
Explicit List-Decodable Codes with Optimal Rate for

Computationally Bounded Channels

Ronen Shaltiel and Jad Silbak

May 17, 2019

Abstract

A stochastic code is a pair of encoding and decoding procedures (Enc,Dec) where Enc :
{0, 1}k × {0, 1}d → {0, 1}n. The code is (p, L)-list-decodable against a class C of “channel
functions” C : {0, 1}n → {0, 1}n if for every message m ∈ {0, 1}k and every channel C ∈ C
that induces at most pn errors, applying Dec on the “received word” C(Enc(m,S)) produces
a list of at most L messages that contain m with high probability over the choice of uniform
S ← {0, 1}d. Note that both the channel C and the decoding algorithm Dec do not receive the
random variable S, when attempting to decode. The rate of a code is R = k/n, and a code is
explicit if Enc,Dec run in time poly(n).

Guruswami and Smith (Journal of the ACM, 2016), showed that for every constants 0 <
p < 1

2 , ε > 0 and c > 1 there exists a constant L, and a Monte-Carlo explicit constructions of
stochastic codes with rate R ≥ 1−H(p)− ε that are (p, L)-list decodable for size nc channels.
Here, Monte-Carlo, means that the encoding and decoding need to share a public uniformly
chosen poly(nc) bit string Y , and the constructed stochastic code is (p, L)-list decodable with
high probability over the choice of Y .

Guruswami and Smith pose an open problem to give fully explicit (that is not Monte-
Carlo) explicit codes with the same parameters, under hardness assumptions. In this paper we
resolve this open problem, using a minimal assumption: the existence of poly-time computable
pseudorandom generators for small circuits, which follows from standard complexity assumptions
by Impagliazzo and Wigderson (STOC 97).

Guruswami and Smith also asked to give a fully explicit unconditional constructions with the
same parameters against O(log n)-space online channels. (These are channels that have space
O(log n) and are allowed to read the input codeword in one pass). We also resolve this open
problem.

Finally, we consider a tighter notion of explicitness, in which the running time of encoding
and list-decoding algorithms does not increase, when increasing the complexity of the channel.
We give explicit constructions (with rate approaching 1−H(p) for every p ≤ p0 for some p0 > 0)

for channels that are circuits of size 2n
Ω(1/d)

and depth d. Here, the running time of encoding
and decoding is a polynomial that does not depend on the depth of the circuit.

Our approach builds on the machinery developed by Guruswami and Smith, replacing some
probabilistic arguments with explicit constructions. We also present a simplified and general
approach that makes the reductions in the proof more efficient, so that we can handle weak
classes of channels.

1 Introduction

List decodable codes. List decodable codes are extensively studied in Coding Theory and
Theory of Computer Science, and have many applications. In the paragraph below we define
list-decodable codes, using a functional view, which is more convenient for this paper.

A code is defined by a pair (Enc,Dec) of encoding and decoding procedures. We say that
Enc : {0, 1}k → {0, 1}n, is (p, L)-list decodable, if there exits a function Dec which given y ∈ {0, 1}n,
Dec(y) produces a list of size L containing all elements m ∈ {0, 1}k such that δ(y,Enc(m)) ≤ p,
(here δ(x, y) is the relative Hamming distance of x and y). Unique decoding is the special case where
L = 1, and a code is explicit if both encoding and decoding can be performed in time polynomial
in n. The rate of a code is R = k

n . (A more detailed formal definition is given in Section 3.2).

Towards explicit capacity-achieving, binary list decodable codes. It is known that for
0 < p < 1

2 , binary (p, L)-list decodable codes must have rate R ≤ 1 − H(p),1 for nontrivial size
lists, and a longstanding open problem in coding theory is to give an explicit construction of
binary codes matching list-decoding capacity. That is, show that for every constants 0 < p < 1

2 ,
and ε > 0, and for every sufficiently large n, there are explicit binary list decodable codes with
rate R = 1 − H(p) − ε, that are (p, L)-list decodable, for a constant L that depends on ε. The
probabilistic method shows that there exist nonexplicit codes with these parameters (in fact, the
probabilistic method achieves list size L which is poly(1/ε)). Today, despite substantial effort, no
explicit constructions are known, even if we insist only on explicit encoding, and do not require
list-decoding to be explicit.

Restricted channels. Explicit uniquely decodable, binary codes achieving rate approaching
1−H(p), are known for restricted classes of channels. There is a large body of work in Shannon’s
framework, on channels which are not adversarial and inflict “random errors”. The most famous
example is a binary symmetric channel, that flips each symbol independently with probability p,
and there are explicit, uniquely decodable, binary codes with rate approaching 1 −H(p) for such
channels.

Computationally bounded channels. Lipton [Lip94] considered intermediate classes of ad-
versarial channels according to the computational complexity of the channel. More specifically, we
can think of a channel as a function C : {0, 1}n → {0, 1}n and consider families channels that:

• Induce at most pn errors. That is, for every z ∈ {0, 1}n, EC(z) := z ⊕ C(z) has Hamming
weight at most pn.

• Are computationally bounded. That is, we only consider C that belong to some complexity
class C.

Natural examples of complexity classes are polynomial size circuits and logarithmic space
branching programs. Note that these two classes are nonuniform, and it is more natural to use
nonuniform classes, as such classes trivially contain channels C where EC is constant (meaning
that there is a fixed error vector e such that C(z) = z ⊕ e). Such channels are called “additive

1Here, H(·) is the standard Shannon entropy function.

1

channels” and as they are the simplest form of adversarial behavior, it makes sense that we allow
them in any class of computationally bounded channels.

Another advantage of using nonuniform classes of channels, is that it is sufficient to consider
deterministic channels, in order to obtain security against randomized channels. This is because
by averaging, if there is a computationally bounded randomized channel that is able to prevent
decoding on some message m, then we can fix its random coins and obtain a deterministic channel
(which is hardwired with a good choice of random coins).

1.1 Stochastic codes

Unfortunately, the notion of computationally bounded channels is not interesting in the standard
setup of error correcting codes: It is easy to show that if a code Enc : {0, 1}k → {0, 1}n is list-
decodable against additive channels, then it is list-decodable against unbounded channels.2

Several setup assumptions were introduced in order to circumvent this problem. In this paper,
we are interested in a setup of “stochastic codes” studied by Guruswami and Smith [GS16]. We
remark that other setups have been considered and we mention these in Section 1.4.

Let C be a class of channels that induce at most pn errors. A stochastic code against C (with
rate R) consists of a pair of algorithm (Enc,Dec) such that:

• The encoding algorithm Enc(m,S) receives a message m ∈ {0, 1}Rn and a uniform string S
(that is not known to the channel or decoding algorithm) and outputs an n bit string that is
the codeword.

• A channel C ∈ C, that does not receive the string S, corrupts the codeword, generating
C(Enc(m,S)).

• The decoding algorithm gets the “corrupted codeword” C(Enc(m,S)), but does not receive
the string S.

• For every message m, and for every channel C ∈ C, the decoding done by Dec(C(Enc(m,S)))
needs to successfully recover the original message m with probability 1− ν over the choice of
S. (ν > 0 is an error parameter).

Here, ”success” means to output m (in case of unique decoding) or output a list of size L
that contains m (in case of list decoding).

A formal definition follows:

Definition 1.1 (Stochastic Codes). Let k, n, d be parameters and let Enc : {0, 1}k × {0, 1}d →
{0, 1}n be a function. Let C be a class of functions from n bits to n bits. We say that Enc is an
encoding function for a stochastic code that is:

• decodable with success probability 1−ν against channels in C, if there exists a function Dec :
{0, 1}n → {0, 1}k such that for every m ∈ {0, 1}k and every C ∈ C, PrS←Ud [Dec(C(Enc(m,S))) =
m] ≥ 1 − ν. We typically, parameterize C with two parameters: the complexity of functions
in the class, and the number errors that they induce.

2Specifically, if a code is not (combinatorially) list-decodable, then there exist a received word y that has too many
codewords that are close to it. Let c be one of these codewords, and let e = c⊕ y and consider the additive channel
Ce(z) = z ⊕ e. This channel “breaks” the code as C(c) = c ⊕ e = y, and y is a received word on which decoding
cannot succeed.

2

• L-list-decodable with success probability 1−ν against channels in C if the function Dec above
is allowed to output a list of size at most L that contains m.

A code is explicit if its encoding and decoding functions are computable in time polynomial in their
input and output. The rate of the code is the ratio of the message length and output length of Enc.

Guruswami and Smith [GS16] gave explicit constructions of stochastic codes with rate approach-
ing 1 − H(p) (for 0 < p < 1

2) that are uniquely decodable against additive channels. They also
showed that for p > 1/4 there are computationally weak channel families, against which, stochastic
codes with rate approaching 1−H(p) and unique decoding do not exist. (All the complexity classes
considered in this paper can simulate these weak channels.)

A Monte-Carlo construction of stochastic codes for poly-size circuits. Guruswami and
Smith [GS16] showed that for every constant c, there is a Monte-Carlo explicit construction of
list decodable stochastic codes against channels of size nc, with rate approaching 1 − H(p). By
Monte-Carlo, we mean that:

• The encoding and decoding algorithms receive an additional input y of length poly(nc).

• With high probability over the choice of y, the encoding and decoding algorithms (that are
hardwired with y) form the required stochastic code.3

1.2 Our results

Guruswami and Smith stated the following open problem: give a fully explicit (that is not Monte-
Carlo) constructions of stochastic codes against poly-size circuits, under complexity theoretic as-
sumptions.

Necessity of complexity theoretic assumptions. As we explain later, complexity theoretic
assumptions are not necessary in order to give Monte-Carlo constructions of stochastic codes. They
are necessary to give fully explicit constructions (which are not Monte-Carlo) in the following sense:
Given a stochastic code against circuits of size nc, we can consider the “optimal channel” that given
a codeword z ∈ {0, 1}n, tries all possible error vectors e ∈ {0, 1}n of relative Hamming weight p,
and finds the first one on which decoding fails, if such a vector exist. This channel succeeds iff the
code isn’t secure against unbounded channels. If the code isn’t secure against unbounded channels
(but secure against size nc channels) then this attack cannot be carried out in size nc. This means
that there is a problem computable in E = DTIME(2O(n)) that for every sufficiently large n,
cannot be solved by size nc circuits.4 We remark that this type of assumptions (namely, that there
is a problem in E that requires large circuits) is exactly the type of assumption that implies and
is implied by, the existence of explicit pseudorandom generators in the Nisan-Wigderson setting
[NW94, IW97].

3We mention that the approach of Guruswami and Smith dictates that the length of y is larger than nc (and
in general larger than the log of the number of allowed channels). This means that a channel is not “sufficiently
complex” to receive y as input.

4In fact, for this argument, we don’t need the stochastic code to be explicit. Encoding is allowed to be arbitrary,
and decoding is allowed to run in time 2O(n).

3

1.2.1 Explicit stochastic codes for poly-size circuits

Our first result resolves the open problem posed by Guruswami and Smith, and we construct explicit
stochastic codes against poly-size circuit channels, under an assumption that is only slightly stronger
than what is implied by the existence of such codes.

Theorem 1.2 (Explicit stochastic codes for poly-size channels). If there exists a constant β > 0
and a problem in E = DTIME(2O(n)) such that for every sufficiently large n, solving the problem
on inputs of length n, requires circuits of size 2β·n, then for every constants 0 < p < 1

2 , ε > 0 and
c > 1, there exists a constant L such that for infinitely many n, there are explicit stochastic codes
with rate 1−H(p)− ε that are L-list decodable for size nc circuits that induce at most pn-errors.

Theorem 1.2 is stated in more detailed form in Theorem 5.5. The assumption used in the Theorem
is a standard complexity assumption, and was used by Impagliazzo and Wigderson [IW97] to show
that BPP=P.

1.2.2 Unconditional explicit stochastic codes for space O(log n) online channels

Guruswami and Smith also considered “space s online channels”. These are channels C : {0, 1}n →
{0, 1}n implemented by space s or equivalently width 2s oblivious read-once branching programs
(ROBPs). Below is a standard definition of ROBPs tailored for functions that output many bits.

Read Once Branching Programs. We will only be interested in space s ≥ log n. A space s
ROBP C : {0, 1}n → {0, 1}n is defined using a layered graph with n+ 1 layers, where the first layer
has a single node v0, and remaining layers have 2s nodes. Each node v in the first n layers has two
outgoing edges (labeled with zero and one) connected to nodes in the next layer, and each node
v is also labeled by an “output bit” b(v). On input x ∈ {0, 1}n, the computation of C is defined
by following the unique path from v0 to the last layer, defined by taking the edge marked with xi
at step i. The output C(x) is the concatenation of the n output bits, collected at nodes along the
path. It is standard that for s ≥ Ω(log n) ROBPs with space O(s) capture the nonuniform version
of space O(s) computation, that reads its n bit input x in fixed order. We remark that all the
results in this paper also hold if we allow channels to have s bits of “lookahead”, allowing them to
also read the bits i+ 1, . . . , i+ s before outputting the i’th bit.

Guruswami and Smith stated the following open problem: give an unconditional fully explicit
(that is not Monte-Carlo) constructions of stochastic codes against space O(log n) online channels.5

Our second result resolves this open problem.

Theorem 1.3 (Explicit stochastic codes for space O(log n) online channels). For every constants
0 < p < 1

2 , ε > 0 and c > 1, there exists a constant L such that for infinitely many n, there are
explicit stochastic codes with rate 1 − H(p) − ε that are L-list decodable for space c log n online
channels that induce at most pn-errors.

Theorem 1.3 is stated in more detailed form in Theorem 5.6.
5A preliminary version of [GS16] contained an unconditional Monte-Carlo construction of stochastic code against

space O(logn) online channels, and a conditional Monte-Carlo construction for size nc circuits (relying on the existence
of “Nisan-Wigderson style”, pseudorandom generators for size nc circuits). However, Monte-Carlo constructions
can easily obtain “Nisan-Wigderson style” pseudorandom generators, as a random function with polynomial size
description is w.h.p. such a generator. Consequently, no hardness assumption is needed for Monte-Carlo constructions
against polynomial size circuits, which are secure also against O(logn) space online channels.

4

Efficiency of encoding/decoding versus channel complexity. The approach of Guruswami
and Smith [GS16] (that we also use) dictates that security can only be proven for channel families
that are not sufficiently strong to run the decoding algorithm.6 Consequently, in the Monte-Carlo
construction and our Theorem 1.2, the running time of encoding and decoding is a polynomial in
n that is larger than the circuit size nc. It is an intriguing open problem whether stochastic codes
with rate approaching 1 −H(p), that can be encoded and decoded in fixed polynomial time (say
n3) against any polynomial size channel, can be constructed (under cryptographic assumptions).
We do not know whether this is possible.

We can however expect to obtain fixed polynomial time (that does not depend on the constant
c) for encoding and decoding in our Theorem 1.3. Unfortunately, this is not the case, and the
encoding and decoding algorithm that we obtain in Theorem 1.3 run in time polynomial in nc (and
in particular larger than nc) when working against space c log n channels. We do not know how to
avoid this dependence.

