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Abstract. Let C be a class of probability distributions over a finite set
Ω. A function D : Ω 7→ {0, 1}m is a disperser for C with entropy thresh-
old k and error ε if for any distribution X in C such that X gives positive
probability to at least 2k elements we have that the distribution D(X)
gives positive probability to at least (1−ε)2m elements. A long line of re-
search is devoted to giving explicit (that is polynomial time computable)
dispersers (and related objects called “extractors”) for various classes of
distributions while trying to maximize m as a function of k.
In this paper we are interested in explicitly constructing zero-error dis-
persers (that is dispersers with error ε = 0). For several interesting classes
of distributions there are explicit constructions in the literature of zero-
error dispersers with “small” output length m and we give improved
constructions that achieve “large” output length, namely m = Ω(k).
We achieve this by developing a general technique to improve the output
length of zero-error dispersers (namely, to transform a disperser with
short output length into one with large output length). This strategy
works for several classes of sources and is inspired by a transformation
that improves the output length of extractors (which was given in [29]
building on earlier work by [15]). Nevertheless, we stress that our tech-
niques are different than those of [29] and in particular give non-trivial
results in the errorless case.
Using our approach we construct improved zero-error dispersers for the
class of 2-sources. More precisely, we show that for any constant δ > 0
there is a constant η > 0 such that for sufficiently large n there is a poly-
time computable function D : {0, 1}n × {0, 1}n 7→ {0, 1}ηn such that for
any two independent distributions X1, X2 over {0, 1}n such that both of
them support at least 2δn elements we get that the output distribution
D(X1, X2) has full support. This improves the output length of previ-
ous constructions by [2] and has applications in Ramsey Theory and in
constructing certain data structures [13].
We also use our techniques to give explicit constructions of zero-error
dispersers for bit-fixing sources and affine sources over polynomially large
fields. These constructions improve the best known explicit constructions
due to [26, 14] and achieve m = Ω(k) for bit-fixing sources and m =
k − o(k) for affine sources.
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1 Introduction

1.1 Background

Randomness extractors and dispersers are functions that refine the randomness
in “weak sources of randomness” that “contain sufficient entropy”. Various vari-
ants of extractors and dispersers are closely related to expander graphs, error
correcting codes and objects from Ramsey theory. A long line of research is
concerned with explicit constructions of these objects and these constructions
have many applications in many areas of computer science and mathematics
(e.g. network design, cryptography, pseudorandomness, coding theory, hardness
of approximation, algorithm design and Ramsey theory).

Randomness extractors and dispersers We start with formal definitions
of extractors and dispersers. (We remark that in this paper we consider the
“seedless version” of extractors and dispersers).

Definition 1 (min-entropy and statistical distance) Let Ω be a finite set.
The min-entropy of a distribution X on Ω is defined by H∞ (X) = minx∈Ω log2

1
Pr[X=x] .

For a class C of distributions on Ω we use Ck to denote the class of all distrib-
utions X ∈ C such that H∞ (X) ≥ k. We say that two distributions X,Y on Ω
are ε-close if 1
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∑
w∈Ω |Pr[X = w]− Pr[Y = w]| ≤ ε.

When given a class C of distributions (which we call “sources”) the goal is to
design one function that refines the randomness of any distribution X in C. An
extractor produces a distribution that is (close to) uniform whereas a disperser
produces a distribution with (almost) full support. A precise definition follows:

Definition 2 (Extractors and Dispersers) Let C be a class of distributions
on a finite set Ω.

– A function E : Ω 7→ {0, 1}m is an extractor for C with entropy threshold
k and error ε > 0 if for every X ∈ Ck, E(X) is ε-close to the uniform
distribution on {0, 1}m.

– A function D : Ω 7→ {0, 1}m is a disperser for C with entropy threshold
k and error ε > 0 if for every X ∈ Ck, |Supp(D(X))| ≥ (1 − ε)2m (where
Supp(Z) denotes the support of the random variable Z).

