficiency
of the oracle and the term “class reduction” was suggested by Gutfreund and Ta-Shma [GT07]. It was also

3More formally, saying that Red(·) “requires computing majority on input length Ω(1/ϵ)” means that every such reduction
Red(·) can be transformed into a circuit (with no oracle) of roughly the same size and depth as Red(·) for computing the majority
function on inputs of length Ω( 1

ϵ
).
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argued in [GT07] that limitations on black-box reductions proven by Bogdanov and Trevisan [BT06] can be
extended to the scenario studied in [GST07], and show that if the class reduction of [GST07] could be made
black-box, then co-NP has nondeterministic circuits of quasipolynomial size.

Another example is Hirahara’s recent worst-case to average case reductions for variants of MCSP and
MINKT [Hir18]. These reductions are non-black-box, in the sense that their correctness relies on the ef-
ficiency of their oracle. The aforementioned work of Bogdanov and Trevisan [BT06] shows that if these
reductions can be made black-box, then these problems are in co-NP/poly, which is not known, and is false,
if these problems are NP-complete. See [Hir18] for an elaborate discussion of consequences of the existence
of such black-box reductions.

1.3 Limitations on class reductions for Yao’s XOR lemma

In this paper we give evidence that the answer to the second question above is negative. We extend
the aforementioned limitations of [GSV18] on black-box reductions for Yao’s XOR lemma to class re-
ductions for any D of that contains circuits that have polynomial size and constant depth over the gates
{AND,OR,NOT,PARITY} with unbounded fan-in. There are however some caveats that are discussed in
Section 1.3.1.

To the best of our knowledge, this is the first example of proving limitations on class reductions in this
setup. Our results are stated formally in the next theorem.4

Theorem 1.11 (Limitations on class reductions for Yao’s XOR lemma). There exist constants δ0 > 0,
ν > 0, d0 > 1 and a polynomial p such that: Let Red(·)(x, α) be a (12 + ϵ)→ (1− δ) class D reduction for
Yao’s XOR lemma, with input length k, t repetitions and advice length a. Assume that:

• Red(·) is a size r oracle circuit, that makes at most q queries.

• The class D contains circuits of size p(r) and depth d0 over the gates {AND,OR,NOT,PARITY} of
unbounded fan-in.

• k, t, a, 1ϵ ,
1
δ ≤ r ≤ 2ν·k and δ ≤ δ0.

Then the following holds:

• Red(·) requires many queries, specifically: q = Ω( log(1/δ)
ϵ2

).

• Red(·) requires majority, specifically: if in addition to the size restriction on Red, we also have that
Red(·) is an oracle circuit of depth d over a set of gates G that contains the gates {AND,OR,NOT,PARITY}
of unbounded fan-in, then the majority function over Ω(1ϵ ) bits can be computed by a circuit of size
poly(r) and depth O(d) over the set of gates G.

The case that δ = 1
3 . Theorem 1.11 is stated for δ ≤ δ0 for some unspecified constant δ0 > 0. In Open

problems 1.3,1.4 we took δ = 1
3 , which does not seem to be covered by Theorem 1.11. Nevertheless, we

will now observe that Theorem 1.11 has implications also for δ = 1
3 .

By known proofs of the XOR lemma, and in particular by Lemma 1.9, there exists a 2
3 → (1 − δ0)

black-box reduction for Yao’s XOR lemma with constant t, q and a. Moreover, this black-box reduction
4We remark that any circuit of size r over the gates {AND,OR,NOT,PARITY} with unbounded fan-in, cannot use fan-in larger

than r, and therefore can be simulated by a circuit of size O(r2) over the standard gates {AND,OR,NOT} with bounded fan-in. This
allows us to state our results in a way that captures both circuits of small depth (using gates with unbounded fan-in) and circuits
that use the standard gates with bounded fan-in.
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is an oracle circuit of size poly(k) and constant depth over the gates {AND,OR,NOT} of unbounded fan-in.
(We stress that a majority gate is not needed, as the majority gate is over q = O(1) bits).

This implies that a (12 + ϵ)→ 2
3 class D reduction for Yao’s XOR lemma implies a (12 + ϵ)→ (1− δ0)

class D′ reduction for Yao’s XOR lemma, with constant losses in t, a, q, and where the class D′ is slightly
weaker than D in terms of the relevant measures of circuit size and depth. Altogether, this implies that
Theorem 1.11 also applies for δ = 1

3 .

1.3.1 What kind of reductions are ruled out by this result?

Theorem 1.11 achieves exactly the same limitations on class reductions for Yao’s XOR lemma as the limita-
tions of [GSV18] for black-box reductions. This is achieved for any classD that contains small circuits with
constant depth over the gates {AND,OR,NOT,PARITY} of unbounded fan-in, which is exactly the classes
that come up if one wants to use class reductions to solve open problems 1.3 and 1.4. (As we explain in
detail below in Section 1.4, the results of [GSV18] are more general and apply to every form of hardness
amplification, rather than just XOR lemmas).

In order to explain what kind of reductions are ruled out, let us consider three kinds of potential reduc-
tions:

1. Nonuniform black-box reductions (as defined in Definition 1.8. (This is the type of reductions covered
in [GSV18]).

2. Class D reductions where the reductions Red(·) is “less powerful” than the class D. (This is the type
of reductions covered in Theorem 1.11).

3. Class D reductions where the reduction Red(·) is “more powerful” than the class D. (This type of
reductions are not covered in Theorem 1.11, as we explian below).

The distinction between the second and third items can be seen in Theorem 1.11, and specifically, in the
requirement that D contains circuits of size larger than the size of the reduction Red(·). This is crucially
used in the proof of the theorem.5

In both kinds of class reductions (both the second and third items) one obtains an XOR lemma where
the hardness assumption is against circuits of the form RedD for every D ∈ D, and the conclusion is against
D. Our results apply for the second kind of reductions, and in particular imply that:

• If D is the class of circuits of size s(k), and Red(·) is a D class reduction of size r(k), and if fur-
thermore r(k) ≤ s(k)/p(k) (for a universal polynomial p(k)), then by Theorem 1.11, Red(·) has to
make at least q = Ω( log(1/δ)

ϵ2
) queries. In particular, to obtain an XOR-lemma with hardness 1

2 + ϵ(k)
against circuits of size s(k) it is necessary to assume hardness against circuits of size

s′(k) ≥ r(k) + q(k) · s(k) ≥ s(k)

ϵ(k)2
.

This implies that when assuming hardness against circuits of size s′(k) one can not get ϵ(k) ≤ 1√
s′(k)

.

• If in addition to the requirements in the previous item, Red(·) is a depth d circuit over the gates
{AND,OR,NOT,PARITY} of unbounded fan-in, then majority on inputs of length Ω( 1

ϵ(k)) can be com-
puted by circuits of depth O(d) and size poly(r(k)) the gates {AND,OR,NOT,PARITY} over the gates

5We remark that curiously, we do not need to require that D contains circuits of depth larger than the depth of Red(·)
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{AND,OR,NOT,PARITY} of unbounded fan-in. As s′(k) ≥ r(k) this means that we need to assume
hardness against circuits of size

s′(k) = 2
Ω(( 1

ϵ(k)
)Ω( 1

d
))
.

In particular, if ϵ(k) ≤ 1
k , it follows that we must assume hardness against circuits of size

s′(k) = 2Ω(k)Ω( 1
d
)

.

However, for both conclusions we need to require that the reduction is less powerful than the class D, and
specifically, that r(k) ≤ s(k)/p(k). We do not know how to remove this requirement, and leave this as an
open problem, see Section 7.

In the context of Open problem 1.3, the fact that we do not rule out reductions that are more powerful
than the class does not tule out an approach in which for every polynomial p1, there exists a larger polynomial
p2 such that there is a (12 +

1
kω(1) )→ 2

3 class Dp1 reduction Redp1 of size p2(k) for the class Dp1 of circuits
of size p1(k) (but not for the class of circuits of size p(p2(k)) where p is the polynomial in Theorem 1.11).
This is sufficient for solving open problem 1.3 and is not ruled out by our impossibility results.

An optimistic view is that this may point us to the kind of reductions we need to design, in order to solve
the aforementioned open problems. We remark however that the aforementioned reduction by Hirahara
[Hir18] does not need to assume that the oracle is weaker than the reduction. (The reduction of [GST07]
involves a more complicated scenario where there is also a third entity which is the samplable distribution,
and so, it is arguable whether the reduction is more powerful than the oracle).