1.2.3 Stochastic codes for AC0 channels, with fixed poly-time encoding/decoding

We are able to obtain fixed polynomial time algorithms for encoding and decoding for a family of
channels implemented by superpolynomial size and constant depth circuits. For technical reasons,
we achieve this only for p ≤ p0 for some p0 > 0. The result is stated below.

Theorem 1.4 (Explicit stochastic codes for AC0 channels). There are constants p0 > 0 and a > 0
so that the following holds. For every constants 0 < p ≤ p0, ε > 0 and d there exists a constant L
such that for infinitely many n, there are explicit stochastic codes with rate 1 −H(p) − ε that are

L-list decodable for size 2n
1
ad circuits of depth d that induce at most pn-errors. (Here, encoding

and decoding run in polynomial time that does not depend on d.)

The constant p0 comes from a specific construction of AG-codes, and it seems that p0 can be
pushed to be any constant strictly smaller than 1/12. Theorem 1.4 is stated in more detailed form
in Theorem 5.7.

1.3 Perspective

Explicit codes against computationally bounded channels give the “best of both worlds”: They can
recover from errors induced by adversarial channels, while having information theoretic optimal
rate approaching 1−H(p).

As pointed out by Guruswami and Smith, essentially all randomized channels studied in the
Shannon framework of error correcting codes, are computationally simple (and it seems that all
of them can be implemented by constant depth circuits or online logspace). This means that
the computational perspective leads to a unified construction of explicit codes that are good for
all “Shannon style” randomized channels simultaneously, while also being able to recover against
many adversarial channels (and in particular against additive channels).

We believe that the distinction we make above (namely, whether encoding/decoding efficiency
is allowed to increase with the complexity of the channel) is important so that the added benefit of
codes for computationally bounded channels doesn’t come with a price tag of being less efficient.

6The approach of Guruswami and Smith (that we also use) relies on the fact that channels cannot distinguish
between encodings of two messages. Therefore, if decoders aren’t stronger than channels, they cannot hope to decode,
even if there are no errors.

5

Specifically, our construction for AC0 channels uses “regular” coding theoretic ingredients and does
not have to “pay extra” for being able to handle channels that are superpolynomial size circuits of
constant depth.

An intriguing open problem is whether unique decoding is possible for computationally bounded
channels with rate approaching 1 − H(p). Guruswami and Smith [GS16] showed that this is im-
possible for p > 1/4 (and their argument works for all classes of channels discussed in this paper).
It is not known whether unique decoding is possible for p < 1/4 for the channel classes that we
consider.

1.4 Some related work

The notion of computationally bounded channels was initially studied in cryptographic setups. We
mention some of these works below.

Shared private randomness. We start with the notion of codes with “shared private random-
ness”. While this setup was considered before the notion of stochastic codes, in this paper, it is
natural to view it as a version of stochastic codes in which the decoding algorithm does receive
the S.

This corresponds to a standard symmetric cryptography setup in which honest parties (the
encoder and decoder) share a uniform private key S, and the bad party (the channel) does not get
the key.

Lipton [Lip94] and following work (see [Smi07] for more details) gave explicit constructions
of uniquely decodable codes against computationally bounded channels, with rate approaching
1−H(p), under cryptographic assumptions.

Note that the setup of stochastic codes is lighter. The encoder and decoder do not need to share
a private random key. Moreover, a fresh key can be chosen on the spot every time the encoder
encodes a message.

We also point out that the Monte-Carlo construction of Guruswami and Smith, also requires
less setup. While the encoder and decoder do need to share a random string, this string does not
need to be private. It can be chosen once and revealed to the channel.

Private Codes. A related notion of “private codes” was studied by Langberg [Lan04]. Here
channels are unbounded, codes are existential (and not explicit), and the focus is on minimizing
the length of the shared key. Langberg provides asymptotically matching upper and lower bounds
of Θ(log n+ log(1/ν)), on the amount of randomness that needs to be shared for unique decoding
in this setup, where ν is the error parameter.

Public key setup. Micali et al. [MPSW10] considered computationally bounded channels, and
a cryptographic public key setup. Their focus is to use this setup to convert a given (standard)
explicit list-decodable code into an explicit uniquely decodable codes (in this specific public key
setup).

6

2 Overview of the technique

In this section we give a high level overview of the construction. Our construction heavily relies
on previous work in the area (mainly on that of Guruswami and Smith [GS16]). In this high level
overview we attempt to highlight our technical contribution, while also giving a high level overview
of the many ideas from previous work that are used in the construction. Therefore, we start with a
high level description of earlier work, and build up to the work of Guruswami and Smith. Along the
way, in Section 2.2 we explain the modifications that allow us to handle weak classes of channels.
Finally, in Section 2.4, we present a self contained problem (that of constructing inner stochastic
codes). Constructing such explicit codes is the main source of our improvement over Guruswami
and Smith, and we give a high level overview of our approach.
The reader can skip this high level overview and go directly to the technical section.

2.1 Codes for the setup of shared private randomness

We start by explaining how to construct codes with rate approaching 1−H(p) in the case that the
setup allows shared private randomness. Recall that this can be thought of as a stochastic code in
which the decoding algorithm receives the random string chosen by the encoding. We present the
ideas that are used to construct codes against bounded channels in this setup, in two steps. We
first explain how to handle additive channels, and then explain how this method can be extended
to handle bounded channels that are not additive. The ideas from both these reductions are key
components in the construction of Guruswami and Smith.

Reducing additive channels to binary symmetric channels. We start by constructing
codes with shared private randomness against additive channels. The encoder and decoder will
share a description Sπ of a uniformly selected permutation π : [n] → [n]. The encoding will be
defined by

Enc(m,Sπ) = π(EncBSC(m)),

meaning that Enc encodes m by a code for binary symmetric channels, and then uses the permu-
tation π to rearrange the n indices of the encoding, placing the i’th bit, in the π(i)’th position.
Note that for any additive channel Ce(z) = z ⊕ e that induces pn errors, the effect of the channel
on Enc(m,Sπ) can be essentially viewed as applying a binary symmetric channel on EncBSC(m),
meaning that the decoder is able to uniquely decode against additive channels, with a code that has
rate approaching R = 1−H(p) (which can be achieved explicitly for binary symmetric channels).

Smith [Smi07] showed that an (almost) t-wise independent permutation can be coupled with
specific constructions of codes for binary symmetric channels, and used instead of a truly random
permutation. This reduces the length of the shared key and allows keys shorter than n.

Reducing computationally bounded channels to additive channels. It is possible to use
cryptography (or more generally pseudorandomness) to handle computationally bounded channels:
Assume that in addition to the seed Sπ, the encoder and decoder also share a seed SPRG for a
pseudorandom generator PRG that fools computationally bounded channels and outputs n bits,
and define:

Enc′(m, (Sπ, SPRG)) = Enc(m,Sπ)⊕ PRG(SPRG) = π(EncBSC(m))⊕ PRG(SPRG).

7

This means that the rate of Enc′ is inherited from Enc and can approach 1 − H(p). A useful
property is that for every fixed sπ, the random variable Enc(m, (sπ, SPRG)) is pseudorandom for
the channel. This can be used to show that a computationally bounded channel cannot prevent
correct decoding.

We now explain this argument. The decoding algorithm Dec′(y, (sπ, sPRG)) will simply compute
y′ = y ⊕ PRG(sPRG) and apply the previous decoding algorithm Dec on y′ and sπ. We show that
for every computationally bounded channel C that induces at most pn errors, the decoding succeeds
with probability at least 1− (ν + εPRG), where εPRG is the error of the generator PRG.

We consider the function A(m, sπ, e) that checks if DecBSC(Enc(m, sπ)⊕e) successfully recovers
m. In the previous section we’ve seen that for every message m, and error vector e of relative
Hamming weight at most p, Pr[A(m,Sπ, e)] ≥ 1 − ν. Consequently, for every channel C that
induces pn errors,

Pr[A(m,Sπ, EC(Un)) = 1] ≥ 1− ν

(this follows as Un is independent of Sπ, and recall that EC(z) = z ⊕ C(z)). If decoding does not
work, and there exist a message m such that:

Pr[A(m,Sπ, EC(Enc′(m, (Sπ, SPRG)))) = 1] < 1− (ν + εPRG).

By averaging over Sπ, there exists a fixed value sπ such that:

Pr[A(m, sπ, EC(Un)) = 1]− Pr[A(m, sπ, EC(Enc′(m, (sπ, SPRG)))) = 1] > εPRG,

meaning that f(z) = A(m, sπ, EC(z)) distinguishes Enc(m, (sπ, SPRG)) from Un with probability
εPRG, which is a contradiction if PRG is εPRG-pseudorandom against f (which is essentially the
composition of the channel and DecBSC). As DecBSC runs in polynomial time, it follows that a
PRG against poly-size circuits suffices to handle poly-size channels.

2.2 A more efficient reduction for online logspace and AC0.

A drawback of the approach described above is that while the decoding algorithm DecBSC runs in
polynomial time, existing constructions rely on decoding an “outer code” (typically, Reed-Solomon)
which cannot be done by small constant depth circuits or small space ROBPs. In this paper we
are interested in channels that run in online logspace or AC0. We would like to use PRGs that fool
these classes (and explicit constructions are unconditional) rather than PRGs for poly-size circuits
(which are inherently conditional as they imply circuit lower bounds).

For this purpose we replace the code (EncBSC ,DecBSC) (for binary symmetric channels) by
a code (Encbalanced,Decbalanced) that is list decodable from balanced errors. We now define this
notion. A string e ∈ {0, 1}n is (b′, p, γ)-balanced if when viewed as e ∈ ({0, 1}b′)n/b′ , at most a
γ fraction of blocks of e (of size b′), have relative Hamming weight larger than p. It is not hard
to construct explicit codes which are list-decodable (with constant size lists) against error vectors
that are (b′, p, γ)-balanced and have rate approaching 1−H(p) for small constant γ. We give such
a construction in Section 3.2.1.

If we take an error vector of relative Hamming weight p and permute it using a random (or
t-wise independent) permutation, then with high probability it will indeed be (b′, p+α, γ)-balanced
for sufficiently large b′, and small constant α, γ > 0. This means that codes against balanced errors
in particular work against binary symmetric channels.

8

The advantage of this notion is that the function A of the previous section can be made more
efficient. Rather than having to decode EncBSC , it is sufficient to check if the error vector e is
(b′, p+α, γ)-balanced, which can be performed by models that can count (or even only approximately
count) such as small ROBPs, or AC0. This leads to more efficient reductions that enable us to use
PRGs for weaker classes.7

2.3 Stochastic codes for bounded channels

We start by presenting the approach of Guruswami and Smith [GS16] to take codes for shared
private randomness (as presented in the previous section) and convert them into stochastic codes.

Let (Enc′,Dec′) be the code for shared private randomness (presented in the previous section).
We will reserve N for the block length of the stochastic code that we want to construct, and use
Ndata as the block length of Enc′. We have that the rate of Enc′ can approach 1−H(p) and so it
is sufficient that the rate of the code (Enc,Dec) that we construct, approaches that of Enc′.

We will set N = Ndata +Nctrl where Nctrl = ε ·N (for a small constant ε) so that the rate indeed
approaches 1−H(p). Loosely speaking, when given a messagem and “control information” S (which
will include (Sπ, SPRG) as well as additional randomness) we will set cdata = Enc′(m, (Sπ, SPRG)) ∈
{0, 1}Ndata and cctrl ∈ {0, 1}Nctrl will be an encoding of S (that we specify later). We will then merge
these two strings into a string c = (cdata, cctrl) of length N .

The high level intuition, is that the encoder encodes the control information S and embeds it
in the encoding of m, hoping that the decoder can find it, decode it to get S, and then use the
decoding algorithm Dec′ (which requires S) to decode the data part.

However, there are two seemingly contradicting requirements: On the one hand, the decoder
needs to find the “control information” in order to recover S. On the other, if it is easy to identify
which part of the encoding encodes the “control information”, then the channel can focus its errors
on it, wiping it out completely.

Stochastic codes for additive channels. The first step taken by Guruswami and Smith is to
ensure that an additive channel cannot wipe out the control information. For this purpose they
divide the N output bits into n = N/b blocks of length b (where b is a parameter to be chosen
later). The encoder will use additional randomness Ssamp to choose a random set I = {i1, . . . , ε · n}
of distinct indices in [n]. The string Ssamp will be part of the “control information” S (making
S = (Ssamp, Sπ, SPRG)) and in order to make its length less than n, the sampling is made by a
randomness efficient averaging sampler (see Section 3.3 for details). We will pretend that the set I
is completely random in this high level presentation.

The set I will define which blocks are “control blocks”, and the final embedding of cdata, cctrl

into an N bit string, is done by placing cctrl in the control blocks, and cdata in the remaining blocks
(which are suitably called data blocks). The sampling of I guarantees that for every fixed error
vector e of relative Hamming weight at most p, at least an ε/2 fraction of the control blocks, are
not hit with significantly more than pb errors. This will suffice for the decoding algorithm.

The decoder (that does not know I) will go over all n blocks, treating each one of them as a
potential control block. Even if no errors are inflicted, only ε · n of the n blocks are indeed control

7Some additional effort is needed to make this idea go through for online channels, as after the permutation, input
bits “arrive” in a way that doesn’t respect the partitioning into blocks. A preliminary version of [GS16] contained
an alternative, and more complex approach in order to deal with online channels.

9

blocks. We want the decoder to be able to “list-decode” and output a small list of candidates s for
the “control information”.

This can be done as follows: When preparing cctrl, the control information S will be encoded by
a concatenated code, where the outer code is list-decodable (or more generally list-recoverable) and
has block length ε ·n, and the inner code has symbols of b bits, and is decodable from slightly more
than pb errors. This way, if at least ε/2 fraction of the control blocks suffer not much more than
pb errors (and are therefore decoded correctly by the inner code) then the list decoding algorithm
of the outer code produces a list of candidates that includes the correct control information s.
Decoding can now proceed, and for each such candidate s, it can apply Dec′ on the data part
(defined by ssamp) using the control information (sπ, sPRG). This indeed suffices for list decoding
against additive channels.

Extending the approach to computationally bounded channels. There is an obvious con-
cern if we use this strategy against channels that are not additive: The channel C may inspect
the different n blocks, and try to identify which of them are control blocks. It is crucial that the
channel will not be able to distinguish a control block from a data block. This means that we want
the inner code that produces the b-bit control blocks to have three properties:

• It should be able to decode from roughly pb errors.

• The channel should not be able to distinguish control blocks from data blocks.

• Control blocks shouldn’t reveal information about S to the channel.

Here, it is useful that the data part is xored with PRG(SPRG) and is therefore pseudorandom. This
means that we can obtain these three properties if we use a stochastic code (instead of a standard
code) and require that the output is pseudorandom. Note that here the notion of stochastic codes
is not used to “improve decoding properties” (we can do with standard codes). Instead, it is used
to perform encoding in a way that does not reveal information about the message. This notion of
stochastic codes is defined in the next section.

2.4 Pseudorandom stochastic inner codes

Guruswami and Smith considered the following version of stochastic codes. Let Enc : {0, 1}k ×
{0, 1}d → {0, 1}b be a function.