We remark that every extractor is in particular a disperser and that the
notion of dispersers only depends on the support of the distributions in C. A
long line of research is concerned with designing extractors and dispersers for
various classes of sources. For a given class C we are interested in designing
extractors and dispersers with as small as possible entropy threshold k, as large
as possible output length m and as small as possible error ε. (We remark that
it easily follows that m ≤ k whenever ε < 1/2).

It is often the case that the probabilistic method gives that a randomly
chosen function E is an excellent extractor. (This is in particular true whenever



the class C contains “not too many” sources). However, most applications of
extractors and dispersers require explicit constructions, namely functions that
can be computed in time polynomial in their input length. Much of the work
done in this area can be described as an attempt of matching the parameters
obtained by existential results using explicit constructions.

Some related work

Classes of sources. Various classes C of distributions were studied in the liter-
ature: The first construction of deterministic extractors can be traced back to
von Neumann [33] who showed how to use many independent tosses of a bi-
assed coin (with unknown bias) to obtain an unbiased coin. Blum [5] considered
sources that are generated by a finite Markov-chain. Santha and Vazirani [28],
Vazirani [28, 32], Chor and Goldreich [8], Dodis et al. [11], Barak, Impagliazzo
and Wigderson [1], Barak et al. [2], Raz [27], Rao [25], Bourgain [6], Barak et al.
[3], and Shaltiel [29] studied sources that are composed of several independent
samples from “high entropy” distributions. Chor et al. [9], Ben-Or and Linial [4],
Cohen and Wigderson [10], Mossel and Umans [22], Kamp and Zuckerman [20],
Gabizon, Raz and Shaltiel [15], and Rao [26] studied bit-fixing sources which
are sources in which a subset of the bits are uniformly distributed. Trevisan
and Vadhan [31] and Kamp et al. [19] studied sources which are “samplable”
by “efficient” procedures. Barak et al. [2], Bourgain [7], Gabizon and Raz [14],
and Rao [26] studied sources which are uniform over an affine subspace. Dvir,
Gabizon and Wigderson [12] studied a generalization of affine sources to sources
which are sampled by low degree multivariate polynomials.

Seeded extractors and dispersers. A different variant of extractors and dispersers
are seeded extractors and dispersers (defined by Nisan and Zuckerman [23]). Here
the class C is the class of all distributions on Ω = {0, 1}n. It is easy to verify that
there do not exist extractors or dispersers for C (even when k = n − 1, m = 1
and ε < 1/2). However, if one allows the extractor (or disperser) to receive an
additional independent uniformly distributed input (which is called “a seed”)
then extraction is possible as long as the seed is of length Θ(log(n/ε)). More
precisely, a seeded extractor (or disperser) with entropy threshold k and error ε
is a function F : {0, 1}n×{0, 1}t 7→ {0, 1}m such that for any distribution X on
{0, 1}n with H∞ (X) ≥ k the distribution F (X, Y ) (where Y is an independent
uniformly distributed variable) satisfies the guarantees of Definition 2. A long
line of research is concerned with explicit constructions of seeded extractors and
dispersers (the reader is referred to [30] for a survey article and to [21, 18] for
the current milestones in explicit constructions of extractors).

Zero-error dispersers In this paper we are interested in zero-error dispersers.
These are dispersers where the output distribution has full support. That is for
every source X in the class C:

{D(x) : x ∈ Supp(X)} = {0, 1}m



We also consider a stronger variant which we call strongly-hitting disperser in
which every output element z ∈ {0, 1}m is obtained with “not too small” prob-
ability. A precise definition follows:

Definition 3 (Zero-error dispersers and strongly hitting dispersers) Let
C be a class of distributions on a finite set Ω.

– A function D is a zero-error disperser for C with entropy threshold k if it
is a disperser for C with entropy threshold k and error ε = 0.

– A function D : Ω 7→ {0, 1}m is a µ-strongly hitting disperser for C with en-
tropy threshold k if for every X ∈ Ck and for every z ∈ {0, 1}m, Pr[D(X) =
z] ≥ µ.

Note that a µ-strongly hitting disperser with µ > 0 is in particular a zero-
error disperser and that any µ-strongly hitting disperser has µ ≤ 2−m. The
following facts immediately follow:

Fact 1 Let f : Ω 7→ {0, 1}m be a function and let ε ≤ 2−(m+1).