Perspective. Limitations for black-box reductions are extensively studied in various settings in complexity
theory and cryptography. In order to prove impossibility results on black-box reduction, it is sufficient to
show the existence of an oracle D (that does not need to be efficient) on which the reduction cannot succeed.

Many impossibility results and limitations in the literature strongly utilize the ability to choose an oracle
D that is not efficient. One notable example is the aforementioned results of Bogdanov and Trevisan [BT06]
(that build on earlier work of Feigenbaum and Fortnow [FF93]). Indeed, this is why these limitations do not
apply to class reductions like the aforementioned results [GST07, Hir18].

This work puts an emphasis on whether or not the oracle D that one designs when showing a black-box
impossibility result, can be made efficient, and demonstrates that achieving this, has the additional benefit
of also ruling out class reductions.

1.4 Extensions to some other forms of hardness amplification

Theorem 1.11 is weaker than the results of [GSV18] in the sense that the limitations of [GSV18] apply not
only to Yao’s XOR lemma, but to any hardness amplification technique. More precisely, in the results of
[GSV18] one can replace f⊕t by any other function f ′ over n = 2o(k) bits, with the same limitations. Our
approach cannot give such a general result. We can extend our result to some specific forms of f ′ that we
now explain.

A construction map is an oracle circuit Con(·) where for every f : {0, 1}k → {0, 1}, the function
f ′ = Conf is a function f ′ : {0, 1}n → {0, 1}. Yao’s XOR lemma is the special case where for some
parameter t, n = kt and f ′ = Conf = f⊕t. In the definition below, we extend the notion of class reductions
to this more general setup. (Once again, the difference between this notion and nonuniform black-box
reductions is that we only require the conclusion for D in the class D).
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Definition 1.12 (Nonuniform class reduction for hardness amplification). Let ϵ, δ > 0 and let k, n, a be
integers. Let Con(·) be an oracle circuit such that for f : {0, 1}k → {0, 1}, Conf : {0, 1}n → {0, 1}. Let
D be some class of functions D : {0, 1}n → {0, 1}. A (12 + ϵ)→ (1− δ) class D reduction for Con (with
input length k, output length n and advice length a) is an oracle circuit Red(·)(x, α), where x ∈ {0, 1}k
and α ∈ {0, 1}a, such that for every f : {0, 1}k → {0, 1}, the following holds:

For every function D : {0, 1}n → {0, 1} in the class D, such that PrY←Utk
[D(Y ) = Conf (Y )] ≥ 1

2 + ϵ,

there exists α ∈ {0, 1}a, such that PrX←Uk
[RedD(X,α) = f(X)] ≥ 1− δ.

We can extend Theorem 1.11 to several choices of construction maps. Note that the lower bounds of
[GSV18] on nonuniform black-box reductions apply to every construction map.

Extension to efficient hardness amplification constructions. Our results extend to the case that Con(·)

is “sufficiently efficient”. More precisely, to the case where Con(·) is a constant depth and size poly(r) over
the gates {AND,OR,NOT,PARITY} of unbounded fan-in.

Theorem 1.13 (Limitations on class reductions for efficient hardness amplification). There exist constants
δ0 > 0, ν > 0, d0 > 1 and a polynomial p such that: Let Red(·)(x, α) be a (12 + ϵ) → (1 − δ) class D
reduction for Con, with input length k, output length n and advice length a. Assume that:

• Red(·) is a size r oracle circuit, that makes at most q queries.

• The class D contains circuits of size p(r) and depth d0 over the gates {AND,OR,NOT,PARITY} of
unbounded fan-in.

• k, n, a, 1ϵ ,
1
δ ≤ r ≤ 2ν·k and δ ≤ δ0.

• Con(·) is a size poly(r) circuit.

Then the following holds:

• Red(·) requires many queries, specifically: q = Ω( log(1/δ)
ϵ2

).

• Red(·) requires majority, specifically: if in addition to the size restriction on Con,Red, we also have
that Con(·),Red(·) are oracle circuits of depth e, d (respectively) over a set of gates G that contains
the gates {AND,OR,NOT,PARITY} of unbounded fan-in, then the majority function over Ω(1ϵ ) bits can
be computed by a circuit of size poly(r) and depth O(d+ e) over the set of gates G.

In fact, Theorem 1.13 follows by the same proof as Theorem 1.11, as the only property of f⊕t used in
the proof, is that it can be efficiently computed in AC0[2]. See Remark 3.1.

Extension to hardness amplification based on sufficiently explicit linear codes. A common construc-
tion map in hardness amplification is the construction map Conf = f ′ where we think of f : {0, 1}k →
{0, 1} as a 2k bit long truth table, encode f by an error-correcting code, and let f ′ be the function whose
truth table is this encoding. (It was observed in [STV01] that there is a formal connection between black-box
reductions for hardness amplification, and list-decodable error correcting codes, see for example [GSV18]
for a discussion). Note that this typically yields a construction map that has size exponential in k (rather
than polynomial in k) and is not considered efficient.

Nevertheless, using ideas from [Vio06], our results also extend to the case of δ = 2−2k (which captures
worst-case to average case hardness amplification) for functions f ′ over n = 2o(k) bits, such that:

f ′(y) =
∑

x∈{0,1}k
f(x) · g(x, y),
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where the sum is taken in the field F2, and g : {0, 1}k × {0, 1}n → {0, 1} can be computed by circuits of
size poly(r) and depth d over the gates {AND,OR,NOT,PARITY} of unbounded fan-in.

This definition of f ′ corresponds to “hardness amplification by a linear code”. More specifically, we can
view g as a matrix A of order 2k × 2n over F2 by Ax,y = g(x, y), and view the truth tables of the functions
f and f ′ as vectors over F2 of dimension 2k and 2n, respectively. In this interpretation, the definition of f ′

above, says that f ′ = f ·A, for a matrix A in which the entry Ax,y can be efficiently computed given x, y.
Many worst-case to average-case hardness amplification results in the literature choose f ′ so that the

truth table f ′ is obtained by applying a linear error correcting code on the truth table of f . Our results
apply to this scenario, with the weaker conclusion that q = Ω( log r

ϵ2
), and the same conclusion for the case

of majority.

Theorem 1.14 (Limitations on class reductions for hardness amplification by linear maps). There exist
constants ν > 0, d0 > 1 and a polynomial p such that: Let Red(·)(x, α) be a (12 + ϵ) → (1 − 2−2k) class
D reduction for Con, with input length k, output length n and advice length a. Assume that:

• Red(·) is a size r oracle circuit, that makes at most q queries.

• The class D contains circuits of size p(r) and depth d0 over the gates {AND,OR,NOT,PARITY} of
unbounded fan-in.

• k, n, a, 1ϵ ≤ r ≤ 2ν·k.

• The construction map Con(·) is defined by

Conf =
∑

x∈{0,1}k
f(x) · g(x, y),

where the sum is taken in the field F2, and g : {0, 1}k×{0, 1}n → {0, 1} can be computed by circuits
of size poly(r) and depth d over the gates {AND,OR,NOT,PARITY} of unbounded fan-in.

Then the following holds:

• Red(·) requires many queries, specifically: q = Ω( log r
ϵ2

).

• Red(·) requires majority, specifically: if in addition to the size restriction on Con,Red, we also
have that Red(·) are oracle circuits of depth d (respectively) over a set of gates G that contains the
gates {AND,OR,NOT,PARITY} of unbounded fan-in, then the majority function over Ω(1ϵ ) bits can be
computed by a circuit of size poly(r) and depth O(d) over the set of gates G.

1.5 Some more related work

It is beyond the scope of this paper to survey the vast literature on Yao’s XOR lemma and hardness amplifi-
cation. The reader is referred to [GNW11] for a survey on Yao’s XOR lemma, and to [Vio06, SV10, GSV18]
for detailed discussions on the more general problem of hardness amplification.

