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Abstract

A simple averaging argument shows that given a randomized algorithm A and a function f such that
for every input x, Pr[A(x) = f(x)] ≥ 1 − ρ (where the probability is over the coin tosses of A), there
exists a nonuniform deterministic algorithm B “of roughly the same complexity” such that Pr[B(x) =
f(x)] ≥ 1 − ρ (where the probability is over a uniformly chosen input x). This implication is often
referred to as “the easy direction of Yao’s lemma” and can be thought of as “weak derandomization”
in the sense that B is deterministic but only succeeds on most inputs. The implication follows as there
exists a fixed value r′ for the random coins of A such that “hardwiring r′ into A” produces a deterministic
algorithm B. However, this argument does not give a way to explicitly construct B.

In this paper we consider the task of proving uniform versions of the implication above. That is, how
to explicitly construct a deterministic algorithm B when given a randomized algorithm A. We prove
such derandomization results for several classes of randomized algorithms. These include: randomized
communication protocols, randomized decision trees (here we improve a previous result by Zimand),
randomized streaming algorithms and randomized algorithms computed by polynomial-size constant-
depth circuits.

Our proof uses an approach suggested by Goldreich and Wigderson and “extracts randomness from
the input”. We introduce a new type of (seedless) extractors that extract randomness from distributions
that are “recognizable” by the given randomized algorithm. We show that such extractors produce ran-
domness that is in some sense not correlated with the input.

∗A preliminary version of this paper appeared in CCC 2009.
†This research was supported by BSF grant 2004329 and ISF grant 686/07.



1 Introduction

1.1 Background

Randomized algorithms and derandomization Randomized algorithms are algorithms that get an addi-
tional input which is a sequence of independent coin tosses and are allowed to err with small probability.
For some choices of computational resources it is known that randomized algorithms can be significantly
more efficient than deterministic ones. For example, when measuring communication complexity (that is
the amount of communication exchanged by two parties each holding “half of the input”) there are tasks
that require a linear amount of communication by deterministic algorithms whereas randomized algorithms
can use a logarithmic amount of communication. When the complexity measure is running time, a long-
standing open problem asks whether BPP = P (namely, can any randomized polynomial-time algorithm
be simulated by a polynomial-time deterministic algorithm). A long line of research is devoted to studying
this problem (see e.g. [32, 24, 20] for survey articles). Some highlights of this research are “hardness ver-
sus randomness tradeoffs” showing that BPP = P assuming certain circuit lower bounds [22] (see also
[6, 54, 38, 4, 48, 47, 51]), and that the statement BPP = P entails certain circuit lower bounds that seem
hard to prove using current techniques [25].

Deterministic algorithms that do well on a random input A simple averaging argument (that is due
to Yao [56]) shows that given a randomized algorithm A that computes a function f correctly with high
probability over its random coins, there exists a deterministic algorithm B that computes f correctly with
high probability over a random input. More precisely, given functions A : {0, 1}n × {0, 1}m → {0, 1},
f : {0, 1}n → {0, 1} and a number 0 < ρ < 1/2 we say that A computes f with success 1− ρ if

∀x ∈ {0, 1}n : Pr
R←{0,1}m

[A(x,R) = f(x)] ≥ 1− ρ (1)

An averaging argument gives that under this assumption there exists a string r′ ∈ {0, 1}m such that setting
B(x) = A(x, r′) gives that the deterministic algorithm B satisfies:

Pr
X←{0,1}n

[B(X) = f(X)] ≥ 1− ρ (2)

Yao’s lemma The aforementioned implication is often referred to as the “easy direction” of Yao’s lemma
[56]. In this paper we are only interested in the “easy direction” and we refer to it as “Yao’s lemma”.
(The “hard direction” which follows using von-Neumann’s min-max theorem shows that if (2) holds for any
probability distribution over the inputs then (1) holds). We remark that the proof of the “easy direction”
gives a stronger implication than stated above in which (2) holds for any probability distribution over the
inputs. Yao’s lemma can be viewed as a “weak derandomization” of randomized algorithms in the sense
that it converts a randomized algorithm A into a deterministic algorithm B. For many complexity measures
(e.g. communication complexity, circuit complexity) the deterministic algorithm B has essentially the same
complexity as A. However, the argument also has two obvious weaknesses:

• The deterministic algorithm B doesn’t necessarily succeed on all inputs and is only guaranteed to
succeed with high probability on a random input.

• The averaging argument only shows the existence of the deterministic algorithm B but it does not give
an explicit way to construct it.

To demonstrate the second weakness, note that if A is computable by a polynomial-time Turing machine we
cannot deduce that there exists a polynomial-time Turing machine B that satisfies (2). This is because the
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averaging argument only shows the existence of a string r′ and doesn’t give an explicit way to find it. We
can however deduce that there is a polynomial-size circuit B that satisfies (2) because we can hardwire the
constant string r′ into A to create the circuit B(x) = A(x, r′).

Summing up this discussion we want to distinguish between the complexity of an algorithm (which is
the amount of resources used by the algorithm) and the uniformity of an algorithm (namely, whether it can
be explicitly constructed in uniform polynomial-time). Using this terminology, when given a randomized
algorithm A that satisfies (1), Yao’s lemma gives a deterministic algorithm B that satisfies (2) such that B
has essentially the same complexity as A but the lemma does not guarantee that B is explicitly constructible.

We will be interested in giving transformations that given a randomized algorithm A that succeeds with
high probability on every input, explicitly construct a deterministic algorithm B (with roughly the same
complexity as A) that succeeds with high probability on a random input. We will refer to this goal as
achieving “an explicit version of Yao’s Lemma” or “explicit weak derandomization”.

Adelman’s theorem [1] states that BPP ⊆ P/poly, namely that any uniform polynomial-time random-
ized algorithm can be simulated by a family of polynomial-size circuits and the simulation succeeds on
all inputs. The source of non-uniformity in Adelman’s Theorem is that Yao’s Lemma does not provide an
explicitly constructible deterministic algorithm. More precisely, the proof of Adelman’s theorem works in
two steps:

Amplification: Given a polynomial-time randomized algorithm A(x, r) which succeeds in computing a
function f on all inputs x ∈ {0, 1}n with probability 2/3 the algorithm is amplified (by running it
several times with independent random coins and taking the majority vote) so that it succeeds with
probability 1− ρ for ρ = 2−2n.