– If f is a disperser with error ε then f is a zero-error disperser (for the same
class C and entropy threshold k).

– If f is an extractor with error ε then f is a 2−(m+1)-strongly hitting disperser
(for the same class C and entropy threshold k).

It follows that extractors and dispersers with small ε immediately trans-
late into zero-error dispersers (as one can truncate the output length to m′ =
log(1/ε) − 1 bits and such a truncation preserves the output guarantees of ex-
tractors and dispersers).

1.2 Increasing the output length of zero-error dispersers

For several interesting classes of sources there are explicit constructions of dis-
persers with “large” error (which by Fact 1 give zero-error dispersers with “short”
output length). In this paper we develop techniques to construct zero-error dis-
persers with large output length.

The composition approach The following methodology for increasing the
output length of extractors was suggested in [15, 29]: When given an extractor
E′ with “small” output length t (for some class C) consider the function E(x) =
F (x,E′(x)) where F is a seeded extractor. Shaltiel [29] (building on earlier work
by Gabizon et al. [15]) shows that if E′ and F fulfill certain requirements then this
construction yields an extractor for C with large output length. The high level
idea is that if certain conditions are fulfilled then the distribution F (X,E(X))
(in which the two inputs of F are dependent) is close to the distribution F (X,Y )
(where Y is an independent uniformly distributed variable) and note that the
latter distribution is close to uniform by the definition of seeded extractors. This
technique proved useful for several interesting classes of sources.



We would like to apply an analogous idea to obtain zero-error dispersers.
However, by the lower bounds of [23, 24] if F is a seeded extractor (or seeded
disperser) then its seed length is at least log(1/ε). This means that if we want
F (X, Y ) to output m bits with error ε < 1/2m we need seed length larger than
m. This in turn means that we want E′ to have output length t > m which
makes the transformation useless.

There are also additional problems. The argument in [29] requires the “orig-
inal function” E′ to be an extractor (and it does not go through if E′ is a
disperser) and furthermore the error of the “target function” E is at least as
large as that of the “original function” E′ (and once again we don’t gain when
shooting for zero-error dispersers).

Summing up we note that if we want to improve the output length of a zero-
error disperser D′ by a composition of the form D(x) = F (x, D′(x)) we need to
use a function F with different properties (a seeded extractor or disperser will
not do) and we need to use a different kind of analysis.

Composing zero-error dispersers In this paper we imitate the method of [29]
and give a general method to increase the output length of zero-error dispersers.
That is when given:

– A zero-error disperser D′ : Ω 7→ {0, 1}t for a class C and “small” output
length t.

– A function F : Ω × {0, 1}t 7→ {0, 1}m for “large” output length m.

We identify properties of F that are sufficient so that the construction

D(x) = F (x,D′(x))

gives a zero-error disperser. (The argument is more general and transforms
2−(t+O(1))-strongly hitting dispersers into 2−(m+O(1))-strongly hitting dispersers).
We then use this technique to give new constructions of zero-error dispersers and
strongly-hitting dispersers.

Subsource hitters As explained earlier we cannot choose F to be a seeded
extractor. Instead, we introduce a new object which we call a subsource hitter.
The definition of subsource hitters is somewhat technical and is tailored so that
the construction D(x) = F (x,D′(x)) indeed produces a disperser.

Definition 4 (subsource hitter) A distribution X ′ on Ω is a subsource of a
distribution X on Ω if there exist α > 0 and a distribution X ′′ on Ω such that
X can be expressed as a convex combination X = αX ′ + (1− α)X ′′.

Let C be a class of distributions on Ω. A function F : Ω × {0, 1}t 7→ {0, 1}m

is a subsource-hitter for C with entropy threshold k and subsource entropy k−v
if for any X ∈ Ck and z ∈ {0, 1}m there exists a y ∈ {0, 1}t and a distribution
X ′ ∈ Ck−v that is a subsource of X such that for every x ∈ Supp(X ′) we have
that F (x, y) = z.