A significant advantage of Yao’s XOR lemma (over some other suggested methods of hardness ampli-
fication) is that the “construction” f ′ = f⊕t can be computed very efficiently, when given oracle access to
f . A line of work (that is orthogonal to studying the complexity of reductions for hardness amplification)
is interested in the complexity of constructions yielding hardness amplification. This line of work is mostly
interested in starting from worst-case hard functions (which correspond to δ < 2−k) and aims to design (or
prove impossibility results for) efficient constructions Con(·) for which one can prove that if f has hardness
1− δ, then f ′ = Conf has hardness 1

2 + ϵ. (See e.g., [TV07, Vio03, LTW08, GV08] for further discussion).
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In this orthogonal line of work, there are examples of constructions which are non-black-box, and utilize
specific properties of the function f (for example that f ∈ NP or that f is a low degree polynomial). This
is a different form of “non-black-box” than the one studied in this paper, and it is interesting to combine the
two orthogonal directions.

There is a large body of work on proving black-box impossibility results in cryptography. This study
was initiated by Impagliazzo and Rufich [IR89] and is concerned both with issues that are related to black-
box constructions and to black-box reductions. See for example the discussion in Reingold, Trevisan and
Vadhan [RTV04] for a taxonomy of various notions.

As we explain below, the approach taken in this paper in order to extend the previous black-box lower
bounds of Grinberg, Shaltiel and Viola [GSV18], is inspired by a classical work of Goldreich and Krawczyk
[GK96] who show black-box impossibility results on “black-box simulation for zero knowledge proofs”.
Specifically, it is this work that introduced the use of ℓ-wise independent oracles that is used in this work
and is explained in the next section.

2 Technique and a road map for proof

Our results are obtained by carefully examining the argument of the black-box impossibility result of
[GSV18], replacing the inefficient oracle with an efficient one, and handling the technical difficulties arising
from this modification.

In this section we survey our technique, and discuss similarities and differences to [GSV18]. We give
a roadmap of the proof of Theorem 1.11, stating the key technical lemmas that are used to prove Theorem
1.11. These technical lemmas are proven in subsequent sections.

We assume the setup of Theorem 1.11. Specifically, let Red(·)(x, α) be a (12 + ϵ) → (1 − δ) class D
reduction for Yao’s XOR lemma, with input length k, t repetitions and advice length a, which makes at most
q queries and satisfies the requirements of the theorem. We will assume w.l.o.g. that Red(·) does not make
the same query twice. Let r be the size of Red and let d (which is not necessarily a constant) be the depth
of Red. Our goal is to show that Red(·) requires many queries, and that Red(·) requires majority. We will
assume that 1

ϵ is a power of two.
Let f : {0, 1}k → {0, 1} be some function that we choose later, and let n = tk be the input length of

f⊕t. We start by surveying the approach of of the previous papers (which only handle black-box reductions
rather than class reductions).

2.1 The approach of [Vio06, SV10]

We first introduce the following notation.

Definition 2.1 (Random sequences/functions). For a number 0 ≤ p ≤ 1, and an integer q, we define a
distribution Noiseq

p over {0, 1}q which consists of q i.i.d. bit variables Noiseq
p(1), . . . ,Noisep

q(q) where
each of them has probability p to be one. This notation also allows us to view Noiseq

p as a distribution over
functions from [q] to {0, 1}.

Following [Vio06, SV10] (and as done in later works [GR08, GSV18]) our plan is to show that a (12 +

ϵ) → (1 − δ) reduction Red(·)(x, α) that makes q queries, can be transformed into a (distribution) over
circuits T : {0, 1}q → {0, 1} with no oracle (that have roughly the same size and depth as Red) that
distinguishes Noiseq

1/2−2ϵ from Noiseq
1/2. We will prove the following lemma (which we call the “zoom

lemma”).
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Lemma 2.2 (Zoom lemma). If ϵ = a/b where a ≤ b ≤ r are integers, and b is a power of two, then under
the assumption of Theorem 1.11, for every x ∈ {0, 1}k, there exists a circuit Tx over q bits, with size poly(r)
and depth O(d) over the set of gates G, such that:

• PrX←Uk
[TX(Noiseq

1/2−2ϵ) = 1] ≥ 1− 2δ.

• PrX←Uk
[TX(Noiseq

1/2) = 1] ≤ 1
2 + 1

200 .

Shaltiel and Viola [SV10] (see also [LSS+19]) showed that Theorem 1.11 follows from Lemma 2.2.
This is formally stated and explained in Section 5.6

In the remainder of this section, we prove Lemma 2.2 modulo some other lemmas and claims, that are
stated in this section, and proven in later sections of the paper.

2.2 The oracle used for black-box reductions

Lemmas that are similar to the zoom lemma are at the heart of earlier results [SV10, GR08, GSV18] on
black-box reductions, and we would like to imitate the argument working with class reductions. Let us start
by explaining the oracle used in previous works.

Specifically, let us set N = 2n and identify the set [N ] with the set {0, 1}n (so that we can think of
NoiseN

p as a function NoiseN
p : {0, 1}n → {0, 1}). We consider the following two (distributions over)

oracles D : {0, 1}n → {0, 1}.

• D1/2−2ϵ(y) = f⊕t(y)⊕ NoiseN
1/2−2ϵ(y)

• D1/2(y) = f⊕t(y)⊕ NoiseN
1/2(y).

Definition 2.3. We say that a function D : {0, 1}n → {0, 1} is useful, if there exists an α ∈ {0, 1}a such
that PrX←Uk

[RedD(X,α) = f⊕t(X)] ≥ 1− δ.

In the oracle D1/2, the noise NoiseN
1/2(y) is uniform and completely masks out the information in

f⊕t(y). Intuitively, this means that the oracle D1/2 isn’t useful for the reduction. On the other hand, a Cher-
noff bound shows that w.h.p. over choosing h← NoiseN

1/2−2ϵ, we have that | {y ∈ {0, 1}n : h(y) = 1} | ≤
(12 − ϵ) ·N . This gives that w.h.p. over choosing D ← D1/2−2ϵ, we have that PrY←Un [D(Y ) = f⊕t(Y )] ≥
1
2 + ϵ.

If Red is a (12 + ϵ)→ (1− δ) black-box reduction, then by definition, this implies that every such good
D is useful. The proof of [Vio06, SV10] then proceeds to transform a black-box reduction Red into the
circuits Tx required from Lemma 2.2. We will elaborate on this argument shortly.

Our plan is to imitate this argument when Red is not necessarily a black-box reduction, and is only
guaranteed to be a class reduction. Using this weaker assumption, we are not guaranteed that w.h.p. D ←
D1/2−2ϵ is useful. This is because we are not guaranteed that w.h.p. D ← D1/2−2ϵ belongs to the class D,
and the reduction does not need to succeed if D ̸∈ D.

6On an intuitive level, the connection between the consequence of the zoom lemma and the consequence of Theorem 1.11 is that
the “best way” to distinguish Noiseq

1/2−2ϵ from Noiseq
1/2 is to check whether the fraction of ones is below or above 1

2
− ϵ. This

is similar in spirit to majority over inputs of length Ω(1/ϵ), and it can be shown that majority on length Ω(1/ϵ) can be reduced to
this task. A Chernoff bound shows that q = O( log(1/δ)

ϵ2
) is sufficient to distinguish between the two distributions with confidence

1− δ, and it can be shown that such a confidence requires q = Ω( log(1/δ)
ϵ2

).
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2.3 Using limited independence to obtain efficient oracles

We would like to make the oracle D1/2−2ϵ efficiently computable by small circuits, so that it belongs to D.
This presents two difficulties:

1. f⊕t is harder to compute than f (and f is assumed to be hard).

2. NoiseN
1/2−2ϵ is a random function, and w.h.p. requires circuits of exponential size.

In order to circumvent the first problem we use an idea from [Vio06] and will choose the function f :
{0, 1}k → {0, 1} to be a specific function with properties stated in the next lemma (in which the reader
should recall that r is the size of the oracle circuit Red(·)).

Lemma 2.4. There exist constants c1 such that for every constant c2, there exists a function f : {0, 1}k →
{0, 1} such that:

• For every circuit B : {0, 1}k → {0, 1} of size rc2 , PrX←Uk
[B(X) = f(X)] ≤ 1

2 + 1
200 .

• f can be computed by a DNF of size rc1·c2 .