1. We say that Enc is ε-pseudorandom for a class of functions C if for every m ∈ {0, 1}k
and for every C ∈ C, the distribution Enc(m,Ud) is ε-pseudorandom for C, meaning that:
|Pr[C(Enc(m,Ud)) = 1]− Pr[C(Ub) = 1]| ≤ ε.

2. We say that Enc is L-list decodable with radius p if there exists a function Dec such that
for every y ∈ {0, 1}b, Dec(y) produces a list of at most L pairs (m, r) ∈ {0, 1}k × {0, 1}d that
contains all pairs (m, r) ∈ {0, 1}k × {0, 1}d such that δ(y,Enc(m, r)) ≤ p.

Such codes can be plugged in as “inner control codes” in the scheme described in the previous
section, and the two properties above suffice for the correctness of the construction (if pseudoran-
domness is guaranteed against a class sufficiently stronger than the channel, as explained in Section
2.2).

10

Consequently, the task of explicitly constructing stochastic codes against bounded channels re-
duces to explicitly constructing such stochastic codes with constant size lists. Here, we benefit from
the fact that these codes are used as inner codes. The block length b of the inner stochastic code can
be much smaller than the block length N of the final code. Note however that pseudorandomness
needs to hold with respect to channels (and even more complex functions) that have complexity
measured as a function of N (which in turn gives a lower bound on b).

We first concentrate on the case where channels are circuits of size N c (which is the case
considered by Guruswami and Smith). This allows us to set k, d, b = O(logN) which in turn means
that: we need pseudorandomness against circuits of size N c = 2Ω(b), and we are allowed to perform
encoding and list-decoding in time 2O(b).

However, even with these choices, it seems hard to construct such stochastic codes (no matter
what complexity assumption we use). Guruswami and Smith [GS16] were not able to give such
explicit constructions. Instead, they settle for a Monte-Carlo construction using the probabilistic
method: They describe a probability space over functions Enc : {0, 1}k × {0, 1}d → {0, 1}b for
k, d, b = O(logN) in which a code with the two properties above is chosen with high probability.
The description of Enc in this probability space is of length polynomial in N c, and so this indeed
gives a Monte-Carlo construction.8

2.5 New constructions of pseudorandom weak inner codes

We observe that we can relax the second property in the definition of stochastic inner codes,
and still be able to use them in the framework described in the earlier sections. Specifically, let
Enc : {0, 1}k × {0, 1}d → {0, 1}b be a function, we use the following modification of condition (2)
above:

2’. We say that Enc is L-weakly list decodable with radius p if there exists a function Dec
such that for every y ∈ {0, 1}b, Dec(y) produces a list of at most L messages m ∈ {0, 1}k that
contains all messages m ∈ {0, 1}k for which there exists r ∈ {0, 1}d such that δ(y,Enc(m, r)) ≤
p.

The key difference between “weakly list decodable” and the notion used by Guruswami and
Smith (which we will call “strongly list-decodable”) is that this definition allows a message m to
be encoded to the same value under many different seeds r, whereas the previous definition did
not.9 It turns out that constructing codes with properties 1 and 2′ is significantly simpler than
constructing codes with the original properties. Specifically, for the case of inputs and outputs that
are of length O(logN), we give a general transformation that for every 0 < p < 1

2 takes:

• a pseudorandom generator G : {0, 1}a′·logN → {0, 1}q logN that is pseudorandom for C,

and converts it into,

8Note that the obvious approach for checking whether a candidate Enc is pseudorandom against circuits of size
Nc requires going over all such circuits which is not feasible in polynomial time.

9For example, let z0 = Enc(m, r0) and z1 = Enc(m, r1) both be an encoding of the same message m with different
seeds (r0 6= r1), such that δ(y, z0), δ(y, z1) ≤ p. When decoding y under the strong list decodable definition, (m, r0)
and (m, r1) are counted as two distinct elements. This differs form the weak list decodable definition that will count
them as one element (since it is only interested in m).

11

• a stochastic code Enc : {0, 1}a logN × {0, 1}a′ logN → {0, 1}q logN that is pseudorandom for C,
and is L-weakly list decodable with radius p. Here, a, a′, q are constants and q is sufficiently
larger than a, a′ (the exact dependence is q ≥ a+a′

1−H(p)−1/(L+1)). Furthermore, encoding and

list-decoding can be done in time that is poly(N q) times the running time of G.

This transformation works by setting Enc(m, r) = E(m) ⊕ G(r) where E : {0, 1}a logn →
{0, 1}q logn is a random code. The argument is similar to the proof that random codes are list
decodable, and explicitness is achieved by derandomizing the probabilistic argument using (L+ 1)-
wise independence, and using brute force decoding. (Here it is crucial that we are allowed to encode
and decode in exponential time in the input and output length).10

We can use these transformation to obtain stochastic codes that are weakly list-decodable from
radius 0 < p < 1

2 and are:

• pseudorandom against size N c circuits, using the pseudorandom generators of Impagliazzo
and Wigderson [IW97] which rely on the assumption that there exists a constant β > 0 and
a problem in E = DTIME(2O(n)) that cannot be solved by circuits of size 2β·n for every
sufficiently large n. This gives Theorem 1.2.

• pseudorandom against space O(log n) ROBPs, using the pseudorandom generators of Nisan
and Zuckerman [NZ96]. This (together with the improvements explained in Section 2.2 and
some additional effort that goes into making the reduction implementable by small space
ROBPs, explained in Section 6.2) gives Theorem 1.3.

2.6 Inner stochastic codes for AC0

Our goal is to construct a stochastic code Enc : {0, 1}k × {0, 1}d → {0, 1}n that is weakly-list
decodable from radius p > 0, and ε-pseudorandom against large circuits of constant depth d. We
want these codes to have fixed poly(n) time encoding and decoding. This is because in the final
construction, we will choose the block length n to be N0.1 (where N is the block length of the final
codeword). This choice will enable fooling circuits of superpolynomial size.

We will use an explicit binary linear code EncAG : {0, 1}d+k → {0, 1}n with constant rate R that
decodes pn errors. There are constructions of explicit codes with rate R > 0 and p > 0, that have
the additional property that the relative distance of the dual code is at least p. Such constructions
can be obtained by using the Algebraic Geometric codes of Garcia and Stichtenoth [GS96] (that
are over constant size alphabets that can be chosen to be a power of two) and viewing them as
binary codes (which preserves rate, and decreases relative distance and relative dual distance by
a constant factor). A description of these codes appears in a paper by Shpilka [Shp09] (in an
appendix attributed to Guruswami), and we elaborate on this result in Section 4.3.

Let G be the (d+ k)× n generator matrix of such codes, and let G(t) denote the d× n matrix
obtained by the first d rows of G, and G(b) denote the bottom k × n rows of G. For simplicity let
us set k = d, so that both are linear in n. In the construction of Garcia and Stichtenoth, it can be
arranged that G(t) is a generator matrix for a code with similar properties, and in particular the

10It is this argument that makes the running time of encoding/decoding of our constructions for circuits and online
channels, grow with the size of the family of channels. Specifically, encoding and decoding of the inner stochastic
code are done by “brute force” and in particular, require running the PRG on all seeds. The number of seeds of a
PRG is typically larger than the number of potential distinguishers in the fooled class, and this means that we lose
in efficiency, when we try to handle more complex channels.

12

code generated by G(t) has relative dual distance p > 0 (we may need to slightly decrease p for this
to hold). We define:

Enc(x, r) = EncAG(r ◦ x) = (r ◦ x) ·G = r ·G(t) + x ·G(b)

We note that the dual code to the code defined by G(t) has relative distance p. This means that (the
transposed of)G(t) is the parity check matrix of a code with relative distance p, which in turn implies
that every pn columns of G(t) are linearly independent. This gives that the distribution r · G(t)

for r ← Ud is pn-wise independent, and implies that for every x ∈ {0, 1}k, Enc(x, Ud) is pn-wise
independent. By Braverman’s theorem [Bra10] (see also later improvements by [Tal14]) “polylog-
wise independence fools AC0”, and in particular pn-independent distributions are pseudorandom
for circuits of size 2n

Ω(1/d)
and depth d.

The code EncAG is uniquely decodable from pn errors. This immediately gives that Enc is
(strongly) list-decodable with radius p.

Organization of the paper

In Section 3 we give definitions of objects used in out constructions, and the constructions from
earlier work that we rely on. In Section 4 we give precise definitions for several variants of stochas-
tic codes, and give constructions of inner stochastic codes that will be used in the main result.
In Section 5 we present the construction of stochastic codes, and restate the theorems from the
introduction in a more precise way. In Section 6 we prove the correctness of the construction (and
explain how to handle weak classes of channels). In Appendix A we show a construction and proof
for codes against balanced errors.

3 Ingredients used in the construction

In this section we give formal definitions of the notions and ingredients used in the construction.
We also cite previous results from coding theory and pseudorandomness that are used in the
construction.

3.1 Pseudorandom generators

Definition 3.1 (Pseudorandom generators). A distribution X on n bits is ε-pseudorandom for
a class C of functions from n bit to one bit if for every C ∈ C, |Pr[C(X) = 1]−Pr[C(Un)] = 1| ≤ ε.
A function G : {0, 1}d → {0, 1}n is an ε-PRG for C if G(Ud) is ε-pseudorandom for C.

In the sections below, we list the constructions of pseudorandom generators, that we use in this
paper. We consider several choices of classes C.

3.1.1 Poly-size circuits

Definition 3.2 (E is hard for exponential size circuits). We say that E is hard for exponential size
circuits if there exists β > 0 and a language L ∈ E = DTIME(2O(n)) such that for every sufficiently
large n, circuits of size 2β·n fail to compute the characteristic function of L in inputs of length n.

13

Theorem 3.3. [IW97] If E is hard for exponential size circuits then for every constant c > 1, there
exists a constant b > 1 such that for every sufficiently large n, there is a G : {0, 1}b·logn → {0, 1}n
that is a 1

nc -PRG for circuits of size nc. Furthermore, G is computable in time poly(nc) (where this
polynomial depends on the constant β hidden in the assumption).

3.1.2 Oblivious read once branching program

Theorem 3.4. [Nis92, INW94] There exist a constant a > 1 such that for every sufficiently large
n, there is a G : {0, 1}a·logn·(s+log(1/ε)) → {0, 1}n that is ε-pseudorandom for ROBPs of space s.
Furthermore, G is computable in time poly(n).

We also need PRGs with error that is exponentially small in the seed length. In this setup, we only
require arbitrary linear stretch.

Theorem 3.5. [NZ96] For every b > 1, there exists a constant a > 1 such that for every sufficiently
large n, there is a G : {0, 1}a·s → {0, 1}a·b·s that is a 1

2−s -PRG for ROBPs of space s. Furthermore,
G is computable in time poly(s).11

3.1.3 Constant depth circuits

Theorem 3.6. [Nis91, NW94, TX13, Tal14] There exists a constant a > 1 such that for every

constant d, and for every sufficiently large n, there is a G : {0, 1}(log(s/ε))a·d → {0, 1}n that is an
ε-PRG for circuits of size s ≥ n and depth d. Furthermore, G is computable in time poly(n).

We will also use Braverman’s result that polylog-wise independence fools AC0.

Theorem 3.7. [Bra10, Tal14] There exists a constant a > 1 such that for every sufficiently large
n, every (log(s/ε))a·d-wise independent distribution on n bits is ε-pseudorandom for circuits of size
s and depth d.

3.2 Error-Correcting Codes

We give a nonstandard definition of error-correcting codes below. For our purposes it is more natural
to define codes in terms of a pair (Enc,Dec) of encoding and decoding algorithms. Different variants
are obtained by considering different tasks (decoding, list-decoding, list-recovering) of the decoding
algorithms and different types of error vectors.12

Definition 3.8 (Codes). Let k, n, q be parameters and let Enc : {0, 1}k → ({0, 1}log q)n be a
function. We say that Enc is an encoding function for a code that is:

• decodable from errors in E (where E ⊆ ({0, 1}log q)n) if there exists a function Dec :
({0, 1}log q)n → {0, 1}k such that for every m ∈ {0, 1}k and every e ∈ E, Dec(Enc(m)⊕ e) =
m. The standard choice of E is the set of all vectors with Hamming weight t, and such codes
are said to be decodable from t errors.

11We remark that the construction of [NZ96] can achieve superlinear stretch at the cost of increasing the error. In
our application, it is crucial to achieve error that is exponentially small in the seed length, and this is why we state
the theorem in this form.

12Within this section we use the standard choice of letters of error-correcting codes. However, in later sections
many of these letters are reserved to denote other things, and we have to use nonconventional choices.

14

• L-list-decodable from errors in E if the function Dec above is allowed to output a list of size
at most L that contains m.

• (α, `, L)-list-recoverable if there exists a function Dec which given a list T ⊆ {0, 1}log q

of size at most `, outputs a list of size at most L containing all m ∈ {0, 1}k such that
Pri←[n][Enc(m)i ∈ T] ≥ α.13

• (α, `, L)-list-recoverable from a collection if there exists a function Dec which given n
lists T1, . . . , Tn ⊆ {0, 1}log q of size at most `, outputs a list of size at most L containing all
m ∈ {0, 1}k such that Pri←[n][Enc(m)i ∈ Ti] ≥ α.

A code is explicit if its encoding and decoding functions are computable in time polynomial in their
input and output. The rate of the code is the ratio of the message length and output length of Enc,
where both lengths are measured in bits.

3.2.1 Codes for balanced errors

We will make use of codes for balanced error vectors (as explained in Section 2).

Definition 3.9 (balanced errors). A string e ∈ {0, 1}n is (b, p, γ)-balanced if when viewing it as
e ∈ ({0, 1}b)n/b at most a γ-fraction of the n/b blocks have Hamming weight larger than p · b.

It is not hard to construct codes for balanced errors with rate approaching 1−H(p), using code
concatenation. The proof of Theorem 3.10 appears in Section A.

Theorem 3.10 (codes against balanced errors). There is a constant c > 0 so that the following
holds. For every constants 0 < p < 1/2, ε > 0 and ε ≥ c√γ, there are constants b and L such that
for infinitely many n, there is a code (Enc,Dec) with rate 1−H(p)−ε that is L-list decodable against
(b, p, γ)-balanced strings of length n. Moreover the code is explicit (encoding and list-decoding can
be performed in time poly(n), where the polynomial depends on ε).

3.2.2 List recoverable codes

We will make use of the following list recoverable code.

Theorem 3.11 (List-recoverable codes). [Sud97, GS99] There is a constant β > 0 such that for
every constants α > 0 and L > 1, and every sufficiently large block length n, there is a code
(Enc,Dec) that is (α, β · α · L · n,L)-list recoverable, has rate R ≥ β·α

L , and alphabet size q = n2.14

This follows as Sudan [Sud97] (see also Guruswami and Sudan [GS99]) showed that Reed-
Solomon codes are list-recoverable from a collection. Given a code Enc that is list-recoverable
from a collection, Enc′(x)i = (Enc(x), i) gives a code that is list recoverable, while increasing the
alphabet size. This is why we have the alphabet size of q = n2 (and not q = n) for a Reed Solomon
code. This idea is also implicitly used by Guruswami and Smith [GS16].

13This is a less standard notion of list-recoverability, and the more standard notion referred to as “list-recoverable”
is what we call “list-recoverability from a collection” in the next item.