A subsource hitter has the property that for any z ∈ {0, 1}m there exist
y ∈ {0, 1}t and x ∈ Supp(X) such that F (x, y) = z and in particular

{F (x, y) : x ∈ Supp(X), y ∈ {0, 1}t} = {0, 1}m

In addition a subsource hitter has the stronger property that there exists a
subsource X ′ of X (which is itself a source in C) such that for any z ∈ {0, 1}m

there exists y ∈ {0, 1}t such that for any x ∈ Supp(X ′) ⊆ Supp(X), F (x, y) = z.
This property allows us to show that D(x) = F (x,D′(x)) is a zero-error

disperser with entropy threshold k whenever D′ is a zero-error disperser with
entropy threshold k − v. This is because when given a source X ∈ Ck and
z ∈ {0, 1}m we can consider the seed y ∈ {0, 1}t and subsource X ′ guaranteed in
the definition. We have that D′ is a zero-error disperser and that X ′ meets the
entropy threshold of D′. It follows that there exist x ∈ Supp(X ′) ⊆ Supp(X)
such that D′(x) = y. It follows that:

D(x) = F (x,D′(x)) = F (x, y) = z

and this means that D indeed outputs z. (We remark that a more complicated
version of this argument shows that the composition applies to strongly-hitting
dispersers). The exact details are given in the full version. It is interesting to note
that this argument is significantly simpler than that of [29]. Indeed, the definition
of subsource hitters is specifically tailored to make the composition argument
go through and the more complicated task is to design subsource hitters. This
is in contrast to [29] in which the function F is in most cases an “off the shelf”
seeded extractor and the difficulty is to show that the composition succeeds.

1.3 Applications

We use the new composition technique to construct zero-error dispersers with
large output length for various classes of sources. We discuss these constructions
and some applications below.

Zero-error 2-source dispersers The class of 2-sources is the class of distrib-
utions X = (X1, X2) on Ω = {0, 1}n×{0, 1}n such that X1, X2 are independent.
It is common to consider the case where each of the two distributions X1, X2

has min-entropy at least some threshold k.

Definition 5 (2-source extractors and dispersers) A function f : {0, 1}n×
{0, 1}n 7→ {0, 1}m is a 2-source extractor (resp. disperser) with entropy thresh-
old 2 · k and error ε ≥ 0 if for every two independent distributions X1, X2 on
{0, 1}n both having min-entropy at least k, f(X1, X2) is ε-close to the uniform
distribution on {0, 1}m (resp. |Supp(f(X1, X2))| ≥ (1− ε)2m). We say that f is
a zero-error disperser if it is a disperser with error ε = 0. We say that f is a
µ-strongly hitting disperser if for every X1, X2 as above and every z ∈ {0, 1}m,
Pr[f(X1, X2) = z] ≥ µ.



Background. The probabilistic method gives 2-source extractors with m = 2 ·
k−O(log(1/ε)) for any k ≥ Ω(log n). However, until 2005 the best explicit con-
structions [8, 32] only achieved k > n/2. The current best extractor construction
[6] achieves entropy threshold k = (1/2 − α)n for some constant α > 0. Im-
proved constructions of dispersers for entropy threshold k = δn (for an arbitrary
constant δ > 0) were given in [2]. These dispersers can output any constant
number of bits with zero-error (and are µ-strongly hitting for some constant
µ > 0).3 Subsequent work by [3] achieved entropy threshold to k = no(1) and
gives zero-error dispersers that output one bit.

Our results. We use our composition techniques to improve the output length
in the construction of [2]. We show that:

Theorem 2 (2-source zero-error disperser) For every δ > 0 there exists
a ν > 0 and η > 0 such that for sufficiently large n there is a poly(n)-time
computable (ν2−m)-strongly hitting 2-source disperser D : ({0, 1}n)2 7→ {0, 1}m

with entropy threshold 2 · δn and m = ηn.