Yao’s Lemma Applying Yao’s Lemma, there exists a deterministic polynomial-size circuit B(x) such that
PrX←{0,1}n [B(X) 6= f(X)] < ρ = 2−2n < 2−n. Note that any positive probability in this probabil-
ity space is at least 2−n and therefore the probability above is zero. This implies that B succeeds on
all inputs.

In particular, giving an explicit version of Yao’s Lemma that applies to all polynomial-time randomized
algorithms and every choice of ρ implies BPP = P .

1.2 Explicit versions of Yao’s lemma for weak algorithms

We want to prove unconditional results and therefore we limit our attention to weak classes of randomized
algorithms. In this paper we prove explicit versions of Yao’s lemma for communication protocols and
decision trees. (These results require that the number of random coins tossed by the algorithm is smaller
than the input length). In addition we prove explicit versions of Yao’s Lemma for streaming algorithms and
algorithms implemented by constant-depth circuits (here we can allow the randomized algorithm to toss a
polynomial number of coins). We also give conditional results that give explicit versions of Yao’s lemma for
general polynomial-time algorithms assuming that certain hard functions exists. These conditional results
are incomparable to known “hardness versus randomness tradeoffs” in the sense that they use different
assumptions and provide derandomization that only succeeds on most inputs. We survey our results below.

1.2.1 Communication protocols

Communication complexity was first defined by Yao [55] (see the book [31] for a comprehensive treatment).
In this setup we think of an input x ∈ {0, 1}n as a pair of inputs x = (x1, x2) where x1, x2 ∈ {0, 1}n/2.
There are two parties P1, P2 where Pi receives xi and the two parties want to compute a function f(x1, x2)
by exchanging few bits of communication. Both deterministic and randomized communication protocols are
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considered and the complexity of a communication protocol is the number of bits exchanged on the worst
input x.

Yao’s lemma gives “weak derandomization” for communication protocols and we cannot expect a
“strong derandomization” of the form of Adelman’s theorem in the setting of communication complexity.
This is because there are examples of exponential gaps between deterministic and randomized communi-
cation complexity.1 We prove an explicit version of Yao’s lemma for communication protocols. Namely,
when given a randomized (public coin) communication protocol A we show how to explicitly construct a
deterministic protocol B with related complexity that succeeds on “most inputs”. In order to state our results
we define the notion of explicitly constructible (or in other words uniform) communication protocols.

Loosely speaking, a protocol is explicitly constructible if whenever a party Pi needs to send a bit in the
communication protocol, this bit can be computed in polynomial-time as a function of the party’s view. For
deterministic protocols the view consists of the input xi and the previously communicated bits. For ran-
domized protocols the view also includes the string of public coin tosses. Note that as this is an asymptotic
notion, we need to consider families A = {An} of communication protocols (where An takes inputs of
length n) for this to make sense. A precise formal definition appears in Section 4.1.1.

The issue of whether protocols are explicitly constructible is rarely addressed in communication com-
plexity. Indeed, most of the research in communication complexity is concerned with lower bounds and
can handle protocols that are not explicitly constructible. However, we believe that when providing upper
bounds by designing communication protocols we should prefer communication protocols that are explicitly
constructible. The majority of protocols that appear in the literature are explicitly constructible. However,
there are some exceptions.2

We show that given a randomized communication protocol with communication complexity q and m
coins we can explicitly construct a deterministic communication protocol of communication complexity
O(q + m) that simulates A on most inputs.

Theorem 1.1 (Explicit version of Yao’s lemma for communication protocols). There exists a constant β > 0
such that the following holds: Let A = {An} be an explicitly constructible family of randomized commu-
nication protocols with complexity q(n) and m(n) ≤ βn − q(n) coins such that for every n, An computes
a function fn : {0, 1}n → {0, 1} with success 1 − ρ(n) ≥ 2/3. Then, there is an explicitly constructible
family B = {Bn} of deterministic communication protocols with complexity O(q(n) + m(n)) such that for
every n, PrX←{0,1}n [Bn(X) = fn(X)] ≥ 1− ρ(n).

Under the weaker assumption that A succeeds with probability 1 − ρ(n) when both the input and the
random coins are chosen uniformly at random, namely that for every n,

Pr
X←{0,1}n,R←{0,1}m(n)

[An(X, R) = fn(X)] ≥ 1− ρ(n)

we obtain that B succeeds with probability 1 − 3ρ(n) − 2−10m(n) on a uniformly chosen input. This also
applies for our results on decision trees and streaming algorithms that are described next.

1The reason that the aforementioned proof of Adelman’s Theorem does not go through is that the amplification step does not
preserve the complexity of communication protocols. More precisely, amplifying from ρ = 1/3 to ρ = 2−2n requires multiplying
the complexity by log(1/ρ) ≥ n which gives a trivial communication protocol (as any function can be computed by a deterministic
communication protocol of complexity n). We remark that less ambitious amplification to larger values of ρ (e.g. ρ = 1/n) is
sometimes “affordable” for communication protocols.

2For example, a classical result by Newman [34] states that any randomized communication protocol can be simulated by one
that has m = O(log n) coins (this is used to show the equivalence between public coin and private coin models of randomized
communication complexity). It is interesting to note that the proof uses a probabilistic argument and does not give an explicitly
constructible protocol. It is open whether one can explicitly construct such a communication protocol. There are also other
examples in the literature where the computation performed by the parties takes exponential time. One such example is the proof
that deterministic communication complexity and nondeterministic communication complexity are polynomially related.
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1.2.2 Decision trees

A decision tree of complexity q is a procedure that is allowed to adaptively make q queries of the form
“what is the i’th bit of the input x” and outputs a value at the end. The reader is referred to [8] for a
survey article on decision trees. We want to discuss explicit versions of Yao’s lemma and consider explicitly
constructible (or uniform) decision trees. We say that a (family of) decision trees is explicitly constructible
if there is a polynomial-time Turing machine which implements the decision tree. Namely when given the
answers to the queries made so far the machine produces the index i of the bit to be queried next, and
runs in time polynomial in |i| = log n and q(n) (where q(n) is the depth of the tree on inputs of length
n). For a randomized decision tree with m(n) coins the machine also receives a string r ∈ {0, 1}m(n). A
precise formal definition appears in Section 4.2.1. In particular, sublinear time randomized algorithms that
run in time q(n) < n and have random access to the input, are captured by randomized decision trees with
complexity q(n) and m(n) ≤ q(n) random coins.