Proof. By a standard counting argument, there exists a constant c1 such that for every constant c2, setting
m = c1 · c2 · log r, there exists a function g : {0, 1}m → {0, 1} such that for every circuit B of size
2m/c1 = rc2 , PrX←Um [B(X) = g(X)] ≤ 1

2 + 1
200 . Recall that the conditions of Theorem 1.11 allow us to

choose a constant ν > 0, such that the condition r ≤ 2ν·k holds. By choosing ν > 0 to be sufficiently small
as a function of c1 and c2, we can get that m ≤ k. The function f : {0, 1}k → {0, 1} is the function that
given x ∈ {0, 1}k applies g on the first m bits of x.

We choose f by the lemma, where c2 is a constant that we choose later. With this choice, and using the
assumption that t ≤ r we have that:

Corollary 2.5. The function f⊕t can be computed by circuits of size poly(r) and constant depth over the
gates {AND,OR,NOT,PARITY} of unbounded fan-in.

Remark 2.6 (Replacing f⊕t by a different target function f ′). Corollary 2.5 is the only place in the
proof where we use specific properties of f⊕t. The corollary holds for every function f ′ : {0, 1}n →
{0, 1} for which there exists an oracle circuit Con(·) of size poly(r) and constant depth over the gates
{AND,OR,NOT,PARITY} of unbounded fan-in, such that f ′ = Conf . This means that our results hold for
every such function f ′. Furthermore, if Con does not have constant depth, then Corollary 2.5 gives a size
bound on f ′, and this is sufficient to show the lower bound on number of queries with respect to the class D
of circuits of size p(r).

Corollary 2.5 takes care of the first difficulty above. It says that f⊕t can be computed by circuits in
the class D. We would like to replace NoiseN

1/2−2ϵ by a (distribution) over efficient circuits in D. Our
approach is to replace NoiseN

1/2−2ϵ (which consists of N independent bits) by a distribution which is ℓ-wise
independent, for ℓ = poly(r).

Definition 2.7 (ℓ-wise independence with bias p). A sequence R1, . . . , RN of bit random variables is ℓ-wise
independent with bias p, if R1, . . . , RN are ℓ-wise independent, and for every i ∈ [N ], Pr[Ri = 1] = p.

Gutfreund and Viola [GV04] gave a construction of an “ℓ-wise independent generator” where computing
individual output bits of the generator can be done by a constant depth circuit with parity gates. We now
state this result.
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Theorem 2.8. [GV04, Theorem 10] Let N = 2n be sufficiently large. For every integer ℓ ≤ N , there is a
function G : {0, 1}r → {0, 1}N , such that:

• r = poly(n, ℓ).

• The N random variables obtained by in the experiment G(Ur) are ℓ-wise independent with bias 1/2.

• The function g(x, i) = Gi(x) can be computed by a circuit of size poly(n, ℓ) and depth O(1) over the
gates {AND,OR,NOT,PARITY} of unbounded fan-in.7

It is standard to interpret a generator G as a collection of “ℓ-wise independent hash functions”. That
is, for every x ∈ {0, 1}r, we define hx : {0, 1}n → {0, 1}, by identifying [N ] with {0, 1}n, and defining
hx(i) = g(x, i). Let Hℓ

1/2 denote the distribution of choosing a random x← Ur and obtaining the function
h = hx. It follows that the random variables h(1), . . . , h(N) are ℓ-wise independent with bias p = 1/2.
In the corollary below, we observe that it is easy to extend this result to other values of p (as we will be
interested in p = 1/2− 2ϵ).

Corollary 2.9. Let N = 2n be sufficiently large. For every integers ℓ ≤ N and a ≤ b, such that b is a power
of 2, setting p = a

b , there exists a distribution Hℓ
p over circuits h : {0, 1}n → {0, 1} of size poly(n, ℓ, b) and

depth O(1) (over the gates {AND,OR,NOT,PARITY} of unbounded fan-in) such that the distribution obtained
by choosing h← Hℓ

p and considering (h(1), . . . , h(N)), is ℓ-wise independent with bias p.

Proof. Given N, ℓ and p = a
b , we apply Theorem 2.8 with N ′ = N · log b. We think of G as G′ :

{0, 1}r → ({0, 1}log b)N and for every x ∈ {0, 1}r, we define hx : {0, 1}n → {0, 1} by h(i) = 1 if the
binary representation of G′i(x) is at most a. Note that for every x ∈ {0, 1}r, hx requires computing log b
instantiations of Gi(x), and comparing binary strings of length log b. It follows that for every x ∈ {0, 1}r,
hx and can be computed by circuits of constant depth and size poly(n, ℓ, b) (or in fact, even poly(n, ℓ, log b)
if we are more careful). We also obviously have that the distribution obtained by choosing h ← Hℓ

p and
considering (h(1), . . . , h(N)), is ℓ-wise independent with bias p.

Let ℓ = p0(r) for a polynomial p0 that we will specify later. We define the following two (distribu-
tions over) oracles D : {0, 1}n → {0, 1}, in which we replace the independent bits of NoiseN by ℓ-wise
independent bits:8

• Dℓ
1/2−2ϵ(y) = f⊕t(y)⊕Hℓ

1/2−2ϵ(y)

• Dℓ
1/2(y) = f⊕t(y)⊕Hℓ

1/2(y).

We now have that every D in the support of Dℓ
1/2−2ϵ has size rc1·c2 + poly(n, ℓ, 1/ϵ) which can be

bounded by p(r) for some polynomial p. Furthermore, each such D has constant depth over the set of gates
{AND,OR,NOT,PARITY}. This gives that every such D is sufficiently efficient, and belongs to the class D.

7We remark that the result of Gutfreund and Viola [GV04] is stronger, giving a tighter bound on r, and a uniform circuit for
computing g(x, i).

8Replacing fully independent oracles by limited independence oracles, and arguing that black-box procedures with few queries
cannot tell the difference, is a common approach in proving black-box impossibility results, originating from the work of Goldreich
and Krawczyk [GK96]. It should be noted that even when ignoring the issue of class reductions, and focusing on black-box
reductions, we are considering reductions which are nonuniform. Nonuniform reductions get an advice string α that depends on the
choice of the oracle. Loosely speaking, this may give them information about the “seed” used to generate the limited independence
oracle. This creates technical difficulties that do not occur when reductions are uniform.
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This will allow us to imitate the argument for black box reductions. Specifically, by Chebyshev’s in-
equality, with probability at least 1− 1

ϵ22n
≥ 1

2 over choosing h← Hℓ
1/2−2ϵ, we have that:

| {y ∈ {0, 1}n : h(y) = 1} | ≤ (
1

2
− ϵ) ·N.

This means that with probability at least half over choosing D ← Dℓ
1/2−2ϵ, we have that:

Pr
Y←Un

[D(Y ) = f⊕t(Y )] ≥ 1

2
+ ϵ.

As Red is a (12 + ϵ)→ (1− δ) class D reduction, and every such good D belongs to D, we get that:

Claim 2.10. Prh←Hℓ
1/2−2ϵ

[(f⊕t ⊕ h) is useful] ≥ 1
2 .

2.4 A more general fixed set lemma

We will now proceed in a similar manner to [SV10, GSV18]. Specifically, let Advice be a function that
given a useful D, produces an advice string α such that PrX←Uk

[RedD(x, α) = f⊕t(y)] ≥ 1− δ (such an
α exists by definition). For every α ∈ {0, 1}a, let Aα be the event

Aα =
{
h : {0, 1}n → {0, 1} : (f⊕t ⊕ h) is useful, and Advice(f⊕t ⊕ h) = α

}
.

By averaging over the 2a advice strings we obtain that:

Claim 2.11. There exists α′ ∈ {0, 1}a s.t. Prh←Hℓ
1/2−2ϵ

[h ∈ Aα′ ] ≥ 1
2 · 2

−a = 2−(a+1).

Let R = Hℓ
1/2−2ϵ and Z = (R|R ∈ Aα′), following [SV10, GSV18] we would like to argue that (in

some sense to be explained below) for every x ∈ {0, 1}k, Red(·)(x, α′) does not distinguish between the
oracle f⊕t ⊕Z (in which bits can be correlated in complicated ways) and the oracle f⊕t ⊕R (in which bits
are ℓ-wise independent).

At this point we have already chosen α′ and f . For every x ∈ {0, 1}k, and h : {0, 1}n → {0, 1}, we can
think of the computation Redf

⊕t⊕h(x, α′) as a decision tree Px(h) (that depends on x and the fixed choices
of α′ and f ) that makes q queries to (the N = 2n bit long truth table of) h.