Note that our construction achieves an output length that is optimal up to
constant factors for this entropy threshold. For lower entropy threshold our tech-
niques gives that any explicit construction of a zero-error 2-source disperser D′

with entropy threshold k and output length t = Ω(log n) can be transformed
into an explicit construction of a zero-error 2-source disperser D with entropy
threshold 2 · k and output length m = Ω(k). (See the full version for a precise
formulation that also considers strongly hitting dispersers). This cannot be ap-
plied on the construction of [3] that achieves entropy threshold k = no(1) as this
construction only outputs one bit. Nevertheless, this means that it suffices to
extend the construction of [3] so that it outputs Θ(log n) bits in order to obtain
an output length of m = Ω(k) for low entropy threshold k.

We prove Theorem 2 by designing a subsource hitter for 2-sources and using
our composition technique. The details are given in the full version and a high
level outline appears next.

Outline of the argument. We want to design a function F : {0, 1}n × {0, 1}n ×
{0, 1}t 7→ {0, 1}m such that for any 2-source X = (X1, X2) with sufficient min-
entropy and for any z ∈ {0, 1}m there exists a “seed” y ∈ {0, 1}t and a subsource
X ′ of X such that X ′ = (X ′

1, X
′
2) is a 2-source with roughly the same min-

entropy as X and Pr[F (X ′
1, X

′
2, y) = z] = 1. We will be shooting for m = Ω(n)

and t = O(log n).
We construct the seed obtainer F using ideas from [2, 3]. Let E be a seeded

extractor with seed length t = O(log n), output length v = Ω(k) and error

3 In [25] it is pointed out that by enhancing the technique of [2] using ideas from
[3] and replacing some of the components used in the construction with improved
components that are constructed in [25] it is possible to increase the output length
and achieve a zero-error disperser with output length m = kΩ(1) for the same entropy
threshold k.



εE = 1/100 (such extractors were constructed in [21, 18]). When given inputs
x1, x2, y we consider r1 = E(x1, y) and r2 = E(x2, y). By using a stronger variant
of seeded extractors called “strong extractors” it follows that there exists a “good
seed” y ∈ {0, 1}t such that R1 = E(X1, y) and R2 = E(X2, y) are εE-close to
uniform. We then use a 2-source extractor H : {0, 1}v × {0, 1}v 7→ {0, 1}m for
very high entropy threshold (say entropy threshold 2 · 0.9v) and very low error
(say error 2−(m+1) for output length m = Ω(v) = Ω(k)). Such extractors were
constructed in [32]. Our final output is given by:

F (x1, x2, y) = H(E(x1, y), E(x2, y))

This seems strange at first sight as it is not clear why running H on inputs
R1, R2 that are already close to uniform helps. Furthermore, the straightforward
analysis only gives that H(R1, R2) is ε-close to uniform for large error ε ≥ εE =
1/100 and this means that the output of F may miss a large fraction of strings
in {0, 1}m.

The point to notice is that both R1, R2 are close to uniform and therefore
have large support (1− εE)2v ≥ 20.9v. Using Fact 1 we can think of H as a zero-
error disperser. Recall that for dispersers are oblivious to the precise probability
distribution of R1, R2 and it is sufficient that R1, R2 have large support. It follows
that indeed every string z ∈ {0, 1}m is hit by H(R1, R2).

This does not suffice for our purposes as we need that any string z is hit with
probability one on a subsource X ′ = (X ′

1, X
′
2) of X in which the two distributions

X ′
1 and X ′

2 are independent. For any output string z ∈ {0, 1}m we consider a pair
of values (r1, r2) for R1, R2 on which H(r1, r2) = z (we have just seen that such
a pair exists) and set X ′

1 = (X1|E(X1, y) = r1) and X ′
2 = (X2|E(X2, y) = r2).

Note that these two distributions are indeed independent (as each depends only
on one of the original distributions X1, X2) and that on every x′1 ∈ Supp(X ′

1)
and x′2 ∈ Supp(X ′

2) we have that:

F (x′1, x
′
2, y) = H(E(x′1, y), E(x′2, y)) = H(r1, r2) = z

Furthermore, for a typical choice of (r1, r2) we can show that both X ′
1, X

′
2 have

min-entropy roughly k − v. Thus, setting v appropriately, X ′ is a subsource of
X with the required properties. (A more careful version of this argument can be
used to preserve the “strongly hitting” property).