Zimand [58] shows how to achieve weak derandomization of sublinear time algorithms. In our termi-
nology Zimand’s result can be seen as an explicit version of Yao’s Lemma for decision trees. Namely, given
a randomized decision tree A with complexity q ¿ n and m = q coins, one can explicitly construct a
deterministic decision tree B that simulates A correctly on most inputs. A precise formulation using our
notation follows:3

Theorem 1.2 (Explicit version of Yao’s lemma for decision trees [58]). There exists a constant α > 0
such that the following hold: Let A = {An} be an explicitly constructible family of randomized decision
trees with complexity q(n) ≤ nα and m(n) = q(n) coins such that for every n, An computes a function
fn : {0, 1}n → {0, 1} with success 1 − ρ(n) ≥ 2/3. Then, there is an explicitly constructible family B =
{Bn} of deterministic decision trees with complexity q(n)O(1) such that for every n, PrX←{0,1}n [Bn(X) =
fn(X)] ≥ 1− ρ(n).

For decision trees that compute functions it is known that there is at most a polynomial gap between
deterministic complexity and randomized complexity [35]. (Note that this is very different than communi-
cation protocols in which there may be exponential gaps). However, Theorem 1.2 (and all our results) also
apply to a more general setup of algorithms that “approximately count” or solve “search problems”. We
elaborate on these issues in Section 3.4. We stress that in such setups there are exponential gaps between the
complexity of deterministic and randomized decision trees. One such example is that by sampling, random-
ized decision trees can approximately count the number of ones in the input with logarithmic complexity
whereas deterministic decision trees require linear complexity for this task.

Our techniques provide an alternative proof of Zimand’s result. Our proof gives a quantitative improve-
ment over Zimand’s result in the sense that we get a deterministic decision tree with complexity that is linear
in q(n) whereas Zimand gives a deterministic decision tree of complexity that is a large polynomial in q(n).
(In his paper Zimand estimates that the polynomial in his proof is q(n)24). The parameters that come up in
the formal statement below are identical to those in Theorem 1.1.

Theorem 1.3 (Improved explicit version of Yao’s lemma for decision trees). There exists a constant β > 0
such that the following holds: Let A = {An} be an explicitly constructible family of randomized decision
trees with complexity q(n) and m(n) ≤ βn− q(n) coins such that for every n, An computes a function fn :
{0, 1}n → {0, 1} with success 1− ρ(n) ≥ 2/3. Then, there is an explicitly constructible family B = {Bn}
of deterministic decision trees with complexity O(q(n)+m(n)) such that for every n, PrX←{0,1}n [Bn(X) =
fn(X)] ≥ 1− ρ(n).

3Zimand states a stronger quantitative result in which B succeeds with probability 1− 2−Ω(q(n) log q(n)) for ρ = 1/3. The two
formulations are equivalent as if one wants to improve the success probability from say 1 − ρ = 2/3 to 1 − 2−q(n) log q(n) it is
possible to first amplify the success probability of A to that value. This increases the complexity of A by at most a polynomial. One
can then apply the weaker statement of Theorem 1.2 on the amplified algorithm to get the stronger statement in Zimand’s paper.
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1.2.3 Streaming algorithms

Streaming algorithms (see e.g. [3, 15]) are algorithms which read the input in one pass using sublinear
space. Here the complexity measure is the space used by the algorithm. Randomized streaming algorithms
A(x, r) come in two flavors depending on how they access their random coins. Algorithms with one-way
access to randomness receive one-way access to both the input x and the “sequence of random coins” r
that is stored on a separate tape. This model captures streaming algorithms that “toss coins on the fly”.
We can also consider algorithms with two-way access to randomness. This is a less natural model as such
algorithms are not charged for storing their random coins and thus have more power in case the number of
random coins used is larger than the space. (Precise definitions of these models appear in Section 4.3).

We say that a streaming algorithm is explicitly constructible if it can be implemented by a polynomial-
time Turing machine. More precisely, that the operation of updating the internal memory following reading
a symbol from the input or “random coin sequence” can be done in polynomial-time. A precise formal
definition appears in Section 4.3.

Our techniques give an explicit version of Yao’s lemma for randomized streaming algorithms even when
allowing two-way access to randomness. The parameters we obtain are identical to the parameters as Theo-
rems 1.1 and 1.3.

Theorem 1.4 (Explicit version of Yao’s lemma for streaming algorithms with two-way access to coins).
There exists a constant β > 0 such that the following holds: Let A = {An} be an explicitly constructible
family of randomized streaming algorithms with two-way access to randomness. Assume that the fam-
ily A has complexity q(n) and m(n) ≤ βn − q(n) coins and that for every n, An computes a function
fn : {0, 1}n → {0, 1} with success 1 − ρ(n) ≥ 2/3. Then, there is an explicitly constructible family
B = {Bn} of deterministic streaming algorithms with complexity O(q(n) + m(n)) such that for every n,
PrX←{0,1}n [Bn(X) = fn(X)] ≥ 1− ρ(n).

Theorem 1.4 achieves weak derandomization for the stronger and less natural model of randomized
algorithms with two-way access to randomness. We can do better for the more standard case of one-way
access and handle randomized algorithm that toss a polynomial number of coins (rather than a sublinear
number of coins).

Theorem 1.5 (Explicit version of Yao’s lemma for streaming algorithms with one-way access to coins).
There exists a constant β > 0 such that the following holds: Let A = {An} be an explicitly constructible
family of randomized streaming algorithms with one-way access to randomness. Assume that the family
A has complexity log n ≤ q(n) ≤ βn/ log n and a polynomial number of coins and that for every n, An

computes a function fn : {0, 1}n → {0, 1} with success 1 − ρ(n) ≥ 2/3. Then, there is an explicitly
constructible family B = {Bn} of deterministic streaming algorithms with complexity O(q(n) · log n) such
that for every n, PrX←{0,1}n [Bn(X) = fn(X)] ≥ 1− ρ(n)− 2−q(n).

Theorem 1.5 follows from Theorem 1.4 because using pseudorandom generators for bounded space al-
gorithms [36, 21, 42] one can simulate any randomized streaming algorithm with one-way access to a poly-
nomial number of random coins by a randomized streaming algorithm with two way access to O(q log n)
random coins. The multiplicative factor of log n can be removed if one can construct pseudorandom gen-
erators with optimal seed length for bounded space algorithms. Achieving this goal is a longstanding open
problem.