With this intuition in mind, we will prove the following lemma (which generalizes a “fixed set lemma”
proven in [GSV18] for the special case where the random variables R1, . . . , RN are independent).

Lemma 2.12 (A more general fixed set lemma). Let N, a and q be integers, and let R = (R1, . . . , RN ) be
some distribution, let A ⊆ {0, 1}N be an event such that Pr[R ∈ A] ≥ 2−a, and let Z = (R|R ∈ A). For
every η > 0, there exists a set B ⊆ [N ] of size b ≤ O(a · q/η), and v ∈ {0, 1}B in the support of ZB , such
that for R′ = (R|RB = v) and Z ′ = (Z|ZB = v) = (R|RB = v,R ∈ A), and every q-query decision tree
P , P (R′) and P (Z ′) are η-close.9

Remark 2.13 (Proof sketch and comparison to the proof technique of [GSV18]). The proof works by show-
ing that if there exists a q-query decision tree that distinguishes R from Z, then by fixing the variables on
some path of that tree, one obtains a distribution R′ such that Pr[R′ ∈ A] ≥ Pr[R ∈ A] · (1 + η). We apply
this argument iteratively (using R′ as R) until there does not exist a q query decision tree that distinguishes

9Two distributions X,Y over the same domain S are η-close if for every A ⊂ S, |Pr[X ∈ A]− Pr[Y ∈ A]| ≤ η.
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R from Z. In each iteration, Pr[R ∈ A] increases by a factor of 1 + η, and as this probability cannot be
larger than one, this process has to stop after O(a/η) steps. By then, we have fixed no more than O(qa/η)
of the variables. The full proof of Lemma 2.12 appears in Section 4.

This iterative approach is very similar to the one used in [GSV18]. Two proofs are given in [GSV18]
(the second one is attributed to an anonymous referee). Indeed, the iterative approach is used in both proofs
in [GSV18]. Namely, the proofs show that if there exists a q-query decision tree that distinguishes R from
Z, then by fixing the variables on some path of that tree, we make progress on some “progress measure”,
and that there is a bound on the number of times that this can happen.

Both proofs in [GSV18] rely on the assumption that R has “maximal entropy”. More precisely, under the
condition assumed in [GSV18] (that R1, . . . , RN are independent) it follows that w.l.o.g. one can assume
that each Ri is uniformly distributed. This means that Z = (R|R ∈ A) is uniformly distributed on A, and
in particular has high entropy, and large support size. These two measures are used (respectively) in the
two proofs presented in [GSV18].

Here, we are interested in dealing with a distribution R that does not have high entropy, and observe that
it is possible to imitate the argument of [GSV18] while using Pr[R ∈ A] as a progress measure. This allows
the argument to go through, even when the initial R is a low entropy distribution, in which the individual
variables are correlated.

We now continue with the proof of Lemma 2.2. We apply Lemma 2.12 on R = Hℓ
1/2−2ϵ and the event

A′α, using η = δ, and let Z,R′, Z ′, B, v and b be as in the lemma. It follows that for every x ∈ {0, 1}k, the
random variables Px(R

′) = Redf
⊕t⊕R′

(x, α′) and Px(Z
′) = Redf

⊕t⊕Z′
(x, α′) are δ-close.

As this holds for every fixed x ∈ {0, 1}k, this also holds for an independently chosen X ← Uk, and we
obtain that:

Pr[Redf
⊕t⊕R′

(X,α′) = f(X)] ≥ Pr[Redf
⊕t⊕Z′

(X,α′) = f(X)]− δ.

(More formally, in the probabilities above, X ← Uk is a random variable that is independent of the choice
of R′ in the right hand side, and independent of the choice of Z ′ in the left hand side).

The support of Z ′ is contained in Aα′ , and so, for every h in the support of Z ′, (f⊕t⊕ h) is useful (with
the advice string α′) and we get that:

Pr[Redf
⊕t⊕Z′

(X,α′) = f(X)] ≥ 1− δ. (1)

Combining this with the previous inequality, gives that:

Pr[Redf
⊕t⊕R′

(X,α′) = f(X)] ≥ 1− 2δ. (2)

The advantage of (2) over (1) is that we have replaced Z ′ (in which the bits of Z ′([N ]\B) can be correlated
in complicated ways) with R′, where R′([N ] \ B) is (ℓ− b)-wise independent. This will allow us to relate
this oracle to Noiseq

1/2−2ϵ and prove the zoom lemma.

2.5 Constructing the circuits for the zoom lemma

We would like to show that a reduction Red(·) that makes at most q queries, can be used to obtain the circuits
guaranteed in the zoom lemma. For this purpose, we define the following oracle circuit.

Definition 2.14. We define an oracle circuit E(·)(x) as follows: On input x and oracle h, Eh(x) simulates
Red(·)(x, α′). Whenever Red makes a query y to its oracle, R acts as follows: if y ̸∈ B, then R makes the
query y to h, and returns f⊕t(y)⊕h(y) to Red. If y ∈ B, then R returns f⊕t(y)⊕ v(y) to Red. The output
of R is the output of Red at the end of this simulation.
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We will now show that the oracle circuit E(·) gives rise to the circuits Tx required to prove Lemma 2.2.
More specifically, recall that we have not yet chosen the constant c2, and the polynomial p0 (which

determines ℓ). In the next lemma we show that by choosing c2 and p0, we can get that on an independent
and uniformly chosen X ← Uk, E(·)(X) distinguishes between the case that its oracle function h is chosen
from a distribution Hq

1/2−2ϵ (that is q-wise independent with bias 1/2 − 2ϵ) and the case where the oracle
function h is chosen from a distribution Hq

1/2 (that is q-wise independent with bias 1/2).

Lemma 2.15. By choosing the constant c2 and the polynomial p0 to be sufficiently large, we get that:

• Pr[E
Hq

1/2−2ϵ(X) = f(X)] ≥ 1− 2δ.

• Pr[E
Hq

1/2(X) = f(X)] ≤ 1
2 + 1

200 .

• For every x ∈ {0, 1}k, there exists a circuit Tx : {0, 1}q → {0, 1} of size poly(r) and depth O(d)
over the gates G, such that for every 0 ≤ p ≤ 1, Tx(Noiseq

p) = EHq
p (x).

The proof of Lemma 2.15 appears in Section 3, and is similar in spirit to earlier work [SV10, GR08,
GSV18]. It is in fact significantly simpler, as in this paper, we have the additional advantage that f⊕t has
circuits of size poly(r) and constant depth.
Note that Lemma 2.15 immediately implies Lemma 2.2.

Organization of the paper

Our goal is to prove the main theorem (Theorem 1.11). We start by concluding the proof of the zoom lemma
(Lemma 2.2). In Section 2 we showed that the zoom lemma (Lemma 2.2), follows once we prove Lemma
2.15 and the more general fixed set lemma (Lemma 2.12). We prove Lemma 2.15 in Section 3. We prove
Lemma 2.12 in Section 4.

Having established the zoom lemma (Lemma 2.2), in Section 5 we state and survey the results of [SV10]
showing that the zoom lemma (Lemma 2.2) implies the main theorem (Theorem 1.11).

In Section 6 we explain how to extend the argument to sufficiently explicit linear codes.

3 Proof of Lemma 2.15

In this section we prove Lemma 2.15. Note that by the assumptions of Theorem 1.11 we have that q, 1δ ≤ r,
and the number of queries q that Red makes, satisfies q ≤ r. This gives that b = O(qa/δ) is bounded by
some polynomial in r. We are allowed to choose the polynomial p0 to be sufficiently large so that ℓ = p0(r)
satisfies (ℓ− b) ≥ r ≥ q. This gives that the N − b coordinates of R′([N ] \B) are (ℓ− b)-wise independent
(because R′ was obtained by fixing b indices of R which is ℓ-wise independent).

Recall that we are also assuming w.l.o.g. that Red(·) does not make the same query twice. Throughout
the proof, we will use the observation that when an oracle procedure P (·) makes q queries to an oracle
function chosen from a distribution Hq

p that is q-wise independent with bias p, then the distribution of
answers that P sees is distributed like Noiseq

p. (This is immediate if P makes nonadaptive queries, but
also holds if P makes adaptive queries, as every sequence a1, . . . , aq ∈ {0, 1} of answers, is obtained with
probability p|{i:ai=1}| · (1− p)|{i:ai=0}|).