Interpretation in Ramsey Theory A famous theorem in Ramsey Theory
(see [17]) states that for sufficiently large N and any 2-coloring of the edges of
the complete graph on N vertices there is an induced subgraph on K = Θ(log N)
vertices which is “monochromatic” (that is all edges are of the same color).

Zero-error 2-source dispersers (with output length m = 1) can be seen as pro-
viding counterexamples to this statement for larger values of K in the following
way: When given a zero-error 2-source disperser D : {0, 1}n×{0, 1}n 7→ {0, 1}m

with entropy threshold 2 · k we can consider coloring the edges of the full graph
on N = 2n vertices with 2m colors by coloring an edge (v1, v2) by D(v1, v2). (A



technicality is that D(v1, v2) may be different than D(v2, v1) and to avoid this
problem the coloring is defined by ordering the vertices according to some order
and coloring the edge (v1, v2) where v1 ≤ v2 by D(v1, v2)). The disperser guar-
antee can be used to show that any induced subgraph with K = 2k+1 vertices
contains edges of all 2m colors.4

Note that dispersers with m > 1 translate into colorings with more colors and
that in this context of Ramsey Theory the notion of a zero-error disperser seems
more natural than one that allows error. Our constructions achieve m = Ω(k)
and thus the number of colors in the coloring approaches the size of the induced
subgraph.

Generalizing this relation between dispersers and Ramsey theory we can view
any zero-error disperser for a class C as a coloring of all x ∈ Ω such that any set
S that is obtained as the support of a distribution in C is colored by all possible
2m colors.

Rainbows and implicit O(1)-probe search As we now explain, explicit
constructions of zero-error 2-source dispersers can be used to construct certain
data structures (this connection is due to [13]).

Consider the following problem: We are given a set S ⊆ {0, 1}n of size 2k.
We want to store the elements of S in a table T of the same size where every
entry in the table contains a single element of S (and so the only freedom is in
ordering the elements of S in the table T ). We say that T supports q-queries if
given x ∈ {0, 1}n we can determine whether x ∈ S using q queries to T (note for
example that ordered tables and binary search support q = k queries). Yao [34]
and Fiat and Naor [13] showed that it is impossible to achieve q = O(1) when
n is large enough relative to k. (This result can be seen as a kind of Ramsey
Theorem).

Fiat and Naor [13] gave explicit constructions of tables that support q = O(1)
queries when k = δ · n for any constant δ > 0. This was achieved by reducing
the implicit probe search problem to the task of explicitly constructing a certain
combinatorial object that they call a “rainbow”.

Loosely speaking a rainbow is a zero-error disperser for the class of distri-
butions X that are composed of q independent copies of a high min-entropy
distribution. We stress that for this application one needs (strongly-hitting) dis-
persers with large output length. More precisely, in order to support q = O(1)
queries one requires such dispersers that have output length m that is a constant
fraction of the entropy threshold.

Our techniques can be used to explicitly construct rainbows which in turn
allow implicit probe schemes that support q = O(1) queries for smaller values
of k than previously known. More precisely for any constant δ > 0 and k = nδ

there is a constant q and a scheme that supports q queries. The precise details
are given in the full version. (We remark that one can also achieve the same

4 In fact, Dispersers translate into a significantly stronger guarantee that discusses
colorings of the edges of the complete N by N bipartite graph such that any induced
K by K subgraph has all colors.



results by using the technique of [13] and plugging in recent constructions of
seeded dispersers).

Zero-error dispersers for bit-fixing sources The class of bit-fixing sources
is the class of distributions X on Ω = {0, 1}n such that there exists a set S ⊆ [n]
such that XS (that is X restricted to the indices in S) is uniformly distributed
and X[n]\S is constant. Note that for such a source X, H∞ (X) = |S|. (We
remark that these sources are sometimes called “oblivious bit-fixing sources”
to differentiate them from “non-oblivious bit-fixing sources” in which X[n]\S is
allowed to be a function of XS).