14We view this code as a binary code as described in Definition 3.8, and get a block length of ({0, 1}2 logn)n.

15

3.3 Averaging Samplers

The reader is referred to Goldreich’s survey [Gol97] on averaging samplers.

Definition 3.12 (Averaging Samplers). A function Samp : {0, 1}n → ({0, 1}m)t is an (ε, δ)-
Sampler if for every f : {0, 1}m → [0, 1], Pr(z1,...,zt)←Samp(Un)[|1t

∑
i∈[t] f(zi)− 1

2m
∑

x∈{0,1}m f(x)| >
ε] ≤ δ. A sampler has distinct samples if for every x ∈ {0, 1}n, the elements in Samp(x) are
distinct.

The next theorem follows from the “expander sampler”. This particular form can be found (for
example) in [Vad04].

Theorem 3.13. For every sufficiently large m and every ε ≥ δ > 0 there is a (ε, δ)-sampler with

distinct samples, Samp : {0, 1}O(m+log(1/δ)·poly(1/ε)) → ({0, 1}m)t for any t ≥ poly(1/ε) · log(1/δ).
Furthermore, Samp is computable in time poly(m, 1/ε, log(1/δ)).

3.4 Almost t-wise permutations

We also need the following notion of almost t-wise permutations.

Definition 3.14 (Almost t-wise independent permutations). A function π : {0, 1}d × [n] → [n] is
an (ε, t)-wise independent permutation if:

• For every s ∈ {0, 1}d, the function πs(x) = π(s, x) is a permutation over [n].

• For every x1, . . . , xt ∈ [n], the random variable R = (R1, . . . , Rt) defined by Ri = π(s, xi) :
s← Ud, is ε-close to t uniform samples without repetition from [n].

Theorem 3.15. [KNR09] For every t and every sufficiently large n, there exists an (ε, t)-wise
independent permutation with d = O(t·log n+log(1/ε)). Furthermore, π is computable in polynomial
time.

4 Inner Stochastic codes

As explained in Sections 2.4 and 2.5, the construction will rely on an “inner stochastic code”. We
now give a formal definition of the properties required from these codes. This definition formalizes
the looser description given in Section 2.

Definition 4.1. Let k, n, d be parameters and let Enc : {0, 1}k × {0, 1}d → {0, 1}n be a function.
We say that Enc is an encoding function for a stochastic code that is:

• L-weakly list-decodable with radius p if there exists a function Dec such that for every y ∈
{0, 1}n, Dec(y) produces a list of at most L messages that contains all messages m ∈ {0, 1}k
for which there exists r ∈ {0, 1}d such that δ(y,Enc(m, r)) ≤ p.

• We replace “weakly” with “strongly” if Dec is required to produce a list of at most L pairs
(m, r) that contains all pairs (m, r) ∈ {0, 1}k × {0, 1}d such that δ(y,Enc(m, r)) ≤ p.

• ε-pseudorandom for a class C′ of functions from n bits to one bit, if for every message
m ∈ {0, 1}k, Enc(m,Ud) is ε-pseudorandom for C′.

16

If we do not mention whether the code is weakly or strongly list-decodable, then we mean
“weakly”. In the remainder of this section we give explicit constructions of “inner stochastic
codes” for the various channel classes that we consider. We start with a general transformation
that transforms a PRG into an inner stochastic code.

4.1 PRGs give inner stochastic codes

We give a general transformation that given a PRG with:

• A seed length that is logarithmic in the complexity of the channel.

• Sufficiently large linear stretch as a function of p.

Produces a stochastic code that:

• Inherits the logarithmic seed length and pseudorandomness properties of the PRG.

• Is able to encode a string of length logarithmic in the complexity of the channel.

• Is L-weakly list decodable from radius p where L is a constant.

• Has encoding and decoding running in time polynomial in the complexity of the channel, and
the running time of the PRG.

This transformation is formally stated in the next theorem. We need the following definition
that formally defines the action (which we call “xored-restriction”) of restricting functions to a
subset of the input, and negating some of the remaining input bits. The complexity classes that
we consider in this paper (AC0, P/poly, logspace ROBPs) are all closed under xored restriction.
(This is also the case for any natural nonuniform complexity class).

Definition 4.2 (xored restriction). We say that a function C ′ over n′ bits is an xored-restriction
of a function C over n bits if there exist strings y ∈ {0, 1}n′, a ∈ {0, 1}n−n′ and a set S ⊆ [n] of
size n′ such that for every input x′, C ′(x′) = C(x), where x is an n bit string obtained by “filling”
the indices in S with x′ ⊕ y, and the indices outside of S with a.

We now state our transformation. We state that the rate of the inner stochastic code is of
secondary importance in our application, as we will use it to encode “control information” that is
shorter than the data.

Theorem 4.3 (inner stochastic code from PRG). Let C, C′ be classes of functions, and a > 0, b > 0,
L ≥ 1 and 0 ≤ p < 1

2 be constants such that (1 − 1
L+1) > H(p), and assume that n is sufficiently

large. Let G : {0, 1}b·logn → {0, 1}q·logn be an ε-PRG for class C′ such that q ≥ a+b
1−H(p)− 1

L+1

. There

is a stochastic code (EncSC ,DecSC) where EncSC : {0, 1}a·logn × {0, 1}b·logn → {0, 1}q·logn that is:

• L-weakly list decodable from radius p.

• If for every function C in C and every xored restriction C ′ of C, the function C ′ is in C′, then
EncSC is ε-pseudorandom for C.

• The algorithms EncSC ,DecSC are computable in time poly(nq·L) given oracle access to G. (In
particular, the code can be encoded/decoded in time poly(n) if G runs in time poly(n)).

17

Proof. The code will be a combination of two functions, E : {0, 1}a·logn → {0, 1}q·logn and G :
{0, 1}b·logn → {0, 1}q·logn, and we will have: EncSC(x, r) = E(x)⊕G(r).

We will use a probabilistic construction (similar to that used to show existence of capacity
achieving, binary list decodable codes) which we later derandomize using (L+1)-wise independence.

Claim 4.4. Let E : {0, 1}a·logn → {0, 1}q·logn be chosen at random, so that the random variables
(E(x))x∈{0,1}a·logn are (L + 1)-wise independent. Then, with positive probability, EncSC(x, r) =
E(x)⊕G(r) is L-weakly list decodable from radius p.

Proof. (of claim) Given y ∈ {0, 1}q logn, we use B(y, p) to denote the ball of radius p · (q · log n)
centered at y ∈ {0, 1}q logn. For every x ∈ {0, 1}a logn and y ∈ {0, 1}q logn we define a random
variable indicator

Zx,y =

{
1 if ∃r ∈ {0, 1}b·logn such that, EncSC(x, r) ∈ B(y, p)
0 otherwise

We have that:

Pr[Zx,y = 1] ≤ 2b logn · 2H(p)·q·logn

2q logn

≤ 2logn·(b+q(H(p)−1))

Given a tuple x1, . . . , xL+1 ∈ {0, 1}a logn and y ∈ {0, 1}q logn, let Bx1,...,xL+1,y be the “bad event”
that the L+1 points x1, . . . , xL+1 all have seeds of G that make them land in the ball of y, namely:

Bx1,...,xL+1,y =
{
∀i ∈ [L+ 1],∃r ∈ {0, 1}b logn such that E(xi)⊕G(r) ∈ B(y, p)

}
.

The random variables E(x1), . . . , E(xL+1) are independent, and therefore,

Pr[Bx1,...,xL+1,y] =

L+1∏
i=1

Pr[Zx,y = 1] ≤ 2(logn)·(b+q(H(p)−1))(L+1)

Note that EncSC(x, r) = E(x) ⊕ G(r) is L-weakly list decodable from radius p, if and only if
E does not belong to Bx1,...,xL+1,y for all choices of x1, . . . , xL+1 ∈ {0, 1}a·logn and y ∈ {0, 1}q·logn.
Therefore, by a union bound, the probability that we don’t obtain an L-weakly list decodable code
from radius p, is at most:

∑
x1,...,xL+1,y

Pr[Bx1,...,xL+1,y] ≤ 2q logn ·
(

2a logn

L+ 1

)
· 2(logn)·(b+q(H(p)−1))(L+1)

< 2(logn)·(q+a(L+1)+(b+q(H(p)−1))(L+1))

Thus, if q ≥ a+b
1− 1

L+1
−H(p)

, then the probability is less than one, and there exists an L-weakly list

decodable code from radius p.15

15We remark that it is also possible to extend proofs that random linear codes achieve list decoding capacity to
show that we can obtain a linear code E that yields a good code EncSC .

18

Given oracle access to a candidate function E : {0, 1}a·logn → {0, 1}q·logn and toG : {0, 1}b logn →
{0, 1}log q we can check whether E induces a code with the required properties in time poly(nq).

It is standard that there are constructions of 2a logn = na random variables that are (L + 1)-
wise independent, and each variable is uniform over {0, 1}q logn, that can be sampled using only
(L + 1) · q log n random bits. Therefore, in time poly(nL·q) we can go over all candidate E’s, and
find one which induces an L-weakly list decodable from radius p.

Once we find a good function E we are guaranteed that EncSC is ε-pseudorandom for C.

Claim 4.5. For every E : {0, 1}a·logn → {0, 1}q·logn, the function EncSC(x, r) = E(x) ⊕ G(r) is
ε-pseudorandom for C.

Proof. Otherwise, there exists x′ ∈ {0, 1}a logn and a function C ∈ C that distinguishes EncSC(x′, Ub logn) =
E(x′) ⊕ G(Ub logn) from uniform. This means that there is an xored restriction C ′ of C that dis-
tinguishes G(Ub logn) from uniform, and this is a contradiction.

Finally, it remains to justify the claim about the decoding procedure. Given a string y ∈
{0, 1}q logn, the decoding algorithm will use brute force to go over all (x, r) ∈ {0, 1}a·logn ×
{0, 1}b·logn, and check for each whether δ(Enc(x, r), y) ≤ p. By the L-weakly list decodable prop-
erty, there will be at most L distinct values of x. The decoding complexity is O(2a logn · 2b logn) =
poly(na+b) with oracle access to G.

4.2 Inner Stochastic codes for circuits and ROBPs

By plugging in the pseudorandom generators from Theorems 3.3 and Theorem 3.5 in Theorem 4.3.
We immediately obtain the following stochastic codes (that will be used in the construction).

Theorem 4.6 (inner stochastic code for poly-size circuits). If E is hard for exponential size circuits
then for every constant 0 ≤ p < 1

2 , c > 1 and a > 0 there exist constants L, b, q such that for every
sufficiently large n, there is a stochastic code (Enc,Dec) where Enc : {0, 1}a·logn × {0, 1}b·logn →
{0, 1}q·logn is:

• L-weakly list decodable from radius p.

• 1
nc -pseudorandom for size nc circuits.

Furthermore, the code is explicit. Specifically, Enc,Dec are computable in time poly(nc), where the
polynomial depends on p, a and the constant β > 0 hidden in the hardness assumption.

Theorem 4.7 (inner stochastic code for online channels). For every constant 0 ≤ p < 1
2 , c > 1

and a > 0 there exist constants L, b, q such that for every sufficiently large n, there is a stochastic
code (Enc,Dec) where Enc : {0, 1}a·logn × {0, 1}b·logn → {0, 1}q·logn is:

• L-weakly list decodable from radius p.

• 1
nc -pseudorandom for space c log n ROBPs.

Furthermore, the code is explicit. Specifically, Enc,Dec are computable in time poly(nc) where the
polynomial depends on p, a.

19

4.3 Inner stochastic codes for AC0 channels

In this section we give a construction of inner stochastic codes for circuits of constant depth. This
construction has the advantage that the encoding and decoding of the inner stochastic code run in
fixed polynomial time, and do not depend on the size or depth of the circuit family.

Theorem 4.8 (inner stochastic code for AC0). There exist constants p > 0, R > 0 and a > 1
such that for every sufficiently large n, there is a stochastic code (Enc,Dec) where Enc : {0, 1}Rn×
{0, 1}Rn → {0, 1}n that is:

• 1-strongly list decodable from radius p.

• 2−n
1
ad -pseudorandom for circuits of size 2n

1
ad and depth d.

Furthermore, the code is explicit. Specifically, Enc,Dec are computable in time poly(n), for a fixed
universal polynomial (only the choice of what n is sufficiently large depends on the constants).

Proof. The theorem will follow from the following claim.

Claim 4.9. There exist constants p > 0, R > 0 such that for every sufficiently large n, there is a
2Rn× n matrix G(n) such that:

• G(n) is a generator matrix for a binary linear [n, 2Rn]-code that is decodable from pn errors.

• Let G
(n)
t be the Rn×n matrix obtained by taking the first Rn rows of G(n). G

(n)
t is a generator

matrix for a binary linear [n,Rn]-code such that its dual code has distance larger than pn.

• The code (Enc,Dec) that is defined by G(n) is explicit (and in particular G(n) can be con-
structed in time poly(n)).

Proof. (of claim) It is sufficient to prove the lemma for codes with alphabet size 2s for some constant
s (rather than for binary codes). This is because, such codes can be viewed as binary codes (in a
natural way) and this viewpoint preserves rate, and decreases relative distances (or the fraction of
errors that can be decoded) by a constant factor of 1/s. We therefore focus on proving the claim
for codes with alphabet size that is constant and a power of two.

There are codes (based on algebraic geometric codes) over constant size alphabet where the
size can be a power of two, that have: constant rate, can be explicitly encoded and decoded from
a constant fraction of errors, and furthermore have a positive relative dual distance. Such codes
follow from the work of Garcia and Stichtenoth [GS96] and a self contained summary is presented
in [Shp09] (the summary is in an appendix written by Guruswami). Theorem 24 in the appendix
contains a precise statement on the existence of such codes.

An inspection of the proof reveals that this argument can also be used to obtain two explicit
linear codes Ct ⊆ C with the properties above. More specifically, by varying the parameters in the
proof, there exist constants R > 0 and p > 0 such that for sufficiently large n, Ct has constant rate
R > 0, C has rate 2R > 0 and both codes have the properties listed above, namely: Ct (resp. C)
can be efficiently decoded from p ·n errors (for some p > 0) and both codes have dual distance p ·n.
Loosely speaking, this follows as one can perform the argument once to obtain one code Ct, and
then increase the dimension, to give a code C such that Ct ⊆ C with the same properties.

The matrix Gt will be the generator matrix of Ct and it can be easily extended to a generator
matrix G of C.

20

We now observe that the claim implies the theorem. The stochastic code Enc : {0, 1}Rn ×
{0, 1}Rn → {0, 1}n is defined as follows: Given x, r ∈ {0, 1}Rn, let y be the concatenation y = r ◦ x
and Enc(x, r) = y ·G.

This code is 1-strongly list decodable from radius p by the decoding properties of the code
generated by G. More precisely, given z ∈ {0, 1}n, we can decode to a unique message y ∈ {0, 1}2Rn
that has Hamming distance at most pn from z, and this message y = (x, r) can be found efficiently.

We now show the pseudorandomness of Enc. Let Gb denote the bottom Rn rows of G (and
recall that Gt denotes the top Rn rows of G). For every x, r ∈ {0, 1}Rn,

Enc(x, r) = (r ◦ x) ·G = r ·Gt + x ·Gb.