We have that R′([N ] \ B) are q-wise independent with bias 1/2 − 2ϵ, and that E answers queries
in B using v. By the observation above, this gives that for every x ∈ {0, 1}k, the queries and answers
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that Red makes in the evaluation of E
Hq

1/2−2ϵ(x) are distributed exactly like the queries and answers of
Redf

⊕t⊕R′
(x, α′), meaning that for every x ∈ {0, 1}k:

Pr[E
Hq

1/2−2ϵ(x) = f(x)] = Pr[Redf
⊕t⊕R′

(x, α′) = f(x)].

This immediately means that for an independent X ← Uk:

Pr[E
Hq

1/2−2ϵ(X) = f(X)] = Pr[Redf
⊕t⊕R′

(X,α′) = f(X)].

We have already seen in (2) that:

Pr[Redf
⊕t⊕R′

(X,α′) = f(X)] ≥ 1− 2δ,

and this gives the first item.
For the second item, we note that if EHq

1/2 makes a query y ̸∈ B, then it obtains a uniform coin, and the
coins obtained on different queries are independent. This follows because here the bias is 1/2, and so when
E xors the uniform bit answer that it gets from the oracle Hq

1/2 with the fixed f⊕t(y), it obtains a random
coin.

Recall that on queries y ∈ B, E answers the queries without consulting the oracle. we can simulate
E

Hq
1/2(x) by a randomized circuit C̄ that on input x, simulates E and answers queries y ̸∈ B by random

coins. (In particular, note that C̄ does not need to compute f⊕t(y) for y ̸∈ B.
It follows that for every x ∈ {0, 1}k:

Pr[E
Hq

1/2(x) = f(x)] = Pr[C̄(x) = f(x)].

This immediately means that for an independent X ← Uk:

Pr[E
Hq

1/2(X) = f(X)] = Pr[C̄(X) = f(X)].

By an averaging argument, there exists some fixing for the random coins of C̄ such that the obtained (deter-
ministic) circuit C satisfies Pr[C(X) = f(X)] ≥ Pr[C̄(X) = f(X)]. The circuit C is hardwired with this
choice of random coins, and with α′, B, v, and f⊕t(B). (Again, a crucial observation is that C does not
need to compute f⊕t for y ̸∈ B). Overall, this is a circuit of size rc for some constant c, and by choosing
the constant c2 to be a larger constant, and using Lemma 2.4, we have that:

Pr[E
Hq

1/2(X) = f(X)] ≤ Pr[C(X) = f(X)] ≤ 1

2
+

1

200
.

This proves the second item.
For the third item, we recall that for every p, and for every x ∈ {0, 1}k, the distribution of the q answers

that EHq
p obtains from its oracle is distributed like Noiseq

p. This means that for every x, we can construct a
circuit Tx (with no oracle) that on input from Noqp simulates EHq

p (x), using its i’th input bit to answer the
i’th query of E. The circuit Tx is hardwired with α′, B, v and f⊕t(B). Unlike the circuit C from the second
item, Tx does need to compute f⊕t on each of the q queries. This is because for p = 1/2 − 2ϵ, the answer
from Hq

p does not mask out the corresponding output of f⊕t.
However, by Corollary 2.5, the function f⊕t can be computed by circuits of size poly(r) and con-

stant depth over the gates {AND,OR,NOT,PARITY} of unbounded fan-in. Therefore, we can implement Tx

by a circuit of size poly(r) (this time the polynomial is larger than rc2) and depth O(d) over the gates
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{AND,OR,NOT,PARITY} of unbounded fan-in. The increase in depth occurs because on every oracle call of
Red, Tx may have to compute f⊕t (which takes constant depth according to Corollary 2.5).10

Remark 3.1 (Extension to the case of Theorem 1.13). In Theorem 1.13 we stated a version of Theorem 1.11
for the case where f ′ = Conf and Con is efficient.

The only place in the proof of Theorem 1.11 where we use the specific choice of f ′ = f⊕t is within
the proof of Lemma 2.15. More specifically, in the final step of the proof of Lemma 2.15, in which we
used Corollary 2.5 in order to argue that Tx is a circuit of size poly(r) and depth O(d) over the gates
{AND,OR,NOT,PARITY} of unbounded fan-in.

However, note that we get the same conclusion also in the case that f ′ = Conf for an oracle circuit
Con(·) that has size poly(r) and depth e (as assumed in Theorem 1.13). With this modification the proof
of Theorem 1.11 also yields a proof of Theorem 1.13 as from here the proof of Theorem 1.13 can proceed
unchanged.

4 Proof of the general fixed-set lemma

In this section we prove Lemma 2.12. The proof will iteratively apply the following lemma.

Lemma 4.1. Let R = (R1, . . . , RN ) be a distribution, let A ⊆ {0, 1}N be an event, and let Z = (R|R ∈
A). If there exists a q-query decision tree P such that |Pr[P (R) = 1] − Pr[P (Z) = 1]| > η then there
exists Q ⊂ [N ] of size q and v ∈ {0, 1}Q in the support of ZQ, such that

Pr[R ∈ A|R(Q) = v] > (1 + η) · Pr[R ∈ A].

Proof. Let P be a q-query decision tree, and assume w.l.o.g. (by complementing P if necessary) that
Pr[P (Z) = 1] − Pr[P (R) = 1] > η. A path in the decision tree corresponds to a subset Q ⊂ [N ]
of the q variables queried on the path, and a string v ∈ {0, 1}q of the answers. For every such path, let
pathQ,v : {0, 1}N → {0, 1} be the function that evaluates to 1 on input r = (r1, . . . , rN ) if r(Q) = v
(meaning that the tree P takes the path (Q, v) on input r). Let S be the set of all pairs (Q, v) corresponding
to paths of P that answer 1. The path taken by a decision tree is unique, and therefore, for any distribution
R on {0, 1}N , we have that:

Pr[P (R) = 1] =
∑

(Q,v)∈S

Pr[pathQ,v(R) = 1].

Claim 4.2. There exists a path (Q, v) ∈ S such that:

Pr[pathQ,v(Z) = 1] > (1 + η) · Pr[pathQ,v(R) = 1].

Proof. (of claim)
10Our proof of Lemma 2.15 relies on the fact that f⊕t has small constant depth circuits. This allows us to simplify the argument

used by some of the previous work [SV10, GR08, GSV18] which wasn’t allowed to assume that the target function f ′ = f⊕t

can be computed by a small constant depth circuit. The proofs in [SV10, GR08, GSV18] need to resort to different arguments
(and this creates additional difficulties if Red makes adaptive calls to its oracle, meaning that the queries that Red(·)(x, α′) makes
are not a function of x and α′, and may also depend on previous answers). However, using a clever hybrid argument of [GR08]
and additional ideas explained in [GSV18], it is possible to conclude that Tx has depth O(d) without relying on the fact that f ′ is
computable by constant depth circuits.
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This is because otherwise:

Pr[P (Z) = 1] =
∑

(Q,v)∈S

Pr[pathQ,v(Z) = 1]

≤ (1 + η) ·
∑

(Q,v)∈S

Pr[pathQ,v(R) = 1]

= (1 + η) · Pr[P (R) = 1]

≤ Pr[P (R) = 1] + η.

In particular, the events {Z(Q) = v} and {R(Q) = v} occur with positive probability, and it follows that:

Pr[R ∈ A|R(Q) = v] =
Pr[R ∈ A ∩R(Q) = v]

Pr[R(Q) = v]

=
Pr[R ∈ A] · Pr[R(Q) = v|R ∈ A]

Pr[pathQ,v(R) = 1]

=
Pr[R ∈ A] · Pr[Z(Q) = v]

Pr[pathQ,v(R) = 1]

=
Pr[R ∈ A] · Pr[pathQ,v(Z) = 1]

Pr[pathQ,v(R) = 1]

> (1 + η) · Pr[R ∈ A].

We are now ready to prove Lemma 2.12.

Proof. (of Lemma 2.12) We consider the following iterative process: At step i, we have:

• A distribution R(i) over {0, 1}N .

• A set B(i) ⊆ [N ].

• v(i) ∈ {0, 1}B(i)
.

We will assume that the following invariant is satisfied:

• B(i) is of size i · q.

• Pr[R(i) ∈ A] ≥ 2−a · (1 + η)i.

• R(i)(B(i)) = v(i) (with probability one).