Background. The function Parity(x) (that is the exclusive-or of the bits of x) is
obviously an extractor for bit-fixing sources with entropy threshold k = 1, error
ε = 0 and output length m = 1. It turns out that there are no errorless extractors
for m = 2. More precisely, [9] showed that for k < n/3 there are no extractors
for bit-fixing sources with ε = 0 and m = 2. For larger values of k, [9] give
constructions with m > 1 and ε = 0. For general entropy threshold k the current
best explicit construction of extractors for bit-fixing sources is due to [26] (in
fact, this extractor works for a more general class of “low weight affine sources”).
These extractors work for any entropy threshold k ≥ (log n)c for some constant
c, and achieve output length m = (1 − o(1))k for error ε = 2−kΩ(1)

. Using Fact
1 this gives a zero-error disperser with output length m = kΩ(1).

Our results. We use our composition techniques to construct zero-error dis-
persers for bit-fixing sources with output length m = Ω(k). We show that:

Theorem 3 (Zero-error disperser for bit-fixing sources) There exist c >
1 and η > 0 such that for sufficiently large n and k ≥ (log n)c there is a poly(n)-
time computable zero-error disperser D : {0, 1}n 7→ {0, 1}m for bit-fixing sources
with entropy threshold k and output length m = ηk.

Note that our construction achieves an output length that is optimal up to
constant factors. We prove Theorem 3 by designing a subsource hitter for bit-
fixing sources and using our composition technique. The details are given in the
full version and a high level outline appears next.

Outline of the argument. Our goal is to design a subsource hitter G : {0, 1}n ×
{0, 1}t 7→ {0, 1}m for bit-fixing sources with entropy threshold k, output length
m = Ω(k) and “seed length” t = O(log n). We make use of the subsource hitter
for 2-sources F : {0, 1}n × {0, 1}n × {0, 1}O(log n) 7→ {0, 1}m that we designed
earlier. We apply it for entropy threshold k′ = k/8 and recall that it has output
length m = Ω(k′) = Ω(k).

When given a seed y ∈ {0, 1}t for G we think about it as a pair of strings
(y′, y′′) where y′ is a seed for F and y′′ is a seed for an explicit construction of
pairwise independent variables Z1, . . . , Zn where for each i, Zi takes values in
{1, 2, 3} (indeed there are such constructions with seed length O(log n)). When



given such a seed y′′ we can use the values Z1, . . . , Zn to partition the set [n]
into three disjoint sets T1, T2, T3 by having each index i ∈ [n] belong to TZi . We
construct G as follows:

G(x, (y′, y′′)) = F (xT1 , xT2 , y
′)

In words, we use y′′ to partition the given n bit string into three strings and
we run F on the first two strings (padding each of them to length n) using the
seed y′.

We need to show that for any bit-fixing source X of min-entropy k and for
any z ∈ {0, 1}m there exist a seed y = (y′, y′′) and a subsource X ′ of X such
that X ′ is a bit-fixing source with roughly the same min-entropy as X and
Pr[G(X ′, (y′, y′′)) = z] = 1.

We have that X is a bit-fixing source and let S ⊆ [n] be the set of its
“good indices”. Note that |S| ≥ k. By the “sampling properties” of pairwise
independent distributions (see e.g. [16] for a survey on “averaging samplers”) it
follows that there exists a y′′ such that for every i ∈ [3], |S∩Ti| ≥ k/8. It follows
that XT1 , XT2 , XT3 are bit-fixing sources with min-entropy at least k/8 (and note
that these three distributions are independent). Thus, by the properties of the
subsource hitter F there exist x1, x2, y

′ such that F (x1, x2, y
′) = z (note that

here we’re only using the property that F “hits z” and do not use the stronger
property that F “hits z on a subsource”). Consider the distribution

X ′ = (X|XT1 = x1 ∧XT2 = x2)

This is a subsource of X which is a bit-fixing source with min-entropy at least
k/8 (as we have not fixed the k/8 good bits in T3). It follows that for every
x ∈ Supp(X ′)

G(x, (y′, y′′)) = F (x1, x2, y
′) = z

and G is indeed a subsource hitter for bit-fixing sources.