The generator matrix Gt generates a code with dual distance at least pn. This means that trans-
posed matrix is the parity matrix of the dual code. The fact that the dual code has distance
larger than pn, implies that every pn columns of Gt are linearly independent. This gives that the
distribution r · Gt for r ← URn is pn-wise independent, and implies that for every x ∈ {0, 1}Rn,
Enc(x, URn) is pn-wise independent. Braverman [Bra10] (and later improvements by Tal [Tal14])
(See Theorem 3.7) showed that t-wise independent distributions are ε-pseudorandom for circuits of
size s and depth d, if t ≥ (log s

ε)
c·d for some constant c. This gives that there exists a constant a > 1

such that Enc(x, URn) is 2−n
1
ad -pseudorandom for circuits of size 2n

1
ad and depth d, as required.

5 The construction of stochastic codes

In this section we give the construction of the stochastic code. Our construction imitates that
of Guruswami and Smith [GS16] (with the modifications explained in Section 2). We start with
introducing some notation.

Partitioning codewords into control blocks and data blocks. The construction will think
of codewords c ∈ {0, 1}N as being composed of n = nctrl + ndata blocks of length b = N/n.
Given a subset I ⊆ [n] of nctrl distinct indices, we can decompose c into its data part cdata ∈
{0, 1}Ndata=ndata·b and its control part cctrl ∈ {0, 1}Nctrl=nctrl·b. Similarly, given strings cdata and cctrl

we can prepare the codeword c (which we denote by (cdata, cctrl)
I by the reverse operation. This is

stated formally in the definition below.

Definition 5.1. Let I = {i1, . . . , inctrl
} ⊆ [n] be a subset of indices of size nctrl.

• Given strings cdata ∈ {0, 1}Ndata and cctrl ∈ {0, 1}Nctrl we define an N bit string c denoted by
(cdata, cctrl)

I as follows: We think of cdata, cctrl, c as being composed of blocks of length b (that
is cdata ∈ ({0, 1}b)ndata, cctrl ∈ ({0, 1}b)nctrl and c ∈ ({0, 1}b)n). We enumerate the indices in

[n] \ I by j1, . . . , jndata
and set c` =

{
(cctrl)k if ` = ik for some k;
(cdata)k if ` = jk for some k

• Given a string c ∈ {0, 1}N (which we think of as c ∈ ({0, 1}b)n) we define strings cIdata, c
I
ctrl

by cctrl = c|I and cdata = c|[n]\I , (namely the strings restricted to the indices in I, [n] \ I,
respectively).

We omit the superscript I when it is clear from the context.

21

Figure 1: Parameters and ingredients for stochastic code

Parameters:

• N - The length (in bits) of the codeword. (Throughout we assume that N is sufficiently large). Other
parameters are either constants or chosen as a function of N .

• p - The fraction of errors we need to recover from. This is a constant.

• C′ - A class of functions (typically slightly stronger than the class of channels we allow).

• 0 < ε < 1
2 − p - We want rate R = 1−H(p)− ε, meaning that messages have length RN . ε is a constant.

• b - We will divide the N output bits to n = N/b blocks of length b, where 2 logN ≤ b ≤ N1/10 is a
function of N that will be chosen later on. This implies n ≥ N0.9.

• ν ≥ 2−
√
N - A bound on the failure probability of decoding (can be chosen as a function of N).

Internal parameters:

• Blocks will be of two kinds: “control” and “data”. We set nctrl = ε · n and ndata = n − nctrl so that
n = nctrl + ndata. Let Nctrl = b · nctrl and Ndata = b · ndata. So that N = Nctrl +Ndata.

• Let α > 0 be a sufficiently small constant that will be chosen later.

• Let `ctrl = N0.8 and `′ctrl = `ctrl/3.

Ingredients that depend on the choice of channel class: We assume that we are given:

• A stochastic code EncSC : {0, 1}2 lognctrl × {0, 1}`′SC → {0, 1}b that is εSC-pseudorandom for C′ (for
εSC = ν

10·nctrl
) and is LSC-weakly list decodable from radius p + ε. We require that LSC is a constant,

and `′SC ≤ N .

• An εPRG-PRG PRG : {0, 1}`′ctrl → {0, 1}Ndata for C′, for εPRG = 1
10 · ν.

Other Ingredients:

• A code Encbalanced : {0, 1}RN → {0, 1}Ndata with an algorithm Decbalanced that performs Lbalanced-list
decoding from (b′, p+α, α)-balanced errors. By Theorem 3.10 we have an explicit construction with rate
R′ ≥ 1 − H(p + α) − c

√
α for some constant c, and where b′ and Lbalanced are constants (chosen as a

function of the constants α and p). We can choose α > 0 to be sufficiently small constant so that we
indeed have R′ ≥ RN/Ndata = R/(1− ε), which guarantees that the rate of the final code is R.

• A code EncLR : {0, 1}`ctrl → ({0, 1}2 lognctrl)nctrl that is (ε2

100 , LSC · n,LLR)-list recoverable. Note that

LSC · n = LSC
ε · nctrl. By Theorem 3.11 we can obtain such a code with constant rate R′ > 0 for some

constant LLR (these two constants depend on ε). The rate we allow for EncLR above is `ctrl

2 lognctrl·nctrl
≤

N0.8

ε·n = o(1) ≤ R′.

• A (2−N
0.6

, N0.6)-wise permutation π : {0, 1}`′ctrl×[Ndata]→ [Ndata]. By Theorem 3.15 we have an explicit
construction with seed length N0.7 ≤ `′ctrl.

• An (min(α
100 ,

ε2

100), 2−N
0.6

)-sampler with distinct samples Samp : {0, 1}`′ctrl → [n]nctrl . By Theorem 3.13
we have an explicit construction with seed length O(N0.7) ≤ `′ctrl and N0.7 ≤ ε · n = nctrl samples.

22

Permuting strings. Our construction will also use permutations to permute strings as follows:

Definition 5.2. Given a string v ∈ {0, 1}N and a permutation π : [N]→ [N]. Let π(v) denote the
string v′ ∈ {0, 1}N with v′i = vπ−1(i).

Description of the construction. Our construction is described in detail in the three figures
below. The choice of parameters and ingredients is described in Figure 1. The encoding algorithm
is described in Figure 2, and the list-decoding algorithm is described in Figure 3. We state a general
theorem that summarizes the correctness of the construction and will be used to prove Theorems
1.2, 1.3, 1.4.

Figure 2: Encoding algorithm for stochastic code

Input:

• A message m ∈ {0, 1}RN .

• A “random part” for the stochastic encoding that consists of a string s = (ssamp, sπ, sPRG)

where ssamp, sπ, sPRG ∈ {0, 1}`
′
ctrl so that s ∈ {0, 1}`ctrl , and r1, . . . , rnctrl

∈ {0, 1}`′SC .

Operation:

Determine control blocks: Apply Samp(ssamp) to generate I = {i1, . . . , inctrl
} ⊆ [n]. These

blocks will be called “control blocks”, and the remaining ndata blocks will be called “data
blocks”.

Prepare data part: We prepare a string cdata of length Ndata as follows:

• Encode m by x = Encbalanced(m).

• Generate an Ndata bit string y by reordering the Ndata bits of the encoding using
the (inverse of) the permutation πsπ (·) = π(sπ, ·). More precisely, y = π−1sπ (x) =
π−1sπ (Encbalanced(m)).

• Mask y using PRG. That is, cdata = y ⊕ PRG(sPRG) = π−1sπ (Encbalanced(m)) ⊕
PRG(sPRG).

Prepare control part: We prepare a string cctrl of length Nctrl (which we view as nctrl blocks
of length b) as follows:

• Encode s by z = EncLR(s). This is a string composed of nctrl blocks of length 2 log nctrl.

• Use EncSC as an “inner code” to encode blocks of z using the randomness r1, . . . , rnctrl
.

That is, (cctrl)j = EncSC(zj , rj) = EncSC(EncLR(s)j , rj).

Merge data and control parts: We prepare the final output codeword c ∈ {0, 1}N by merging
cdata and cctrl. That is, c = (cdata, cctrl)

I .

Correctness of the construction. Let C be a class of channels C : {0, 1}N → {0, 1}N that
induce at most pN errors. We now show that if the ingredients PRG,EncSC are pseudorandom
for a class C′ that is sufficiently stronger than C, then the decoding algorithm of Figure 3 succeeds
with high probability. This is stated precisely, in the next theorem, which uses the notion of “xored
restrictions” defined in Definition 4.2. (We remind the reader that nonuniform complexity classes
as the ones we consider in this paper, are closed under xored restrictions).

23

Figure 3: List-decoding algorithm for stochastic code

Input: A “received word” c′ ∈ {0, 1}N .

Operation:

Determine few candidates for control information:

Decode inner code SC: For every i ∈ [n] apply the list decoding algorithm of SC to
generate a size LSC list, Listi = DecSC(c′i) (here c′i is the i’th block of c′). Let ListSC =
∪i∈[n]Listi.

Decode outer code LR: Apply the list recovering algorithm of LR to generate a size LLR
list, Listctrl = DecLR(ListSC).

Use each control candidate s to decode data: For each s = (ssamp, sπ, sPRG) ∈ Listctrl (re-
call that there are LLR of them) we produce a list Lists of Lbalanced candidate messages. Our
final output list will be the union of these lists.

Determine control blocks: Apply Samp(ssamp) to generate I = {i1, . . . , inctrl
}. Compute

c′data = (c′)Idata.

Unmask PRG: Compute y′data = c′data ⊕ PRG(sPRG).

Reverse permutation: Let x′ be the Ndata bit string obtained by “undoing” the per-
mutation. More precisely, let πsπ (·) = π(sπ, ·), and let x′ = πsπ (y′data) = πsπ (c′data ⊕
PRG(sPRG)).

Decode data: Compute Lists = Decbalanced(x′).

Merge lists: The final output is List =
⋃

s∈Listctrl

Lists.

Theorem 5.3 (Correctness of construction). For every constants 0 ≤ p < 1
2 and 0 < ε < 1

2 − p
there exists a constants L = LLR · Lbalanced such that for infinitely many N the following holds:

• Let C be a class of functions C : {0, 1}N → {0, 1}N that induce at most pN errors. For a
channel C ∈ C, let EC(z) = z ⊕ C(z) denote the error vector (of Hamming weight at most
pN) induced by the channel.

• Let C′ be the class of all functions that output one bits, and are xored restrictions of functions
of the form f(z) = A(EC(z)) where A is either,

– a size N c0, depth d0 circuit, for some universal constants c0, d0.

– a space η0 · log 1/ν · logN ROBP, for some universal constant η0 > 0 (which gives space
O(logN) if ν is inverse polynomial in N).

If the parameters and ingredients are chosen as in Figure 1, then the stochastic code (Enc,Dec)
specified in Figures 2, 3, satisfies:

• It has rate R ≥ 1−H(p)− ε.

• It is L-list decodable with success probability 1− ν for channels in C.

• There exist a polynomial P (·) that depends on p and ε such that:

24

– The function Enc can be computed in DTIMEPRG,EncSC (P (N)) (and is therefore explicit
if PRG,EncSC are explicit).

– The function Dec can be computed in DTIMEPRG,DecSC (P (N)) (and is therefore explicit
if PRG,DecSC are explicit).

Remark 5.4 (Dependence of the list-size and running time on ε). In Theorem 5.3 the polynomial
P depends on p and ε. One could hope to get a dependence of L = poly(1/ε) and have P be a fixed
polynomial P (N) = N c for some constant c, where the dependence on ε is that for every ε > 0,
there exists an Nε such that the construction starts working only for N ≥ Nε. The main reason
that we don’t get this dependence is Theorem 3.10 in which the polynomial of the encoding/decoding
depends on ε, and the list size is not poly(1/ε). This can potentially be improved by better explicit
constructions of high-rate list-recoverable codes (that are used as an outer code in the proof of
Theorem 3.10). In a preliminary version of this work, we incorrectly claimed that the list size in
our current construction is L = poly(1/ε) which is not obtained by the current written proof.

Nevertheless, we remark that we believe that both these issues can be resolved by using a more
complicated construction and analysis. More specifically, by replacing codes for balanced errors,
with codes for t-wise independent errors (as was originally done by Guruswami and Smith [GS16],
see Section 2.2). This modification requires some changes to the construction. It also requires a
more complicated analysis for channels that are not sufficiently strong to decode codes for t-wise
independent errors (such as AC0 and online space channels). The approach for this analysis can
be found in a preliminary version of [GS16], where it was used to handle online channels.

5.1 Choosing ingredients and parameters for specific channel families

We now put everything together and choose pseudorandom generators and inner stochastic codes
for poly-size circuits, online logspace, and AC0.

5.1.1 Poly-size circuit channels

Here we use the pseudorandom generator of Impagliazzo and Wigderson [IW97] (that requires the
assumption that E is hard for exponential size circuits). This PRG has logarithmic seed length,
and can be used as PRG, as well as the pseudorandom generator that is transformed into an inner
stochastic code EncSC (as done in Theorem 4.6). The precise statement and parameter choices
appear below:

Theorem 5.5 (explicit codes for poly-size channels). If there exists a constant β > 0 and a problem
in E = DTIME(2O(n)) such that for every sufficiently large n, solving the problem on inputs of length
n, requires circuits of size 2β·n, then for every constants 0 ≤ p < 1

2 , ε > 0, there exists a constant
L such that for every constant c > 1 and for infinitely many N :

• Let ν = N−c.

• Let C be the class of all circuits C : {0, 1}N → {0, 1}N of size N c that induce at most pN -
errors.

• Let C′ be the class of all size N2c circuits that output one bit (this includes circuits for all
input lengths up to N). Here, we assume w.l.o.g. that c is sufficiently large so that in time
N2c we can compose size N c computations with fixed polynomial size computations.

25

• Let (EncSC ,DecSC) and the block length b be determined by Theorem 4.6. Specifically, let
b = q · logN for a sufficiently large constant q, guaranteed by Theorem 4.6 so that we get that
EncSC : {0, 1}2 lognctrl≤2 logN × {0, 1}`′SC=O(logN) → {0, 1}b is LSC-weakly list decodable from
radius p+ε for a sufficiently large constant LSC (chosen as a function of p), and furthermore,
EncSC is N−(c+1)-pseudorandom for C′. (Note that N−(c+1) ≤ ν

10·nctrl
as required).

• Let PRG : {0, 1}O(logN) → {0, 1}Ndata be an N−(c+1)-PRG for C′ from Theorem 3.3, and note
that the seed length is smaller than `′ctrl, and N−(c+1) ≤ ν/10 as required.

These choices satisfy the requirements of Figure 1, 2, 3, the stochastic code (Enc,Dec) specified in
the figures has rate 1−H(p)−ε, and is L-list decodable with success probability 1−N−c against chan-
nels in C. Furthermore, Enc,Dec are computable in time poly(N c) where the polynomial depends
on p, ε, and on the constant β > 0 hidden in the assumption.