We remark that in the setup of streaming algorithms pseudorandom generators do not yield a deran-
domization that succeeds on all inputs. This is because the standard approach of enumerating all seeds of
the pseudorandom generator yields a deterministic algorithm that is not a streaming algorithm as it requires
two-way access to the input.
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1.2.4 Constant-depth algorithms

We consider algorithms that are computable by uniform families of polynomial-size constant-depth circuits.
This class is called uniform-AC0. Uniformity means that there is a uniform machine that on input n con-
structs the appropriate circuit in the family. Different variants of this notion are obtained when considering
machines from different complexity classes. In this paper we use the standard notion that the machine runs
in space logarithmic in n and the size of the circuit. However, our results apply also to other notions. We
refer to such a family of circuits as a deterministic uniform AC0 algorithm. There is also a corresponding
notion of randomized algorithms A(x, r). Loosely speaking, it is required that |r| is polynomial in |x| and
that the function A(x, r) is in uniform-AC0. More precisely, a uniform randomized AC0 algorithm is a
family of functions A = {An} such that An : {0, 1}n × {0, 1}m=poly(n) → {0, 1} and the family A is in
uniform-AC0. (This class is sometimes referred to as BPAC0).

Full derandomization a-la Adelman’s theorem applies in this setup (using the fact that approximate
majority is in AC0 [2]) and gives that nonuniform randomized AC0 and nonuniform deterministic AC0

coincide. For uniform algorithms there are beautiful constructions of pseudorandom generators against
AC0 [38]. These constructions are based on the hardness on average of the parity function against AC0

[19]. Applying these generators gives that every uniform randomized AC0 algorithm can be simulated by
a (deterministic) uniform family of constant-depth circuits that has quasi-polynomial size [38, 29]. In other
words, these results give uniform strong derandomization (a simulation that succeeds on all inputs) but the
resulting algorithm has quasi-polynomial-size (that is size nO(log n)) rather than polynomial-size.

We prove an explicit version of Yao’s lemma for AC0 algorithms. This gives the following incomparable
result: For every uniform randomized AC0 algorithm there is a uniform deterministic AC0 algorithm that
succeeds on most inputs.

Theorem 1.6 (Explicit version of Yao’s lemma for AC0). Let A = {An} be a randomized uniform
AC0 algorithm such that for every n, An computes a function fn : {0, 1}n → {0, 1} with success
1 − ρ(n) ≥ 2/3. Then there is a deterministic uniform AC0 algorithm B = {Bn} such that for every
n, PrX←{0,1}n [Bn(X) = fn(X)] ≥ 1− ρ(n)− n−v for every constant v > 1.

Note that in contrast to some of our previous results, Theorem 1.6 does not assume that the number of
random coins of A is smaller than the length of the input. This is because by the aforementioned pseudoran-
dom generators we can assume w.l.o.g. that a uniform randomized algorithm uses polylog(n) random coins.
The standard approach to derandomizing a randomized algorithm with polylogn random coins is to run the
algorithm for all possible choices for random coins and take the majority vote. A drawback of this approach
is that this takes quasipolynomial-time (indeed this is the reason [38] only gets circuits of quasipolynomial-
size). In contrast, our approach runs the randomized algorithm only once using one choice for random coins
that is computed as a deterministic function of the input. We elaborate more on our approach in Section 1.3.

We remark that if one could improve Theorem 1.6 and remove the factor n−v then this implies a de-
terministic algorithm B that succeeds on all inputs. This is because by amplifying the success probability
we can assume without loss of generality that ρ(n) ≤ 2−2n. Thus, if one could remove the additive factor
of n−v one would get a deterministic algorithm that succeeds on all but a 2−2n fraction of inputs of length
n, which in turn implies that the deterministic algorithm succeeds on all inputs. We stress however that we
cannot expect to prove such a result using the approach of this paper.

A subsequent work [28] gives a simpler proof of Theorem 1.6. The approach of [28] has advantages
over our approach in the sense that it also gives results on constant depth circuits with parity gates. We
elaborate on the approach of [28] in Section 5.
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1.2.5 Conditional weak derandomization for general polynomial-time algorithms

We now consider the class of general polynomial-time randomized algorithms. Here we give an explicit
version of Yao’s lemma under a hardness assumption. This result follows by imitating the proof of Theorem
1.6 and replacing the parity function (which is hard for AC0) with a function that is assumed to be hard
on average for polynomial-size circuits. Loosely speaking, a useful property of the parity function is that it
is very hard on average for “weak” circuits, yet can be computed precisely by circuits with slightly larger
resources. Generalizing this to our setup gives the assumption that for every constant c there are functions
that are hard on average for circuits of size nc and yet are computable in time nd for some constant d > c.

Theorem 1.7 (Conditional explicit version of Yao’s lemma for polynomial-time algorithms). Assume that
there exists a constant γ > 0 such that for every constant c there exists a constant d and a family of functions
h = {hn} where hn : {0, 1}n → {0, 1}, such that h is computable in time nd and for every sufficiently large
n and every circuit C of size nc, PrX←{0,1}n [C(X) = hn(X)] ≤ 1/2 + 2−nγ

. Then there exists a constant
η > 0 such that for every language L ∈ BPP there is a polynomial-time deterministic machine B that for
every n, algorithm B decides the language L correctly on a 1− 2−nη

fraction of inputs of length n.

It is natural to compare Theorem 1.7 to hardness versus randomness tradeoffs [38, 22]. The latter give
a stronger conclusion of a deterministic algorithm that succeeds on all inputs. On the other hand, the as-
sumption of Theorem 1.7 requires lower bounds against circuits of polynomial-size. This is usually referred
to as “the low-end of hardness assumptions” in the literature on hardness versus randomness tradeoffs and
these tradeoffs produce deterministic algorithms that run in subexponential time (and not polynomial-time).
Another difference is that Theorem 1.7 requires that the hard function is computable in polynomial-time
whereas hardness versus randomness tradeoffs allow the hard function to be computable in exponential
time. In the latter setup there are hardness amplification results transforming functions that are hard on the
worst case into functions that are hard on average. Therefore, it is sufficient to assume that the hard function
is hard on the worst case. In summary, the assumption used in Theorem 1.7 is incomparable to those used
in hardness versus randomness tradeoffs.

Some previous work on hardness versus randomness tradeoffs [23, 50] considered “uniform tradeoffs”
in which the deterministic algorithm is guaranteed to succeed with high probability on every samplable dis-
tribution. This notion of “weak derandomization” is stronger than the one in this paper which only considers
the uniform distribution. We point out that similar to the aforementioned “non-uniform” hardness versus
randomness tradeoffs, the tradeoffs in [23, 50] only produce subexponential time deterministic algorithms
when starting from a “low-end hardness assumption”. We remark that the “uniform tradeoffs” only need to
assume hardness for uniform randomized algorithms rather than circuits. In summary, the assumption used
in Theorem 1.7 is incomparable to those used in uniform tradeoffs.