Note that the assumption in the lemma fulfills this invariant for i = 0 with R(0) = R. and B(0) = ∅.
At step i, we define R̄ = R(i)([N ] \ B(i)). As R(i) is fixed on B(i), we can think of A as an event

that only observes the indices in [N ] \ B(i). More formally, there is an event Ā ⊆ {0, 1}[N ]\B(i)
such that

R(i) ∈ A iff R̄ ∈ Ā, and
Pr[R̄ ∈ Ā] = Pr[R(i) ∈ A] ≥ 2−a · (1 + η)i.

Let Z̄ = (R̄|R̄ ∈ Ā). If the conclusion of Lemma 2.12 does not hold with respect to B(i), v(i), then there
exists a q-query decision tree P that distinguishes R(i) from (R(i)|R(i) ∈ A), with advantage η, and as the
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two distributions agree on the queries in B(i), we conclude that P distinguishes R̄ from Z̄ with the same
advanatge. We apply Lemma 4.1 on R̄ and Ā, and conclude that there exists Q ⊆ [N ]\B(i) and v ∈ {0, 1}Q
such that

Pr[R̄ ∈ Ā|R̄(Q) = v] > (1 + η) · Pr[R̄ ∈ Ā] ≥ 2−a · (1 + η)i+1.

We set:

• B(i+1) = B(i) ∪Q.

• v(i+1) to be the “concatenation of v(i) and v”. More precisely, for y ∈ B(i), v(i+1)
y = v

(i)
y and for

y ∈ Q, v(i+1)
y = vy.

• R(i+1) = (R(i)|R(i)(Q) = v). (Note that by definition B(i) ∩Q = ∅).

We now observe that the invariant is maintained in step i+ 1. Specifically:

• |B(i+1)| = |B(i)|+ q = i · q + q = (i+ 1) · q.

• Pr[R(i+1) ∈ A] = Pr[R(i) ∈ A|R(i)(Q) = v] = Pr[R̄ ∈ Ā|R̄(Q) = v] ≥ 2−a · (1 + η)i+1.

• By definition, R(i+1)(B(i+1)) = v(i+1) with probability one.

Therefore, if this process fails to deliver the lemma after i steps, then the invariant is maintained at the end
of step i, and in particular, Pr[R(i) ∈ A] ≥ 2−a · (1 + η)i. However, this is impossible for i > a

log(1+η) =

Θ(a/η), and so, this process has to deliver the lemma within this number of steps. We obtain that the lemma
follows with b = |B| ≤ O( qaη ).

5 Showing that the main theorem follows from the zoom lemma

In this section we show that Theorem 1.11 follows from Lemma 2.2. This follows by the earlier work of
Shaltiel and Viola [Vio06, SV10] which we now explain.

5.1 Consequences distinguishing noise 1
2

from 1
2
− ϵ

The next lemma due to [Vio06, SV10] shows that distinguishing between Noiseq
1/2−ϵ and Noiseq

1/2 requires
many queries.

Lemma 5.1. [Vio06], see formulation in [SV10, Lemma 6.1] For every ϵ, δ > 0, such that δ < 0.4, if
T : {0, 1}q → {0, 1} satisfies:

• Pr[T (Noiseq
1/2−ϵ) = 1] ≥ 1− δ.

• Pr[T (Noiseq
1/2) = 1] ≤ 0.51.

Then, q = Ω(
log 1

δ
ϵ2

).

The next lemma essentially shows that distinguishing between Noiseq
1/2−ϵ and Noiseq

1/2 requires ma-
jority on Ω(1/ϵ) bits. A technicality is that for this conclusion, it is not sufficient to distinguish Noiseq

1/2−ϵ
from Noiseq

1/2, and one needs circuits that distinguish Noiseq
1/2−j·ϵ from Noiseq

1/2 for every j ∈ [ 12ϵ ].
11

11This complication is in some sense necessary, as the approach of [SV10] cannot give the conclusion of Lemma 5.2 under the
simpler condition of Lemma 5.1. See discussion in [SV10].
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Lemma 5.2 ([Vio06, SV10]). For every ϵ, δ > 0, such that δ < 0.4, and 1
2ϵ is an integer, if T1, . . . , T 1

2ϵ
are

circuits over q bits, with size s ≥ q and depth d (over some set of gates G that includes the standard set
{AND,OR,NOT} with unbounded fan-in) and for every j ∈ [ 12ϵ ], we have that:

• Pr[Tj(Noiseq
1/2−j·ϵ) = 1] ≥ 1− δ.

• Pr[Tj(Noiseq
1/2) = 1] ≤ 0.51.

Then, there exists a circuit A that computes the majority function over 1
ϵ bits, and A has size poly(s, 1ϵ ) and

depth d+O(1) over the same set of gates G.

This lemma (in fact, with better parameters) follows from the argument of [SV10, Section 5]. For
completeness, we provide a proof below:

Proof of Lemma 5.2. Let ℓ = 1
ϵ , and note that ℓ is even. For x ∈ {0, 1}ℓ, let wt(x) denote the fraction of

ones in x. Our goal is to compute the majority function on length ℓ (that is to distinguish x ∈ {0, 1}ℓ with
wt(x) ≥ 1/2 from x ∈ {0, 1}ℓ with wt(x) < 1/2.

For every x ∈ {0, 1}ℓ, consider the experiment in which we choose i1, . . . , iq ← [ℓ] independently,
and construct the q bit string xi1◦, . . . , ◦xiq . Note that this string is distributed according to Noiseq

wt(x)
and that given x, this distribution can be prepared by a (distribution over) constant depth circuits of size
O(q) = O(s).

By composing this with Tj , we obtain that for every j ∈ [ 12ϵ ] there is a (distribution over) circuits
depth d + O(1) and size poly(s, ℓ) that distinguishes strings x ∈ {0, 1}ℓ with wt(x) = 1/2 from strings
x ∈ {0, 1}ℓ with wt(x) = 1/2− j · ϵ.

It then follows that for every j ∈ [ 12ϵ ], this distribution can be replaced with a single deterministic depth
d+O(1) circuit of size poly(s, ℓ) that performs the same task.12

If we take the “AND” of the 1
2ϵ circuits, we obtain a depth d + O(1), size poly(s, ℓ) A circuit that

distinguishes x ∈ {0, 1}ℓ with wt(x) < 1/2, from x ∈ {0, 1}ℓ from x ∈ {0, 1}ℓ with wt(x) = 1
2 .

Finally, in order to compute majority, for every 0 ≤ i ≤ ℓ
2 , we consider the circuit Ai(x) which replaces

the first i bits of x with zeros, and applies Ai. It is immediate that if we take the “OR” of all Ai for 0 ≤ i ≤ ℓ
2 ,

we obtain a depth d + O(1), size poly(s, ℓ) circuit that distinguishes x ∈ {0, 1}ℓ with wt(x) ≥ 1/2 from
x ∈ {0, 1}ℓ with wt(x) < 1/2, and computes the majority function on ℓ bits.

5.2 Finishing up

We now prove that Theorem 1.11 follows from Lemma 2.2. As the consequences of Theorem 1.11 are stated
in terms of Ω(1ϵ ), we are allowed to modify ϵ by a constant factor. Consequently, w.l.o.g. we can assume
that 1

ϵ is a power of two. Moreover, we set ϵ′ = ϵ/2 (and note that 1/ϵ′ is also a power of two) and w.l.o.g.
we are allowed to assume that we have a (12 + ϵ′)→ (1− δ) class D reduction for Yao’s XOR lemma.

We first observe that a (12 + ϵ′) → (1 − δ) class D reduction for Yao’s XOR lemma, is in particular a
(12 + j · ϵ′)→ (1− δ) class D reduction for Yao’s XOR lemma, for every j ∈ [ 1

2ϵ′ ].
This means that for every integer j ∈ [ 1

2ϵ′ ], we can apply Lemma 2.2 choosing the parameter ϵ of the
lemma to be j · ϵ′. Note that as 1

ϵ′ is a power of two, for every j ∈ [ 1
2ϵ′ ], jϵ

′ can be expressed as a
b where

12This follows as we can reduce the error to 2−2ℓ, by taking O(ℓ) independent copies from the distribution, computing the
approximate majority of the outputs, and taking a union bound over the 2ℓ inputs (a-la Adleman’s proof that BPP is in P/poly). The
point is that this can be done in constant depth because the gap between 1− δ and 0.51 is a constant, and approximate majority to
within a constant can be computed in AC0 by the celebrated result of Ajtai [Ajt83]. (In fact, it is sufficient that the gap between the
acceptance and rejection probability of Tj is Ω( 1

log ℓ
) to perform this amplification, and the lemma follows also with such a gap).
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b = 1
ϵ′ , and we meet the conditions of Lemma 2.2. We conclude that for every j ∈ [ 1

2ϵ′ ], and x ∈ {0, 1}k

there exists a circuit T j
x over q bits with size poly(r) and depth O(d) over the set of gates G such that:

• PrX←Uk
[T j

X(Noiseq
1/2−2jϵ′) = 1] ≥ 1− 2δ.