5.1.2 Online logspace channels

Here we use the pseudorandom generator of Nisan [Nis92]. This PRG has seed length that is poly-
logarithmic, and can be used as PRG. However, it is unsuitable to serve in the construction of
inner stochastic codes. This is because the dependence of the seed length on the error, does not
allow linear stretch with error that is exponentially small in the seed length. Instead, we use the
pseudorandom generator of Nisan and Zuckerman [NZ96], that has these properties and can be
transformed into an inner stochastic code EncSC (as done in Theorem 4.7). The precise statement
and parameter choices appear below:

Theorem 5.6 (explicit codes for online logspace channels). For every constants 0 ≤ p < 1
2 , ε > 0,

there exists a constant L such that for every constant c > 1 and for infinitely many N :

• Let ν = N−c.

• Let C be the class of all space c logN ROBPs C : {0, 1}N → {0, 1}N that induce at most
pN -errors.

• Let C′ be the class of all space 2c logN ROBPs that output one bit (this includes ROBPs for
all input lengths up to N). Here we assume w.l.o.g. that c is sufficiently large so that an
ROBP of space 2c logN can compose space c logN online computation with c0 logN online
computation, for any fixed c0.

• Let (EncSC ,DecSC) and the block length b be determined by Theorem 4.7. Specifically, let
b = q · logN for a sufficiently large constant q, guaranteed by Theorem 4.7 so that we get that
EncSC : {0, 1}2 lognctrl≤2 logN × {0, 1}`′SC=O(logN) → {0, 1}b is LSC-weakly list decodable from
radius p+ε for a sufficiently large constant LSC (chosen as a function of p), and furthermore,
EncSC is N−(c+1)-pseudorandom for C′. (Note that N−(c+1) ≤ ν

10·nctrl
as required).

• Let PRG : {0, 1}O(log2N) → {0, 1}Ndata be an N−(c+1)-PRG for C′ from Theorem 3.4, and
note that the seed length is smaller than `′ctrl, and N−(c+1) ≤ ν/10 as required.

These choices satisfy the requirements of Figure 1, 2, 3, the stochastic code (Enc,Dec) specified in
the figures has rate 1−H(p)−ε, and is L-list decodable with success probability 1−N−c against chan-
nels in C. Furthermore, Enc,Dec are computable in time poly(N c) where the polynomial depends
on p and ε.

26

5.1.3 Constant depth channels

Here we use the pseudorandom generator of Nisan [Nis91]. This PRG has seed length that is
subpolynomial for any fixed constant depth d, and can be used as PRG. We use the construction
of inner stochastic codes given in Theorem 4.8 for EncSC . This construction only works for p < p0

for some p0 > 0 and this requirement is inherited by our final theorem. The precise statement and
parameter choices appear below:

Theorem 5.7 (explicit codes for constant depth channels). There exists a constant p0 > 0, d0 > 1
and a′ > 0 such that for every constants 0 ≤ p < p0, ε > 0, there exists a constant L such that for
every constant d > d0 and for infinitely many N :

• Let ν = 2−N
1
a′·d .

• Let C be the class of circuits C : {0, 1}N → {0, 1}N of size 2N
1
a′·d and depth d that induce at

most pN -errors.

• Let C′ be the class of all size 2N
3

a′·d′ and depth d′ = d + d0 circuits that output one bit (this
includes circuits for all input lengths up to N).

• Let b = N1/10 and let (EncSC ,DecSC) be determined from Theorem 4.8. Specifically, let R > 0
be a constant guaranteed by Theorem 4.8 so that we get EncSC : {0, 1}Rb×{0, 1}Rb → {0, 1}b
is LSC-weakly list decodable from radius p + ε for LSC = 1, and furthermore, EncSC is

2−N
3

a′·d′ -pseudorandom for C′.

• Let PRG : {0, 1}N0.5 → {0, 1}Ndata be an 2−N
3

a′·d′ -PRG for C′ from Theorem 3.6, and note
that the seed length is smaller than `′ctrl.

These choices satisfy the requirements of Figure 1, 2, 3, the stochastic code (Enc,Dec) specified in

the figures has rate 1−H(p)− ε, and is L-list decodable with success probability 1− 2−N
1
a′·d against

channels in C. Furthermore, Enc,Dec are computable in time poly(N) where the polynomial depends
on p and ε, but not on d.

6 Analyzing the construction

This section is devoted to proving Theorem 5.3.

The setup: Throughout the remainder of the section, we fix the following setup: Let 0 ≤ p < 1
2

and 0 < ε < 1
2 − p be constants. Let C, C′ be classes as required in Theorem 5.3. We use the

choices and requirements made in Figure 1. More specifically, as in Figure 1, we assume that we
are supplied with PRG and (EncSC ,DecSC) that satisfy the requirements made in Figure 1. That

is, that for some “required error” parameter ν ≥ 2−
√
N we have:

• A stochastic code EncSC : {0, 1}2 lognctrl × {0, 1}`′SC → {0, 1}b that is εSC-pseudorandom for
C′ (for εSC = ν

10·nctrl
) and is LSC-weakly list decodable from radius p+ ε, for a constant LSC .

• An εPRG-PRG PRG : {0, 1}`′ctrl → {0, 1}Ndata for C′, for εPRG = ν/10.

27

Our goal in this section is to show that for infinitely many N , the encoding and decoding algorithms
specified in Figures 2 and 3 satisfy the conclusion of Theorem 5.3. This setup is assumed throughout
this section.

6.1 Milestones for correct decoding

Following Guruswami and Smith [GS16] we will analyze the construction in two steps: We first
consider the case that the channel C is an additive channel, namely that C(z) = z ⊕ e for some
fixed error vector e, and later extend to general channels that can choose e as a function of z.

We present the following abstraction of this method (which will be convenient for our purposes
as we use several different classes of channels). We will define “milestones” (as a function of m, sπ,
ssamp and e) and will require that:

1. If the milestones occur, then the decoding algorithm succeeds.

2. If Sπ, Ssamp are random and e is fixed (that is, if the channel is additive) then the milestones
occur with probability close to one.

3. Checking whether the milestones occur is computationally easy.

We will state a general theorem showing that if such milestones exist, then the correctness of the
decoding holds even against channels that are not additive, as long as the construction is using
pseudorandomness against a class C′ that can simulate the channel and milestones. This is stated
formally in the definition and theorem below (in which we allow milestones to be probabilistic).

Definition 6.1 (Milestones function). Let A : {0, 1}RN×{0, 1}`′ctrl×{0, 1}`′ctrl×{0, 1}N×{0, 1}N →
{0, 1} be a function that receives as input: a message m ∈ {0, 1}RN , a sampler seed ssamp ∈
{0, 1}`′ctrl, a permutation seed sπ ∈ {0, 1}`

′
ctrl, an error vector e ∈ {0, 1}N of relative Hamming

weight at most p, and a “random coins string” y ∈ {0, 1}N . We say that A is a milestones
function (with respect to the classes C, C′) if it has all the following properties: (the probability
space for the statements below is choosing the randomness of the encoder S = (Ssamp, Sπ, SPRG),
R = (R1, . . . , Rnctrl

) and Y (the coins of A) uniformly and independently.)

1. For every m ∈ {0, 1}RN , s ∈ {0, 1}`ctrl , r ∈ ({0, 1}`′SC)nctrl and e ∈ {0, 1}n of relative Hamming
weight at most p, Pr[A(m, ssamp, sπ, e, Y) = 1] ≥ 1

2 ⇒ m ∈ Dec(Enc(m, s, r)⊕ e).

2. For every m ∈ {0, 1}RN and e ∈ {0, 1}n of relative Hamming weight at most p, Pr[A(m,Ssamp, Sπ, e, Y) =
1] ≥ 1− ν/10.

3. For every m, ssamp, sπ, y, C ∈ C, every xored-restriction of the function D(z) = A(m, ssamp, sπ, EC(z), y)
is in C′.

Lemma 6.2 (Milestones Lemma). If there exist a milestones function with respect to C, C′ then

Pr[m ∈ Dec(C(Enc(m,S,R)))] ≥ 1− ν

We defer the proof of the milestones lemma to Section 6.3. In the next section we explain how
the milestones lemma implies Theorem 5.3.

28

6.2 Milestones Lemma implies Theorem 5.3

In this section we show that Lemma 6.2 implies Theorem 5.3. Our task is to define a milestone
function that meets the three requirements in Definition 6.1. We start with the following definition.

Definition 6.3. We say that a string e ∈ {0, 1}N is (λ, η)-good with respect to ssamp ∈ {0, 1}`
′
ctrl

if for I = {i1, . . . , inctrl
} = Samp(ssamp):

|
{
j : The Hamming weight of eij is at most λ · b

}
| ≥ η · nctrl.

We will use slightly different milestone functions for different complexity measures (as we need
the milestone function to be efficient for the corresponding complexity measure). It will be conve-
nient to start by defining two milestone functions (a strong one, and a weak one). We will later show
that more efficient milestone functions can be “sandwiched” between the two milestone functions.
This will mean that correctness of the more efficient milestone functions will follow by analyzing
the simpler versions.

Definition 6.4. It will be convenient to denote the input to a milestone function by (x, y) where
x = (m, ssamp, sπ, e) and y is the “random coins”, we define the following functions (which do not
depend on y):

Control milestone: Let µ = ε2/4.

• Aweakctrl (x, y) = 1 iff e is (p+ ε, µ10)-good for ssamp.

• Astrongctrl (x, y) = 1 iff e is (p+ ε/4, (1− 1
10) · µ)-good for ssamp.

Note that for every (x, y), Astrongctrl (x, y) = 1⇒ Aweakctrl (x, y) = 1.

Data milestone: Let πsπ(·) = π(sπ, ·), edata = e
Samp(ssamp)
data , and eπ = πsπ(edata).

• Aweakdata (x, y) = 1 iff eπ is (b′, p+ α, α)-balanced.

• Astrongdata (x, y) = 1 iff eπ is (b′, p+ α/4, α/4)-balanced.

Note that for every (x, y), Astrongdata (x, y) = 1⇒ Aweakdata (x, y) = 1.

Combined milestones:

• Aweak(x, y) = Aweakctrl (x, y) ∧Aweakdata (x, y).

• Astrong(x, y) = Astrongctrl (x, y) ∧Astrongdata (x, y).

Note that for every (x, y), Astrong(x, y) = 1⇒ Aweak(x, y) = 1.

The next two lemmas give that any milestone function that is “sandwiched” between Aweak and
Astrong satisfy the first two properties of a milestone function.

Lemma 6.5. The function Aweak satisfies the first property of a milestone function. (This in
particular implies that Astrong also satisfies the first property).

This follows as the function Aweak was defined precisely so that the decoding components, in
the decoding algorithm of Figure 3 are used with the correct guarantee. A full proof appears in
Section 6.4.

29

Lemma 6.6. The function Astrong satisfies the second property of a milestone function. (This in
particular implies that Aweak also satisfies the second property).

This follows as the function Astrong was defined precisely so that the pseudorandom components
(the sampler and permutation) are “sufficiently random” to imply that Astrong holds. For this, we
only need to analyze the case where e is fixed and the Seeds (Ssamp, Sπ) are chosen at random. A
full proof appears in Section 6.5.

Milestones for poly-size circuits. Both functions Aweak, Astrong satisfy the first two properties,
and are obviously computable in polynomial time. This immediately gives that they satisfy the
third and final property if C′ is sufficiently stronger than C in the sense that it can run poly-time
computations “on top of” computations in C. This also immediately implies Theorem 5.3 for the
case where A is allowed to run in some fixed polynomial time.

We would like to give tighter reductions in which the milestone function is computable in AC0

or by a small space ROBP. We now explain how to achieve such milestone functions.

Milestone function for constant depth circuits. We would like to implement the milestone
function Aweak (or Astrong) by a poly-size constant depth circuit. Note that the third property in
Definition 6.1 considers the case that Ssamp, Sπ are fixed to some values ssamp, sπ, and the only live
input is e. This means that the choice of permutation, and which blocks are control blocks is fixed
(and can be hardwired as nonuniform advice) to the circuit. Furthermore, in the data milestone
the inputs can be rearranged according to πsπ , at no cost. Meaning that the circuit can compute
eπ from e at no cost. Thus, computing the milestone function reduces to several counting tasks on
the number of ones in e and eπ.

It is known that the problem of counting the number of ones in an n bit input, cannot be
solved by poly-size depth circuits. However, Ajtai [Ajt83] showed that for every η > 0, there is a
polynomial size constant depth circuit that can produce a quantity that is the number of ones, up to
an error of ηn. (In fact, the results of Ajtai are much stronger, and in particular allow subconstant
η). This means that there is a circuit with constant depth and polynomial size A′ssamp,sπ(e) such
that for every m, y:

Astrong(m, ssamp, sπ, e, y) = 1⇒ A′ssamp,sπ(e) = 1⇒ Aweak(m, ssamp, sπ, e, y) = 1

This means that the milestone function Amiddle(x, y) = A′ssamp,sπ(e) satisfies the three properties of
a milestone function proving Theorem 5.3 for the case of constant depth circuits.

Milestones for read once branching programs. As in the case of constant depth circuits, we
need to implement the milestone function by an O(log n) space ROBP for fixed ssamp, sπ. Using
the approach we used for constant depth circuits, this may seem easy at first glance, as ROBPs
with space O(log n) can count up to nO(1) and this sufficed for the earlier implementation. Indeed,
this reasoning applies to the control milestone, and the functions Astrongctrl and Aweakctrl can be easily
implemented by an ROBP of space O(log n) (for fixed ssamp, sπ).

The functions Astrongdata and Aweakdata pose a problem. Unlike circuits, an ROBP is not allowed to
reorder the input by a fixed permutation πsπ prior to reading it. Thus, we cannot assume that
online access to e, gives online access to eπ.

30

We do have that sπ is fixed, and can be hardwired to the ROBP. This means that when an
ROBP reads the i’th bit of the input e, it can tell whether this bit belongs to a control block or
a data block, and in the latter case, it can tell to which of the Ndata/b

′ blocks of length b′, does
i belong to. (All these are operations that do not depend on e, and only depend on the fixed
ssamp, sπ). The issue is that the order in which the ROBP reads the data bits is permuted, and
does not respect their partitioning into blocks of length b′. This means that the ROBP cannot
keep a single counter and use it for all blocks, and must maintain ` different counters, if it wants
to count the number of ones in ` different blocks. The naive way to check if eπ is balanced, is to
keep counters for all ` = Ndata/b

′ blocks, and as b′ is constant, this takes space O(`) = O(Ndata/b
′)

which is way too much.
The solution is to use randomization. The milestone function is allowed to toss random coins

(in the form of the input y). It will choose ` = O(logN) uniform indices from [Ndata/b], and will
only keep count of the number of ones in these blocks. (This can indeed be done in space O(logN)).
The milestone function will count the fraction of sampled blocks which have Hamming weight larger
than p + α/4, and use this quantity ρ′ as an approximation for the real quantity ρ (which is the
fraction of blocks in eπ which have Hamming weight larger than p + α/4). By a Chernoff bound,
with probability 1 − 2−Ω(α2·`) = 1 − NO(1), we have that |ρ − ρ′| ≤ α/100. Therefore, the ROBP
can safely output one if ρ′ ≤ α/2, as this indeed implies that

Astrongdata (x, ·) = 1⇒ Pr
Y

[Amiddledata (x, Y) = 1] ≥ 1−2−Ω(α2`) ⇒ Pr
Y

[Amiddledata (x, Y) = 1] ≥ 1

2
⇒ Aweakdata (x, ·) = 1.