Theorem 1.7 can be compared to a result of [18] that also gets weak derandomization under the as-
sumptions that there exist functions that are hard on average. However, in [18] one requires the function to
be hard for circuits that have a SATISFIABILITY oracle whereas Theorem 1.7 does not. Even though we
require lower bounds against a weaker class of circuits, our result is incomparable to that of [18]. This is
because the quantities measuring the hardness on average of the function and the success probability of the
deterministic algorithm are different. Theorem 1.7 requires a quantitatively stronger guarantee of hardness
on average and gives a weaker guarantee on the success probability of the deterministic algorithm.

A subsequent work [28] shows an improved version of Theorem 1.7 that gives weak derandomization of
every language in BPP starting from a weaker assumption than the one given in Theorem 1.7. Specifically,
it is sufficient that the function hn in Theorem 1.7 is only “mildly hard on average” in the sense that every
circuit C of size nc attempting to compute hn errs on a 1/n fraction of the inputs. This result is incomparable
to Theorem 1.7 as under the weaker assumption, [28] obtains weak derandomization that may err on more
inputs then in Theorem 1.7. However, the approach of [28] is stronger in the sense that under the assumption
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of Theorem 1.7, [28] can obtain the same conclusion of Theorem 1.7. We elaborate on the approach of [28]
in Section 5.

1.3 Technique

We now highlight some of the new ideas in the paper. We start by reviewing some ideas from previous work.

1.3.1 Extracting randomness from the input

The goal of achieving what we call “weak derandomization” was considered by Goldreich and Wigderson
[18]. They consider randomized algorithms A(x, r) in which the number of random coins is smaller than the
input length. Their high level idea is that in such cases one can try and “extract” randomness r from the input
x. An obvious difficulty is that this makes the input and random coins correlated. Consider for example a
randomized algorithm A(x, r) where |x| = |r| and define the deterministic algorithm B(x) = A(x, x). It
may be the case that for every x, all r 6= x have A(x, r) = f(x) while A(x, x) 6= f(x) and then B errs on
every input. As this example shows, to extract randomness from the input we need to somehow control the
correlation between input and random coins.

Goldreich and Wigderson do not try to handle this correlation. Instead they restrict their attention to
randomized algorithms in which there exist many coin outcomes r that are each good for all inputs x. (Note
that in this case the aforementioned problem does not come up). Surprisingly, they show that there are inter-
esting algorithms with this property in the literature. Moreover, they show that under a hardness assumption
any polynomial-time randomized algorithm can be converted to one with the aforementioned property. We
remark that the construction presented in [18] also uses “seeded extractors” to amplify the success prob-
ability of A before the derandomization. More specifically, the deterministic algorithm presented in [18]
is B(x) = majorityy∈{0,1}dA(x,E(x, y)) where E : {0, 1}n × {0, 1}d=O(log n) → {0, 1}m is an explicit
(that is polynomial-time computable) “seeded extractor” (see e.g. [37, 45, 52] for survey articles on seeded
extractors). However, the proof can be viewed as applying the aforementioned idea of B(x) = A′(x, x)
on the randomized algorithm A′(x, r) = majorityy∈{0,1}dA(x,E(r, y)) (which by [59] computes the same
function computed by A with improved success probability).

Zimand’s result [58] that we stated in Theorem 1.2 also uses the approach of extracting randomness
from the input. This is done using a new variant of seeded extractors (called “exposure resilient extractors”
[57]). Zimand shows that using the approach of Goldreich and Wigderson with exposure resilient extractors
gives an explicit version of Yao’s lemma for decision trees. This suggests that one can try to control the
correlation in special cases.

1.3.2 Our approach

In this paper we develop a general technique to prove explicit versions of Yao’s Lemma. Our approach is
also based on extracting randomness from the input. The high level idea is that the use of specific extractors
(that we introduce in this paper) allows us to control the correlation between the input and the extracted
random coins. More specifically, we show that any class of randomized algorithms that use m ≤ n random
coins defines a class of probability distributions such that if E : {0, 1}n → {0, 1}m is an extractor with
very small error for the class of distributions (meaning that for any distribution X in the class, E(X) has
statistical distance less than 2−m from the uniform distribution on m bit strings) then the deterministic
algorithm B(x) = A(x,E(x)) weakly derandomizes any randomized algorithm A in the class.

The use of seedless extractors Note that in contrast to aforementioned previous work of [18, 58] the
extractor function E in the discussion above does not use a seed. To explain this point let us review the
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two notions of randomness extractors: Seeded extractors expect to receive a short seed of few independent
random bits when extracting randomness. There are constructions of such extractors that are able to extract
randomness in the most general case: namely, from any distribution that “contains sufficient randomness”
(that is, has high enough min-entropy). Seedless extractors have the advantage that they do not need to
receive an independent seed. However,seedless extractors cannot exist for the general case above. Instead,
seedless extractors are designed for specific families of distributions. For our analysis we need extractors
with error smaller than 2−m. By the lower bounds of [39, 40], seeded extractors for general distributions
cannot achieve such error unless they use huge seeds (namely seeds that are at least as long as the output
of the extractor). Moreover, even if we restrict our attention to seeded extractors for specific families of
distributions, we want to use extractors with seed length d ¿ m and error ¿ 2−m. For these parameters
any seeded extractor can be transformed into a seedless extractor by choosing an arbitrary fixed seed. Thus,
the low error requirement dictates the use of seedless extractors.

Our analysis is different than that of [18, 58]. The analysis of [18, 58] relies on the ability of seeded
extractors to extract randomness from any distribution with sufficient min-entropy. We need to be more
careful as we cannot expect seedless extractors with this property. Instead, we use extractors that are tailored
to the specific family of randomized algorithms considered.

Extractors for recognizable distributions We introduce a new notion of extractors which we call “ex-
tractors for recognizable distributions”. This notion is defined in Section 3.1. We show that any class of
randomized algorithms can be weakly derandomized if one can explicitly construct an extractor for distri-
butions recognizable by the class. Our weak derandomization results then follow by using specific explicit
extractors. In some cases we can use “off the shelf” explicit constructions of randomness extractors. For
communication protocols we observe that “2-source extractors” extract randomness from distributions rec-
ognizable by communication protocols, and this allows us to use existing constructions of 2-source extrac-
tors. Similarly, for decision trees we observe that “extractors for bit-fixing sources” extract randomness
from distributions recognizable by decision trees. For other results we construct appropriate extractors.
We use 2-source extractors to construct extractors for distributions recognizable by streaming algorithms.
We also show that functions that are hard on average can be used to construct extractors for recognizable
distributions. This allows us to use the hardness of the parity function [19] to construct an extractor for dis-
tributions recognizable by constant-depth algorithms. More generally, assuming a function that is hard on
average for polynomial-size circuits, we can construct extractors for distributions recognizable by general
polynomial-time algorithms.