Affine sources The class of affine sources is the class of distributions X on
Ω = Fn

q (where Fq is the finite field of q elements) such that X is uniformly
distributed over an affine subspace V in Fn

q . Note that such a source X has
min-entropy log q ·dim(V ). Furthermore, any bit-fixing source is an affine source
over F2.

Background. For F2 the best explicit construction of extractors for affine sources
was given in [7]. This construction works for entropy threshold k = δn (for any
fixed δ > 0) and achieves output length m = Ω(k) with error ε < 2−m.

Extractors for lower entropy thresholds were given by [14] in the case that
q = nΘ(1). For any entropy threshold k > log q these extractors can output
m = (1 − o(1))k bits with error ε = n−Θ(1). Using Fact 1 this gives zero-error
dispersers with output length m = Θ(log n).



Our results. Our composition techniques can be applied on affine sources. We
focus on the case of large fields (as in that case we can improve the results of
[14]). We remark that our techniques also apply when q is small (however, at the
moment we do not gain by applying them on the existing explicit constructions).
We prove the following theorem:

Theorem 4 Fix any prime power q and integers n, k such that q ≥ n18 and 2 ≤
k < n. There is a poly(n, log q)-time computable zero-error disperser D : Fn

q 7→
{0, 1}m for affine sources with entropy threshold k · log q and m = (k− 1) · log q.

Outline of the argument. We use our composition techniques to give a different
analysis of the construction of [14] which shows that this construction also gives
a zero-error disperser. The construction of [14] works by first constructing an
affine source extractor D′ with small output length m = Θ(log n) and then
composing it with some function F to obtain an extractor D(x) = F (x,D′(x))
that extracts many bits (with rather large error). We observe that the function
F designed in [14] is in fact a subsource hitter for affine sources and therefore our
composition technique gives that the final construction is a zero-error disperser.

2 Open problems

2-sources. One of the most important open problems in this area is to give
constructions of extractors for entropy threshold k = o(n). Such constructions
are not known even for m = 1 and large error ε.

There are explicit constructions of zero-error dispersers with k = no(1) [3].
However, these dispersers only output one bit. Improving the output length in
these constructions to Θ(log n) bits will allow our composition techniques to
achieve output length m = Ω(k).

Another intriguing problem is that for the case of zero-error (or strongly
hitting) dispersers we do not know whether the existential results proven via
the probabilistic method achieve the best possible parameters. More precisely, a
straightforward application of the probabilistic method gives zero-error 2-source
dispersers which on entropy threshold 2 · k output m = k − log(n − k) − O(1)
bits. On the other hand the lower bounds of [23, 24] can be used to show that
any zero-error 2-source disperser with entropy threshold 2 ·k has m ≤ k+O(1).5

O(1)-sources, rainbows and implicit probe search. When allowing `-sources for
` = O(1) we give constructions of zero-error dispersers which on entropy thresh-
old k = nΩ(1) achieve output length m = Ω(k). An interesting open problem is
to try and improve the entropy threshold. As explained in the full version this
immediately implies improved implicit probe search schemes.
5 Radhakrishnan and Ta-Shma [24] show that any seeded disperser D : {0, 1}n ×
{0, 1}t → {0, 1}m that is nontrivial in the sense that m ≥ t+1 has t ≥ log(1/ε)−O(1).
A zero-error 2-source disperser D′ with entropy threshold k can be easily transformed
into a seeded disperser with seed length t = k by setting D(x, y) = D′(x, y′) where
y′ is obtained by padding the k bit long “seed” y with n − k zeroes. The bound
follows as D′ has error smaller than 2−m.



Bit-fixing sources. We give constructions of zero-error dispersers which on en-
tropy threshold k achieve m = Ω(k). A straightforward application of the prob-
abilistic method gives zero-error dispersers with m = k− log n− o(log n). We do
not know how to match these parameters with explicit constructions.

Affine sources. We constructed a subsource hitter for affine sources over rel-
atively large fields (that is q = nΘ(1)). It is interesting to try and construct
subsource hitters for smaller fields.

Finally, it is also natural to ask whether our composition approach applies
to other classes of sources.
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