This gives that by Lemma 6.5, Amiddle satisfies the first property of a milestone function. By
Lemma 6.6, Amiddle defined in this form, satisfies the second property of milestone functions, where
we suffer an additive loss of 2−Ω(α2`) relative to what we can get for Astrong, because of the error
induced by the Chernoff bound.

In Theorem 5.3, we are allowed to use space O(logN) for ν = 2−Ω(logN), and as α is a constant,
the Theorem follows.

6.3 Proof of Milestones Lemma

We prove the milestones lemma in two steps, described in the two sections below.

6.3.1 The hiding lemma

The following lemma states that for a function D that is slightly weaker than functions in C′, an
encoding of a message m is pseudorandom for D. (We will later consider the case where D is a
composition of a channel and milestone functions).

Lemma 6.7 (Hiding Lemma). Let D be a function such that every xored-restriction of D is in
C′. For every message m ∈ {0, 1}RN , sampler seed ssamp ∈ {0, 1}`

′
ctrl and permutation seed sπ ∈

{0, 1}`′ctrl, let V = Enc(m, sπ, ssamp, SPRG, R1, · · · , Rnctrl) be a random variable (defined over the
probability space where SPRG, R1, · · · , Rnctrl are chosen uniformly and independently). It follows
that V is ν

5 -pseudorandom for D, namely:

|Pr[D(V) = 1]− Pr[D(UN) = 1]| < ν

5

31

Proof. We assume for contradiction that there exists D such that:

|Pr[D(V) = 1]− Pr[D(UN) = 1]| > ν

5

and note that εPRG + nctrl · εSC = ν/5. The lemma follows from the following claim.

Claim 6.8. One of the following holds:

• There exists an xored-restriction C ′ of D such that, |Pr[C ′(PRG(SPRG)) = 1]−Pr[C ′(UNdata
) =

1]| > εPRG.

• There exists z′ ∈ {0, 1}2 lognctrl and an xored restriction C ′ of D, such that |Pr[C ′(EncSC(z′, U`′SC)) =
1]− Pr[C ′(Ub) = 1]| > εSC .

Proof. (of claim) We partition V into V = (Vdata, Vctrl)
Samp(ssamp) using definition 5.1. We have

that D distinguishes V = (Vdata, Vctrl) from UN = (Udata, Uctrl) with probability greater than ν/5,
we do a hybrid argument and consider the hybrid distribution H = (Vdata, Uctrl). It follows that:

• Either D distinguishes H from UN with probability εPRG,

• or, D distinguishes H from V with probability nctrl · εSC .

In the first case, we have that Vdata and Uctrl are independent, and an averaging argument gives
that there exists a fixed value v′ctrl such that D distinguishes (Udata, v

′
ctrl) from (Vdata, v

′
ctrl) with

probability εPRG. This gives that there exists an xored restriction of D that distinguishes Udata

from Vdata with probability εPRG and the first item of the claim holds.
In the second case, we have thatm and sπ are fixed and therefore the string y = πsπ(Encbalanced(m))

used in the encoding algorithm is also fixed. The encoding algorithm computes the data part
by xoring y with PRG(SPRG) and therefore Vdata = PRG(SPRG) ⊕ y. By an averaging ar-
gument, there exists a fixing s′PRG such that D distinguishes ((PRG(s′PRG) ⊕ y), Uctrl) from
(((PRG(s′PRG)⊕ y), Vctrl)|SPRG = s′PRG) with probability nctrl · εSC . We have that there exists an
xored restriction D′ of D which distinguishes Uctrl from V ′ctrl = (Vctrl|SPRG = s′PRG).

Recall that the encoding procedure prepares the control part cctrl by preparing a string z =
EncLR(s) and then the j’th control block is obtained by EncSC(zj , rj).

Having fixed SPRG = s′PRG the only random variables that remain unfixed in V ′ctrl areR1, . . . , Rnctrl
.

This means that there exists a fixed z such that (V ′ctrl)j = EncSC(zj , Rj) and in particular, the nctrl

blocks are independent. We have that D′ distinguishes V ′ctrl from Uctrl with probability nctrl · εSC ,
and by a standard hybrid argument, there exists an xored restriction C ′ of D′ which distinguishes
(V ′ctrl)j = EncSC(zj , Rj) from uniform with probability εSC and the second item follows.

The lemma follows by the pseudorandomness properties of PRG and EncSC .

6.3.2 Hiding lemma implies milestones lemma

We now show that the milestones lemma (Lemma 6.2) follows from the hiding lemma (Lemma 6.7).
We are assuming that A is a milestone function with respect to C, C′ of Theorem 5.3. We need to
show that for every message m ∈ {0, 1}RN , and every C ∈ C,

Pr[m ∈ Dec(C(Enc(m,S,R)))] ≥ 1− ν

32

where S = (Ssamp, Sπ, SPRG), R = (R1, . . . , Rnctrl
) and Y are chosen uniformly and independently.

Fix some message m ∈ {0, 1}RN and let Z = Enc(m,S,R) denote the random variable that is
the encoding of the message. We assume (for contradiction) that Pr[m ∈ Dec(C(Z))] < 1− ν. By
the first property of a milestones function and an averaging argument we have that:

Claim 6.9. Pr[A(m,Ssamp, Sπ, EC(Z), Y) = 1] < 1− ν/2 .

Proof. Let B = {(s, r)|m /∈ Dec(C(Enc(m, s, r)))} be the set of pairs on which C causes a decoding
error. We have that Pr[(S,R) ∈ B] ≥ ν.

Note that for a fixed (s, r) the error vector e induced by the channel C is also fixed. We
consider the probability space where (S,R) = (s, r) are fixed and Y (the random coins of the
function A) is chosen uniformly. By the first property of a milestone function, we have that for a
fixed (s, r) ∈ B and a fixed error e, Pr[A(m, ssamp, sπ, e, Y) = 0] > 1

2 (as otherwise decoding must
succeed). Let A′ = A(m,Ssamp, Sπ, EC(Z), Y) be the random variable of the output of function A
in the probability space where S,R, Y are chosen uniformly.

Pr[A′ = 0] ≥ Pr[A′ = 0|(S,R) ∈ B] · Pr[(S,R) ∈ B] > ν/2

It follows that

Pr[A(m,Ssamp, Sπ, EC(Z), Y) = 1] = Pr[A′ = 1] = 1− [A′ = 0] < 1− ν/2.

We add an independent random variable ZU that is uniform over {0, 1}N to our probability space
(that now consists of independently chosen S,R, Y, ZU). By the second property of a milestone
function, we have that for every error vector e,

Pr[A(m,Ssamp, Sπ, e, Y) = 1] ≥ 1− ν/10.

As ZU is independent of (Ssamp, Sπ) this holds also for an error vector of the form EC(ZU). Namely,

Pr[A(m,Ssamp, Sπ, EC(ZU), Y) = 1] ≥ 1− ν/10.

This means that:

Pr[A(m,Ssamp, Sπ, EC(ZU), Y) = 1]− Pr[A(m,Ssamp, Sπ, EC(Z), Y) = 1]

> (1− ν/10)− (1− ν/2) ≥ ν/4.

By averaging, there exist fixed values s′samp, s
′
π and y′ such that if we consider the event W ={

Ssamp = s′samp, Sπ = s′π, Y = y′
}

.

Pr[A(m, s′samp, s
′
π, EC(ZU), y′) = 1|W]− Pr[A(m, s′samp, s

′
π, EC(Z), y′) = 1|W] > ν/4.

We have that (Ssamp, Sπ, Y) is independent of ZU and also independent of (SPRG, R). Therefore:

Pr[A(m, s′samp, s
′
π, EC(ZU), y′) = 1]−Pr[A(m, s′samp, s

′
π, EC(Enc(m, s′π, s

′
samp, SPRG, R)), y′) = 1] > ν/4.

This setup (namely, where Ssamp, Sπ are fixed, and SPRG, R = (R1, . . . , Rnctrl
) are uniform) is ex-

actly the probability space considered in the hiding lemma (Lemma 6.7). By the third property of
milestones functions, we have that every xored restriction of the functionD(z) = A(m, s′samp, s

′
π, EC(z), y′)

is in C′. Therefore, the function D that we obtained gives a contradiction to the hiding lemma.

33

6.4 Proof of Lemma 6.5

We will prove the lemma in two steps that correspond to the two steps of the decoding: decoding
control, and decoding data.

Claim 6.10. For every m, s = (ssamp, sπ, sPRG), r, e and y, let c = Enc(m, s, r) and c′ = c ⊕ e.
If Aweakctrl (m, ssamp, sπ, e, y) = 1 then s ∈ Listctrl. Where Listctrl is the list obtained in the decoding
algorithm described in Figure 3.

Proof. Recall that Listctrl = DecLR(ListSC), ListSC = ∪i∈[n]Listi and Listi = DecSC(c′i) (here c′i
is the i’th block of c′). By Definition 6.4, Aweakctrl (x) = 1 iff e is (p + ε, µ10)-good for ssamp. Let ei
denote the error vector restricted to the i’th block. By the properties of EncSC , if the Hamming
weight of ei is less than (p + ε) · b then ci ∈ Listi. We have that e is (p + ε, µ10)-good for ssamp,

and this means that for at least µ
10 · nctrl = ε2·nctrl

40 of the nctrl control blocks i ∈ I = Samp(Ssamp),

ci ∈ ListSC = ∪i∈[n]Listi. Thus, we indeed have that Pri←[nctrl][EncLR(s)i ∈ ListSC] ≥ µ
10 >

ε2

100
for a set ListSC of size n ·LSC . By the list recoverability of EncLR we get that s ∈ Listctrl meaning
that the control information was successfully recovered as desired.

Claim 6.11. For every m, s = (ssamp, sπ, sPRG), r, e and y, let c = Enc(m, s, r) and c′ = c ⊕ e.
If Aweakdata (m, ssamp, sπ, e, y) = 1 and s ∈ Listctrl (meaning that s was recovered correctly by the first
step of decoding) then m ∈ Dec(c′).

Proof. We have that s ∈ Listctrl, meaning that s is one of the candidates considered in the second
step of the decoding. Let y′ be the string obtained from c′ after the decoding uses ssamp to find
the data blocks, sPRG to unmask the data, and sπ to permute it back to it’s original state. The
requirement that Aweakdata (m, ssamp, sπ, e, y) = 1 implies that eπ is (b′, p + α, α)-balanced. Note that
eπ is the error vector used on the balanced code. By the guarantee on Decbalanced this gives that
m ∈ Lists = Decbalanced(y′) , since the correct control is in Listctrl then m ∈ Dec(c′) =

⋃
s∈Listctrl

Lists

as desired.

The lemma follows from the combination of both claims.

6.5 Proof of Lemma 6.6

A good intuition to keep in mind is that we are trying to bound the harm that can be caused by
an additive channel that uses fixed error vector e of Hamming weight at most p.

We start by showing that with high probability, no more than an ε2/4 fraction of the control
blocks, suffer too many errors from the error vector e.

Claim 6.12. For every m, e of Hamming weight at most pn, y, and sπ,

Pr[Astrongctrl (m,Ssamp, sπ, e, y) = 1] ≥ 1− 2−N
0.6
.

Proof. For a given error vector e we define Te =
{
i : The ith block has a weight at most (p+ ε

4) · b
}

.
For every e that has Hamming weight at most pN , it holds that |Te| > ε

4 · n (otherwise we would

34

have more than pN errors). Define fe : [n]→ {0, 1} such that fe(i) = 1 iff i ∈ Te. By the properties
of the sampler Samp,

Pr
(z1,...,znctrl

)←Samp(U`′
ctrl

)
[| 1

nctrl
|{i : zi ∈ Te}| −

|Te|
n
| > ε2

100
] ≤ 2−N

0.6
.

Thus, if we choose Ssamp uniformly and independently we get that with probability 1− 2−N
0.6

, the

number of control blocks that are good (have error less than p + ε
4) is at least (ε4 −

ε2

100)nctrl >
(9

10 · ε
2/4)nctrl = ((1− 1

10) ·µ)nctrl. This means that the error vector e is (p+ ε/4, (1− 1
10) ·µ)-good

with probability 1− 2−N
0.6

and the claim holds.

We now show that the fraction of errors induced by e to the data part cannot be significantly
larger than p.

Claim 6.13. For every m, e of Hamming weight at most pN , y, and sπ,

Pr
ssamp←U`′

ctrl

[weight(e
Samp(ssamp)
data) ≥ Ndata · (p+

α

100
)] ≤ 2−N

0.6

(here, weight is Hamming weight).

Proof. For a given error vector e, we define fe : [n] → [0, 1] such that fe(i) = wi, where wi is the
relative weight of ith block in e. By the definition of the sampler

Pr
(z1,...,znctrl

)←Samp(U`′
ctrl

)
[| 1

nctrl

∑
i∈[nctrl]

f(zi)− p| >
α

100
] ≤ 2−N

0.6
.

Thus with probability 1 − 2−N
0.6

the number of errors induced to the control blocks is at least
Nctrl(p− α

100), which implies that the number of error induced to the data is less than Ndata(p+ α
100),

and the claim follows.

We will now show that permuting the data part e, produces a balanced error vector with high
probability. Let ssamp be a sampler seed that is good with respect to the two previous claims. A

1−2 ·2−N0.6
fraction of sampler seeds, satisfy these properties. By Claim 6.13, we can assume that

the relative Hamming weight of e
ssamp

data is at most p+ α/100. We will denote edata = e
ssamp

data in order
to avoid clutter. The lemma will follow from the following claim.

Claim 6.14. Pr[π(Sπ, edata) is (b′, p+ α/4, α/4)-balanced error] > 1− e−Ω(N0.55).

This is because, together the three claims above give that with probability 1− 2−N
0.51

all good
events happen, and Astrong(x, y) = 1. In the remainder of this section we prove Claim 6.14.

Let N ′ = Ndata/b
′ be the number of b′ length blocks. We now define random variables

D1, . . . , DN ′ as follows.

Di =

{
1 The i’th block of π(Sπ, edata) has weight more than (p+ α

4) · b′
0 otherwise

Claim 6.14 can now be seen as a claim that the sum of the Di’s is small with high probability.
We will use a Chernoff style bound, due to Schmidt, Siegel and Srinivasan [SSS95] in order to
bound the probability of deviation.

35

Lemma 6.15. [SSS95] Suppose X1, ..., X` are binary random variables, such that for every set of
distinct k indices i1, · · · , ik ∈ [`], Pr[Xi1 = . . . = Xik = 1] ≤ µk. If 0 < δ ≤ 1 and k ≤ δ·µ·`

2 then

Pr[
∑̀
j=1

Xj ≥ (1 + δ)µ · `] ≤ e−Ω(δk)

We plan to use Lemma 6.15 on the random variables D1, . . . , DN ′ for this purpose, we need to
analyze the probability that tuples of Di’s all evaluate to one. In order to achieve this, we will first
show that:

Claim 6.16. For every v < N0.55 and every distinct i1, . . . , iv ∈ [N ′], and additional i ∈ [N ′]

Pr[Di = 1|Di1 = . . . = Div = 1] ≤ α/10

We observe that Claim 6.16 implies Claim 6.14 by Lemma 6.15. This is because Claim 6.16
implies that for v = N0.55, and every distinct i1, . . . , iv ∈ [N ′],

Pr[Di1 = . . . = Div = 1] ≤ (α/10)v.