1.4 Organization of the paper

We give some preliminaries in Section 2. In Section 3 we state and prove our general theorem that shows
how to use seedless extractors to get derandomization. In Section 4 we show how to use the general theorem
and prove our main results. Finally, we mention some open problems and subsequent work in Section 5.

2 Preliminaries

General notation: We use x ◦ y to denote the concatenation of two strings x, y. We use [n] to denote the
set {1, . . . , n}. Given a string x ∈ {0, 1}n and a set S ⊆ [n] we use xS to denote the restriction of x to S
(which is a string of length |S|).

Randomized algorithms: We model randomized procedures as functions A : {0, 1}n×{0, 1}m → {0, 1}.
We say that A computes a function f : {0, 1}n → {0, 1} with success 1 − ρ if for every x ∈ {0, 1}n,
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PrR←Um [A(x,R) = f(x)] ≥ 1−ρ. For r ∈ {0, 1}m, Ar : {0, 1}n → {0, 1} is defined by Ar(x) = A(x, r).

Probability distributions: Given a probability distribution P we use X ← P to denote the experiment
in which X is chosen at random according to P . Given a set S we use X ← S to denote the experiment in
which X is chosen uniformly at random from S. We use Um to denote the uniform distribution on {0, 1}m.
We define Supp(X) = {x : Pr[X = x] > 0}.

We say that two distributions P, Q on a set Ω are ε-close if 1
2 ·

∑
x∈Ω |Pr[P = x] − Pr[Q = x]| ≤ ε.

The min-entropy of a distribution X on Ω is defined by H∞(X) = minx∈Ω
1

Pr[X=x] .
We also need the following standard lemmata. See e.g., [46] for a proof.

Lemma 2.1. Let X be a distribution over {0, 1}n and let S ⊆ [n] then H∞(XS) ≥ H∞(X)− (n− |S|).
Lemma 2.2. Let X, Y be random variables such that Y is over {0, 1}`. Then, for any ε > 0, with probability
1− ε over choosing y ← Y we have that H∞(X|Y = y) ≥ H∞(X)− `− log(1/ε).

3 A general approach to weak derandomization

In this section we introduce a general approach for proving weak derandomization results. The approach
builds on a new concept of “extractors for recognizable distributions” defined in Section 3.1. In Section 3.2
we state a general theorem that is used to derive all our results.

3.1 Extractors for recognizable distributions

The field of deterministic (seedless) extractors attempts to explicitly construct randomness extractors for
“interesting classes of distributions”. Many classes are considered in the literature (see e.g. [45] for details).
The definition below considers sources that are uniform over sets that can be efficiently recognized.

Definition 3.1 (Extractors for recognizable distributions). Let C : {0, 1}n → {0, 1} be a function. Let
UC denote the uniform distribution over {x ∈ {0, 1}n : C(x) = 1}. We refer to UC as the distribution
recognized by C. Let C be a collection of functions C : {0, 1}n → {0, 1}. We say that a distribution Y over
{0, 1}n is recognized by C if there exists C ∈ C such that Y is recognized by C. We refer to the class of such
distributions as recognizable by C. A function E : {0, 1}n → {0, 1}m is a (k, ε)-extractor for distributions
recognizable by C if for every distribution Y that is recognizable by C with H∞(Y ) ≥ k, E(Y ) is ε-close to
Um.

Remark 3.2 (Relationship to previous work on extractors). To the best of our knowledge this notion was
not explicitly defined before. Nevertheless, it is implicit in some previous work on extractors. For example,
extractors for bit-fixing sources (defined in Section 4.2.2) can be viewed as extractors for distributions
recognizable by projections or by low complexity decision trees (see Section 4.2.3 for details). 2-source
extractors (defined in Section 4.1.2) can be viewed as extractors for distributions recognizable by rectangles
or by low complexity communication protocols (see Section 4.1.3 for details). Extractors for affine sources
can be viewed as extractors for distributions recognized by affine functions.

Trevisan and Vadhan [49] introduced an alternative way in which a class of functions C induces a class
of distributions. Their notion of “extractors for samplable distributions” is orthogonal to our notion as
it asks that the distribution can be sampled efficiently rather than recognized efficiently. To illustrate the
difference we mention two recent works on extractors for low degree polynomials: [14] is concerned with
extractors for sources samplable by low degree polynomials, whereas [13] is concerned with extractors for
sources recognizable by low degree polynomials. We also remark that the two notions coincide in case of
linear polynomials (that is affine sources).
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3.2 Extractors yield weak derandomization

We show that one can weakly derandomize a given algorithm A using an extractor for distributions recog-
nizable by a family of functions CA. The definition of CA follows:

Definition 3.3. Given a function A : {0, 1}n × {0, 1}m → {0, 1} and r, r′ ∈ {0, 1}m we define a function
Ar,r′ : {0, 1}n → {0, 1}m by Ar,r′(x) = 1 iff A(x, r) = A(x, r′). Let CA denote the class of all such
functions. Namely, CA =

{
Ar,r′ : r, r′ ∈ {0, 1}m

}
.

We remark that the complexity of Ar,r′ is typically bounded by twice the complexity of A as computing
Ar,r′ reduces to computing A twice. Our main theorem (stated below) shows that if E : {0, 1}n → {0, 1}m

ia an extractor for distributions recognizable by CA then the deterministic algorithm B(x) = A(x, E(x))
weakly derandomizes A.

Theorem 3.4. Let A : {0, 1}n × {0, 1}m → {0, 1} be a function, let k = n − 100m and ε = 2−100m.
Let E : {0, 1}n → {0, 1}m be a (k, ε)-extractor for distributions recognizable by CA. Let ρ ≤ 1/3 and let
f : {0, 1}n → {0, 1} be some function and assume that

Pr
X←Un,R←Um

[A(X,R) = f(X)] ≥ 1− ρ

Then
Pr

X←Un

[A(X, E(X)) = f(X)] ≥ 1− 3ρ− 2−10m

Remark 3.5 (Comments on Theorem 3.4 and its application).