• PrX←Uk
[T j

X(Noiseq
1/2) = 1] ≤ 1

2 + 1
200 = 0.505.

Applying Markov’s inequality to the second item, we obtain that there exists a constant β > 0 such that
for every j, for a β fraction of x ∈ {0, 1}k,

Pr[T j
x(Noiseq

1/2) = 1] ≤ 0.51.

Applying Markov’s inequality to the first item, we obtain that for every j ∈ [ 2ϵ′ ], for a 1 − β/2 fraction
of x ∈ {0, 1}k,

Pr[T j
x(Noiseq

1/2−2jϵ′) = 1] ≥ 1− 2δ

β/2
= 1− 4 · δ

β
≥ 1− 4 · δ0

β
,

where the last inequality is because in Theorem 1.11 there is an assumption that δ ≤ δ0 for some δ0 (and
note that at this point we have not yet chosen δ0).

Recalling that ϵ′ = ϵ/2, this can be rephrased as saying that: for every j ∈ [2ϵ ]:

• For a 1− β/2 fraction of x ∈ {0, 1}k,

Pr[T j
x(Noiseq

1/2−jϵ) = 1] ≥ 1− 4 · δ0
β

.

• For a β fraction of x ∈ {0, 1}k,

Pr[T j
x(Noiseq

1/2) = 1] ≤ 0.51.

Together, these two consequences give that for every j ∈ [2ϵ ], there exists x ∈ {0, 1}k that satisfies both
inequalities. Theorem 1.11 now follows directly from Lemma 5.1 and Lemma 5.2, by choosing the constant
δ0 > 0 to be sufficiently small so that 4·δ0

β < 0.4 as required in the two lemmas.13

6 Extending the argument to sufficiently explicit linear codes

We now prove Theorem 1.14. Recall that this is an extension of Theorem 1.11 that assumes that δ = 2−2k

and uses a construction map f ′ = Conf where instead of f ′ = f⊕t the target function f ′ that is used is a
function f ′ : {0, 1}n → {0, 1} defined by:

f ′(y) =
∑

x∈{0,1}k
f(x) · g(x, y),

where the sum is taken in the field F2, and g : {0, 1}k × {0, 1}n → {0, 1} can be computed by circuits of
size poly(r) and depth d over the set G of gates.

13The Markov argument above is wasteful, and leads to a rather small constant δ0 > 0. We remark that with a more careful
argument (that was used in [SV10]) we could have chosen δ0 to be any constant smaller than 1

2
, and even allow it to approach 1

2
.

We chose not to do this in order to make the proof simpler and more modular.
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This argument is based on a trick by Viola [Vio06] that we can incorporate into our framework. We will
modify the proof of Lemma 2.2 so that it holds in this setting, the modified version of Theorem 1.11 will
follow from Lemma 2.2 just as before.

We start by replacing the function f of Lemma 2.4 with a sightly different function:

Lemma 6.1. There exist constants c1 such that for every constant c2, there exists a function f : {0, 1}k →
{0, 1} such that there exists m ≤ c1 · c2 · log r such that:

• For every circuit B : {0, 1}k → {0, 1} of size rc2 , PrX←Um [B(X◦0k−m) = f(X◦0k−m)] ≤ 1
2+

1
200 .

• f can be computed by a DNF of size rc1·c2 .

Proof. We repeat the proof of Lemma 2.4, but this time we take f(x) to be the following function: Let x′

denote the first m bits of x and x′′ denote the remaining k−m bits. We define f(x) to be g(x′) if x′′ = 0k−m

and zero otherwise.

On a random X ← Uk, Pr[f(X) = 0] ≥ 1− 2k−m = 1− 2−Ω(k). Therefore, it is very easy to compute
f with success probability 1 − 2−Ω(k) by simply answering zero. However, by Lemma 6.1 it is hard for
circuits of size rc2 to compute f with success probability 1, or equivalently success probability 1 − δ for
δ = 2−2k. This is why this approach can only succeed for very small δ.

With this choice, we can get a corollary that is analogous to Corollary 2.5.

Corollary 6.2. The function f ′ can be computed by circuits of size poly(r) and constant depth over the
gates {AND,OR,NOT,PARITY} of unbounded fan-in.

Proof. The function f ′ is defined by:

f ′(y) =
∑

x∈{0,1}k
f(x) · g(x, y).

The sum ranges over 2k choices of x. However, for our function f , except for poly(r) of these x (the ones
for which the second part of x is k −m zeros) all the remaining x have f(x) = 0. This, together with the
requirement on g, gives the required result.

The proof proceeds as in Section 2, with the following modifications:

• For δ = 2−2k < 2−k, Red is a (12 + ϵ) → 1 reduction. This means in particular that if D is useful,
then there exists α ∈ {0, 1}a such that PrX←Um [Red

D(X ◦ 0k−m, α) = f(X ◦ 0k−m)] = 1.

• We set δ′ = 1
r and will replace some occurrences of δ in the earlier argument by δ′. This is done

because the choice of δ = 2−2k does not satisfy the requirement that 1
δ ≤ r made in Theorem 1.11.

Specifically, the requirement that 1
δ ≤ r was used to argue that when we apply Lemma 2.12 with

η = δ, the size of the set B (which is polynomial in 1
η ) is polynomial in r. In order to obtain a set B

of size poly(r) we will now choose η = δ′.

• In Section 2.4 we argued that for an independent X ← Uk:

Pr[Redf
⊕t⊕R′

(X,α′) = f(X)] ≥ Pr[Redf
⊕t⊕Z′

(X,α′) = f(X)]− δ.

With our modifications we get that for an independent X ← Um:

Pr[Redf
′⊕R′

(X ◦0k−m, α′) = f(X ◦0k−m)] ≥ Pr[Redf
⊕t⊕Z′

(X ◦0k−m, α′) = f(X ◦0k−m)]−δ′.
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• This allows us to continue the argument, replacing occurrences of X ← Uk by X◦0k−m for X ← Um,
and occurrences of δ by δ′.

• When we finish the proof and obtain a lower bound of q = Ω( log(1/δ
′)

ϵ2
) = Ω( log r

ϵ2
) as required. The

result on majority is not affected by replacing δ by δ′.

7 Conclusion and open problems

Class reductions are known to bypass some limitations on black-box reductions (as explained in Section 1.2).
This work demonstrates that it is sometimes possible to extend limitations on black-box reductions to some
class reductions. Studying the power of class reductions may promote our understanding of how to bypass
limitations on black-box reductions. We now mention some more specific open problems:

• Unlike the results of [GSV18], our results do not hold for any construction of target functions f ′ from
f . Is it possible to extend our results to this general setting?

• In Theorem 1.11, the class D contains circuits that are polynomially larger than the size of the reduc-
tion. Is it possible to extend our limitations on class reductions with respect to a classes D of circuits
smaller than the circuit size of the reduction?

• Yao’s XOR lemma states that for every function f , if f is somewhat hard, then f⊕t is very hard. It
makes sense to focus on some specific choice for a somewhat hard function f and prove and improved
result for this specific function. If we prove such an assertion by reduction, we can allow the reduction
to be tailored to the specific function f , and do no need to require that the reduction performs on any
function f , but only on the chosen one. This type of reductions was termed “function specific” by
Artemenko and Shaltiel [AS14], who proved limitations on nonuniform black-box functions specific
reductions. It is interesting to understand whether function specific class reductions can circumvent
the limitations proven in this paper. We remark that our proof technique indeed relies on the fact that
the reduction is not function specific, and must work for any function f . This allows us to choose f
with specific properties that are useful for our argument.
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