We can now use Lemma 6.15 with k = N0.55, δ = 1 and µ = α/10 to get that:

Pr[
N ′∑
j=1

Dj ≥
α ·N ′

5
] ≤ e−Ω(N0.55)

In order to prove Claim 6.16 we prove the following claim, for which we introduce the following
notation: We use esπ to denote πsπ(edata). We use esπ [i] to denote the i’th block of esπ (where
blocks are of length b′). We use esπ [i, j] to denote the j’th bit in the i’th block of esπ .

Claim 6.17. Let v < N0.55, let i1, . . . , iv ∈ [N ′] be distinct blocks, let i ∈ [N ′] be an additional
block, and let j1, . . . , jk ∈ [b′]. Let a1, . . . , av ∈ {0, 1}b

′
be strings such that the relative Hamming

weight of each ai is at least p+ α/100. Let E = ∩m∈[v]

{
eSπ [im] = am

}
. It follows that:

Pr[∩`∈[k]

{
eSπ [i, j`] = 1

}
|E] ≤ (p+ α/50)k

Proof.

Pr[∩`∈[k]

{
eSπ [i, j`] = 1

}
|E] =

Pr[∩`∈[k]

{
eSπ [i, j`] = 1

}
∩ E]

Pr[E]

Let us first imagine that π is an (0, t)-wise independent permutation. In this case, the denominator
is some quantity β ≥ 1/Nv

data ≥ 1/NN0.55 ≥ 1/2N
0.56

and the enumerator is at most β ·(p+α/100)k.
This is because conditioned on the v values, the fraction of ones that is “still available” in edata has
not increased, and is still at most p+ α/100. It follows that the actual quantity is at most

β · (p+ α/100)k + 2−N
0.6

β − 2−N0.6 =
(p+ α/100)k + 2−N

0.6
/β

1− 2−N0.6/β
≤ (p+ α/50)k

where the last inequality follows for sufficiently large N because p, α and k ≤ b′ are constants, and
for every two constants A < A′, A+o(1)

1−o(1) ≤ A
′.

36

We now show that Claim 6.16 follows directly from Claim 6.17, using Lemma 6.15.

Proof. (of Claim 6.16) We use Lemma 6.15 on the random variables Y1, . . . , Yb′ defined by:

Yw =

{
1 eSπ [i, w] = 1
0 otherwise

By Claim 6.17 we have that for every 0 ≤ v < N5.5, and for every k-tuple of indices j1, . . . , jk ∈
[b′] in the i’th block,

Pr[Yj1 = . . . = Yjk = 1|Di1 = . . . = Div = 1] ≤ (p+ α/50)k.

Applying Lemma 6.15, with δ = α/10, k = α2·b′/2, µ = p+α/50, and noting that (1+δ)·µ ≤ p+α/4
we have that:

Pr[
b′∑
j=1

Yj ≥ (p+ α/4) · b′|Di1 = . . . = Div = 1] ≤ e−Ω(α3·b′) ≤ α/10,

where the last inequality follows as we are allowed to choose b′ to be a sufficiently large constant
as a function of α, and the claim follows.

7 Conclusion and open problem

Encoding and decoding that run in a fixed polynomial time. The milestone proof ap-
proach is an abstraction that enables us to deal with a variety of channel families. However,
as stated before, this framework demands that the encoding and decoding be computationally
“stronger” than the channel, this drawback is inherent in the construction and proof. It remains
unclear wither it is possible to achieve explicit optimal binary stochastic codes when the channel
is not computationally inferior to the encoding and decoding functions.

This gives motivation to re-examine our problem under different settings and assumptions. A
natural example is the cryptographic setup, which gives the following problem: Get an explicit
stochastic codes with optimal rate, such that the encoding and decoding run in a fixed polynomial
(say n3) against any polynomial size channel, under cryptographic assumption.

Uniquely decodable codes beyond the GV bound. The following open problem was stated
by Guruswami and Smith, and remains relevant in our modified and improved construction. The
codes we design for time bounded channels are list decodable, but not necessarily uniquely decod-
able. This is inherent to the current analysis, since even a very simple adversary may inject valid
control blocks into the codeword, potentially causing the decoder to come up with several seemingly
valid control strings.

For p ≥ 1/4, the limitation is inherent to any construction, as [GS16] showed an attack that
can be carried out by a very simple attacker that yields the lower bound. However, for p < 1/4,
it may still be possible to design codes that lead the decoder to a unique, correct codeword with
high probability.

37

Codes for (larger) space bounded online channels. Our result resolves the open problem
posed by Guruswami and Smith, as we construct unconditional explicit stochastic codes for space
O(log n) online channels. An intriguing open problem, is to extend our codes to handle space larger
than O(log n), for example O(

√
n). This is not possible in our current construction, that “modifies”

a PRG for space into an inner code with pseudorandom properties, since the decoding procedure
performs a brute force search over all seeds of the PRG, we are naturally bounded by a logarithmic
seed length (and known PRGs for space s computation require seed ≥ s).

Acknowledgement

We are grateful to Swastik Kopparty for pointing us to the Algebraic Geometric codes of Garcia
and Stichtenoth, and in particular for pointing us to their description in [Shp09]. We thank Noga
Ron-Zewi for help with list-recoverable codes.

Ronen Shaltiel was supported by ERC starting grant 279559, ISF grant 864/11, ISF grant
1628/17, and BSF grant 2010120. Jad Silbak was supported by ERC starting grant 279559 and
ISF grant 1628/17.

References

[Ajt83] Miklós Ajtai. Σ1
1-formulae on finite structures. Ann. Pure Appl. Logic, 24(1):1–48,

1983.

[Bra10] M. Braverman. Polylogarithmic independence fools ac0 circuits. J. ACM, 57(5), 2010.

[DL12] Zeev Dvir and Shachar Lovett. Subspace evasive sets. In Proceedings of the Forty-
fourth Annual ACM Symposium on Theory of Computing, STOC ’12, pages 351–358,
New York, NY, USA, 2012. ACM.

[Gol97] Oded Goldreich. A sample of samplers - a computational perspective on sampling
(survey). Electronic Colloquium on Computational Complexity (ECCC), 4(20), 1997.

[GS96] A. Garcia and H. Stichtenoth. On the asymptotic behavior of some towers of function
fields over finite fields. Journal of Number Theory, 61(2):248–273, 1996.

[GS99] V. Guruswami and M. Sudan. Improved decoding of reed-solomon and algebraic-
geometry codes. IEEE Transactions on Information Theory, 45(6):1757–1767, 1999.

[GS16] Venkatesan Guruswami and Adam Smith. Optimal rate code constructions for compu-
tationally simple channels. Journal of the ACM (JACM), 63(4):35, 2016.

[GW13] Venkatesan Guruswami and Carol Wang. Linear-algebraic list decoding for variants
of reed–solomon codes. IEEE Transactions on Information Theory, 59(6):3257–3268,
2013.

[HW15] Brett Hemenway and Mary Wootters. Linear-time list recovery of high-rate expander
codes. In International Colloquium on Automata, Languages, and Programming, pages
701–712. Springer, 2015.

38

[INW94] R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for network algo-
rithms. In Proceedings of the ACM Symposium on Theory of Computing, pages 356–364,
1994.

[IW97] R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: De-
randomizing the XOR lemma. In STOC, pages 220–229, 1997.

[KNR09] E. Kaplan, M. Naor, and O. Reingold. Derandomized constructions of k-wise (almost)
independent permutations. Algorithmica, 55(1):113–133, 2009.

[Lan04] Michael Langberg. Private codes or succinct random codes that are (almost) perfect.
In 45th Symposium on Foundations of Computer Science (FOCS 2004), pages 325–334,
2004.

[Lip94] Richard J. Lipton. A new approach to information theory. In 11th Annual Symposium
on Theoretical Aspects of Computer Science, pages 699–708, 1994.

[MPSW10] Silvio Micali, Chris Peikert, Madhu Sudan, and David A. Wilson. Optimal error
correction for computationally bounded noise. IEEE Trans. Information Theory,
56(11):5673–5680, 2010.

[Nis91] N. Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–70,
1991.

[Nis92] N. Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness. JCSS: Journal of Computer
and System Sciences, 49, 1994.

[NZ96] N. Nisan and D. Zuckerman. Randomness is linear in space. J. Comput. Syst. Sci.,
52(1):43–52, 1996.

[Shp09] Amir Shpilka. Constructions of low-degree and error-correcting epsilon-biased genera-
tors. Computational Complexity, 18(4):495–525, 2009.

[Smi07] Adam D. Smith. Scrambling adversarial errors using few random bits, optimal informa-
tion reconciliation, and better private codes. In Proceedings of the Eighteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 395–404, 2007.

[SSS95] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-hoeffding bounds
for applications with limited independence. SIAM J. Discrete Math., 8(2):223–250,
1995.

[Sud97] M. Sudan. Decoding of Reed Solomon codes beyond the error-correction bound. Journal
of Complexity, 13, 1997.

[Tal14] Avishay Tal. Tight bounds on the fourier spectrum of ac0. Electronic Colloquium on
Computational Complexity (ECCC), 21:174, 2014.

39

[TX13] Luca Trevisan and Tongke Xue. A derandomized switching lemma and an improved
derandomization of AC0. In Proceedings of the 28th Conference on Computational
Complexity, CCC, pages 242–247, 2013.

[Vad04] Salil P. Vadhan. Constructing locally computable extractors and cryptosystems in the
bounded-storage model. J. Cryptology, 17(1):43–77, 2004.

A Proof of Theorem 3.10

In this section we prove Theorem 3.10. The high level idea is that concatenated codes easily give
codes for balanced errors. A similar argument also appears in [Smi07], for the case of codes against
errors that are “t-wise independent”.

Codes with the property required in Theorem 3.10 can be constructed by concatenating:

• An explicit outer code Cout : {0, 1}k → ({0, 1}nin)nout that is (1 − γ, Lin, L)-list recoverable
from a collection, that has rate at least 1− ε/2, and in which nin, Lin, L are constants.

• An inner code Cin : {0, 1}nin → {0, 1}b that is Lin-list-decodable from p · b errors and has rate
at least 1−H(p)− ε/2.

Note that this indeed gives a code with the desired properties: The inner code can be list-decodable
in constant time by brute force. Furthermore, for balanced error, list-decoding succeeds on 1 − γ
of the nout blocks, thus the list-recovering algorithm of the outer code will output a list containing
the original message.

For every constant ε > 0 and every sufficiently large constant b, we can choose constants nin and
Lin = poly(1/ε) such that, inner codes with the required property exist by a standard probabilistic
argument, and since Cin is of constant size, we can find such codes by brute force search.
Outer list recoverable code with the required properties can be constructed by concatenating:

• An explicit code C1 : {0, 1}k → ({0, 1}k2)n1 that is (1−√γ, L1, L2 = L)-list recoverable from
a collection, and has rate at least 1− ε/4. We need L to be a constant, and k2 = c log n1 for
a constant c determent as function of ε and L1.

• An inner code C2 : {0, 1}k2 → ({0, 1}nin)n2 that is (1 − √γ, Lin, L1)-list recoverable from a
collection, and has rate at least 1− ε/4, and in which nin, Lin, L1 are constants.

This gives nout = n1 · n2, and the correctness follows as concatenation of list-recoverable codes
gives a list recoverable codes. Specifically, given a collection of nout = n1 · n2 sets (indexed by
(i1, i2) ∈ [n1] × [n2]), T(i1,i2) ⊆ {0, 1}in of size Lin, we need to list recover a list of size at most L,

containing all m ∈ {0, 1}k such that

Pr
(i1,i2)←[n1]×[n2]

[EncCout(m)(i1,i2) ∈ T] ≥ 1− γ.

By averaging, for every such m, we have that for a 1−√γ fraction of i1 ∈ [n1],

Pr
i2←[n2]

[EncC2(EncC1(m)i1) ∈ T] ≥ 1−√γ.

and so performing two steps of list-recovering indeed recovers the original message.

40

The outer code C1 can be taken to be a folded Reed-Solomon code with evaluation points restricted
to an explicit subspace evasive set, the reader is referred to [GW13] for the polytime encoding and
decoding algorithm used for folded Reed-Solomon codes, and [DL12] for an explicit construction
of subspace evasive sets (see for example Figure 1 in [HW15]). The suggested code achieves the
desirable parameters if ε ≥ O(

√
γ) and L is a sufficiently large constant determined as a function

of ε and L1.
We now turn our attention to the inner code C2. We will use the probabilistic method to

show the existence of a good code, and such code can be later found by exhaustive search using
(L1 + 1)-wise independence, as we did in Theorem 4.3.

Claim A.1. For every sufficiently small constants ε > 0 and γ > 0 such that ε > 16
√
γ, and

every constant Lin, there exist constants L1 = Lin · poly(1/ε) and nin ≥ 2 logLin√
γ , such that for

every sufficiently large k2, there is a code C2 : {0, 1}k2 → ({0, 1}nin)n2 that is (1−√γ, Lin, L1)-list
recoverable from a collection and has rate 1− ε/4.

Proof. We consider a uniformly chosen C2. For every subset S ⊆ {0, 1}k2 of size L1 + 1, and every
collection T of sets T1, . . . , Tn2 ⊆ {0, 1}nin of size Lin let BS,T be the event that for every x ∈ S,
for a 1−√γ fraction of i ∈ [n2], EncC2(x)i ∈ Ti. Our goal is to do a union bound over all of these
events. To avoid clutter, denote α = 1−√γ, for a fixed S and a collection T we have that:

Pr
[
BS,T

]
≤
((

n2

αn2

)(
Lin
2nin

)αn2
)L1+1

≤ 2H(α)n2·(L1+1) · 2log(Lin)(L1+1)α·n2 · 2−nin(L1+1)α·n2

The number of choices for S, T is bounded by:(
2k2

L1 + 1

)
·
(

2nin

Lin

)n2

≤ 2(L1+1)·k2 · 2nin·n2·Lin .

Thus, we can do a union bound if:

k2 +
n2 · nin · Lin
L1 + 1

+H(α)n2 + log(Lin)α · n2 − α · n2 · nin < 0.

Since ε > 16
√
γ we are allowed to choose k2 = (1− ε/4) · n2 · nin ≤ (1 − 4

√
γ) · n2 · nin and recall

that α = 1−√γ, thus

k2 − α · n2 · nin ≤ −3
√
γ · n2 · nin

Finally it remains to show that:

n2 · nin · Lin
L1 + 1

+ n2 + log(Lin) · n2 − 3
√
γ · n2 · nin < 0.

For this to hold we choose nin >
2 log(Lin)√

γ and L1 + 1 ≥ Lin√
γ .

The inner code C2 is over an alphabet of logarithmic size, and can be found (and decoded) by
brute force search using (L1 + 1)-wise independence as explained before.

41