• We made no attempt to optimize the constants 10, 100 in the theorem and the relationship between
constants can be made tighter.

• Theorem 3.4 does not require that A computes f . Recall that A computes f if

∀x ∈ {0, 1}n, Pr
R←Um

[A(x, R) = f(x)] ≥ 1− ρ.

Instead the theorem makes the weaker requirement that

Pr
X←Un,R←Um

[A(X, R) = f(x)] ≥ 1− ρ.

When starting from the stronger assumption we can often amplify the success probability of A which
improves the success probability of the induced deterministic algorithm B(x) = A(x,E(x)). In
Theorems 1.1,1.3 and 1.4 the stronger assumption allows us to slightly amplify the success probability
of A before applying the theorem and this gives a clean statement in which the success probability of
the deterministic algorithm is 1 − ρ rather than 1 − 3ρ − 2−10m. In Theorems 1.6 and 1.7 we are
indifferent to polynomial slowdown and therefore can amplify the success probability so that the error
is exponentially small before we start.

• Theorem 3.4 does not require that A is “explicitly constructible”. It applies to any randomized algo-
rithm A. The assumption made in Theorems 1.1,1.3,1.4,1.6 and 1.7 that A is explicitly constructible is
only used to argue that B(x) = A(x,E(x)) is explicitly constructible and is not used in the analysis
showing that B weakly derandomizes A.

Some additional extensions of Theorem 3.4 are discussed in Section 3.4. In the next section we prove
Theorem 3.4.
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3.3 Proof of Theorem 3.4

We are given functions A : {0, 1}n × {0, 1}m → {0, 1}, f : {0, 1}n → {0, 1} and E : {0, 1}n → {0, 1}m

that satisfy the requirements of the theorem. In the remainder of the proof we consider a probability space
with two independent random variables X and R where X is uniformly distributed over {0, 1}n and R is
uniformly distributed over {0, 1}m. We define:

α = Pr[A(X, R) = f(X)]

β = Pr[A(X, E(X)) = f(X)]

We have that α ≥ 1− ρ and our goal is to show that β ≥ 1− 3ρ− 2−10m. Our strategy is to try and express
the two quantities α and β in a way that will allow us to relate them. Before doing so, it is convenient to
replace the random variable f(X) with a different random variable on which we have better control. We
note that by an averaging argument there exists r′ ∈ {0, 1}m such that:

Pr[A(X, r′) = f(X)] ≥ 1− ρ

In other words, the random variable A(X, r′) is a good approximation to f(X). We now consider modified
versions of the quantities α and β in which f(X) is replaced by A(X, r′):

α′ = Pr[A(X, R) = A(X, r′)]

β′ = Pr[A(X,E(X)) = A(X, r′)]

We have that Pr[A(X, r′) 6= f(X)] ≤ ρ and therefore |α− α′| ≤ ρ and |β − β′| ≤ ρ. Thus, the task of
proving Theorem 3.4 and showing that β ≥ 1− 3ρ− 2−10m reduces to the following lemma.

Lemma 3.6. β′ ≥ α′ − 2−10m.

In the remainder of this section we prove Lemma 3.6. For r ∈ {0, 1}m we will be interested in the event
{
A(X, r) = A(X, r′)

}
=

{
Ar,r′(X) = 1

}
.

We say that r is tiny if Pr[A(X, r) = A(X, r′)] < 2k−n and denote the set of tiny strings by T . The
parameters were chosen so that tiny strings take a “negligible fraction” of the weight:

∑

r∈T

Pr[A(X, r) = A(X, r′)] ≤
∑

r∈T

2k−n ≤ 2m · 2k−n ≤ 2−50m (3)

where the last step follows because k = n− 100m. Lemma 3.6 follows from the following two lemmata:

Lemma 3.7. α′ ≤ 2−m ·∑r 6∈T Pr[A(X, r) = A(X, r′)] + 2−50m.

Lemma 3.8. β′ ≥ 2−m ·∑r 6∈T Pr[A(X, r) = A(X, r′)]− 2−50m.

To conclude the proof we give the proofs of the two lemmata above.
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Proof. (of Lemma 3.7) Recall that α′ = Pr[A(X,R) = A(X, r′)].

α′ =
∑

r∈{0,1}m

Pr[A(X, r) = A(X, r′) ∧R = r]

=
∑

r∈{0,1}m

Pr[A(X, r) = A(X, r′)] · Pr[R = r]

= 2−m ·
∑

r∈{0,1}m

Pr[A(X, r) = A(X, r′)]

= 2−m ·

∑

r∈T

Pr[A(X, r) = A(X, r′)] +
∑

r 6∈T

Pr[A(X, r) = A(X, r′)]




≤ 2−m ·

2−50m +

∑

r 6∈T

Pr[A(X, r) = A(X, r′)]




≤ 2−50m + 2−m ·
∑

r 6∈T

Pr[A(X, r) = A(X, r′)]

where the first inequality follows from (3).

We are now ready to prove Lemma 3.8.

Proof. (of Lemma 3.8) Recall that β′ = Pr[A(X, E(X)) = f ′(X)]. We will analyze β′ in the same manner
as in Lemma 3.7. The difference is that the events {A(X, r) = A(X, r′)} and {E(X) = r} are correlated
(whereas in Lemma 3.7 the events {A(X, r) = A(X, r′)} and {R = r} are independent). In order to handle
the correlation we use the fact that E is an extractor for recognizable distributions. Specifically, for every
r 6∈ T , The distribution

Y = (X|A(X, r) = A(X, r′)) = (X|Ar,r′(X) = 1) = UAr,r′

is recognizable by CA and has min-entropy at least k. It follows that E(Y ) is ε-close to uniform and in
particular, Pr[E(Y ) = r] ≥ 2−m − ε. Recalling that ε = 2−100m this can be expressed as

Pr[E(X) = r|A(X, r) = A(X, r′)] ≥ 2−m − 2−100m
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and will be used in the calculation below.

β′ =
∑

r∈{0,1}m

Pr[A(X, r) = A(X, r′) ∧ E(X) = r]

=
∑

r∈{0,1}m

Pr[A(X, r) = A(X, r′)] · Pr[E(X) = r|A(X, r) = A(X, r′)]

≥
∑

r 6∈T

Pr[A(X, r) = A(X, r′)] · Pr[E(X) = r|A(X, r) = A(X, r′)]

≥
∑

r 6∈T

Pr[A(X, r) = A(X, r′)] · (2−m − 2−100m)

= 2−m ·
∑

r 6∈T

Pr[A(X, r) = A(X, r′)]− 2−100m ·
∑

r 6∈T

Pr[A(X, r) = A(X, r′)]

≥ 2−m ·
∑

r 6∈T

Pr[A(X, r) = A(X, r′)]− 2−100m · 2m

≥ 2−m ·
∑

r 6∈T

Pr[A(X, r) = A(X, r′)]− 2−50m

3.4 Extensions of the argument

Theorem 3.4 is quite general and in Section 4 we apply it on several classes of algorithms. We now explain
that the theorem can be further generalized in several ways and that these extensions can be used to prove
stronger versions of Theorems 1.1,1.3,1.4,1.6 and 1.7.

3.4.1 Non-boolean functions

The definitions of deterministic and randomized algorithms discuss algorithms that output one bit (that is
algorithms that solve decision problems). The definitions can be extended to algorithms that output values
in any set. This stronger version of Theorem 3.4 follows just the same as we never used the fact that the
output is Boolean.

3.4.2 Approximation algorithms

Given a deterministic algorithm B and a function f we say that B is successful on x if B(x) = f(x). This
notion is inherited by randomized algorithms A where we required that PrR←Um [A(x,R) = f(X)] ≥ 1−
ρ ≥ 2/3. Following the previous item we can discuss algorithms and functions that output real values. In that
case we may be interested in approximation algorithms and say that deterministic algorithm B is successful
on x if |B(x)−f(x)| ≤ µ where µ is some real number. We can extend this notion to randomized algorithms
and say that a randomized algorithm A is successful with probability 1− ρ if PrR←Um [|A(x,R)− f(x)| ≤
µ] ≥ 1− ρ ≥ 2/3.

Theorem 3.4 also applies in this setup. We only need to replace events of the form {A(·, ·) = f(·)}
with {|A(·, ·)− f(·)| ≤ µ}. This replacement should be made in the definition of CA and in the proof. The
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deterministic algorithm B(x) = A(x,E(x)) that we obtain will be successful (with respect to the quantity
2µ) on a 1− 2ρ− 2−10m fraction of the inputs.

4 Explicit versions of Yao’s lemma

In this section we prove explicit versions of Yao’s lemma for several concrete models of computations. The
proofs all follow by using Theorem 3.4 with a suitable extractor.

4.1 Communication protocols

In this section we prove Theorem 1.1 which gives an explicit version of Yao’s lemma for communication
protocols. In Section 4.1.1 we give a precise formal definition of the notion of explicitly constructible
communication protocols that is defined in loose terms in the introduction. In Section 4.1.2 we define 2-
source extractors and survey some constructions. In Section 4.1.3 we observe that 2-source extractors can
be viewed as extractors for distributions recognizable by low complexity communication protocols. Finally,
in Section 4.1.4 we apply Theorem 3.4 and prove Theorem 1.1.

4.1.1 Definitions of explicitly constructible communication protocols

Communication complexity was first considered by Yao [55] (see the book [31] by Nisan and Kushilevitz for
a comprehensive treatment). In this setup we think of the input x ∈ {0, 1}n as a pair of inputs x = (x1, x2)
where x1, x2 ∈ {0, 1}n/2. We imagine that there are two parties P1, P2 where Pi receives xi. The two
parties want to compute a function f(x) = f(x1, x2) by exchanging few bits of communication. For the
sake of simplifying the definitions we consider the setup in which P1 sends a bit on uneven rounds and P2

sends a bit on even rounds. (This at most doubles the amount of bits exchanged compared to the standard
definition of communication protocols). The output of the protocol is the last bit in the transcript and the
complexity is the number of bits in the transcript. A formal definition follows:

Definition 4.1 (communication protocols). A deterministic communication protocol over {0, 1}n with com-
plexity q is a function B : {0, 1}n → {0, 1} defined as follows: We think of x ∈ {0, 1}n as x = (x1, x2)
where |x1| = |x2| = n/2. We require that there exists a protocol function π which is a function that given
x′ ∈ {0, 1}n/2 and a string v of length at most q outputs a bit (which specifies “the next bit to be sent in
the protocol”). Given x ∈ {0, 1}n we define the bit communicated at step i (denoted by Mi(x)) as follows:
M1(x) = π(x1, ε) (where ε is the empty string) and for j ≥ 1, M2j+1(x) = π(x1,M1(x)◦. . .◦M2j(x)) and
M2j+2(x) = π(x2,M1(x) ◦ . . . ◦M2j+1(x)). The transcript of the protocol is Q(x) = M1(x) ◦ . . . ◦Mq(x)
and finally the output is given by the last bit in the transcript, that is B(x) = Mq(x). (The definition can be
extended to the case where B outputs many bits in which case we require that the output of B is determined
by the transcript).

A randomized communication protocol over {0, 1}n with complexity q and m coins is a function A :
{0, 1}n×{0, 1}m → {0, 1} such that for every r ∈ {0, 1}m the function Ar(x) = A(x, r) is a deterministic
communication protocol.

We now define explicitly constructible communication protocols. Loosely speaking, the definition re-
quires that the strategy of each of the two parties is computable by a polynomial-time machine.

Definition 4.2 (Explicitly constructible communication protocols). Let q(n) be an integer function com-
putable in time polynomial in n. Let B = {Bn} be a family of deterministic communication protocols
where Bn is over {0, 1}n and has complexity q(n). The family is explicitly constructible if there exists a
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polynomial-time Turing machine that given input (n, y) (where y is an input to the protocol function πn

associated with Bn) outputs πn(y).
Let q(n),m(n) be integer functions computable in time polynomial in n. A family A = {An} of ran-

domized communication protocols (where An is over {0, 1}n with complexity q(n) and m(n) coins) is
explicitly constructible if there exists a polynomial-time Turing machine which given input (n, r, y) (where
r ∈ {0, 1}m(n) and y is an input to the protocol function πn,r associated with An(·, r)) outputs πn,r(y).

In particular Definition 4.2 requires that whenever a party needs to send a bit in the communication
protocol, this bit can be computed in polynomial-time as a function of the party’s view (that is his input, pre-
viously exchanged communication and public random string if one exists). In contrast, note that definition
4.1 allows protocols in which computing the next bit to be sent takes exponential time.

4.1.2 2-source extractors

2-source extractors were introduced by [44, 9]. A definition follows.

Definition 4.3. A function E : {0, 1}n/2 × {0, 1}n/2 → {0, 1}m is a (k, ε)-2-source-extractor if for every
two independent distributions X1, X2 over {0, 1}n/2 such that H∞(X1) + H∞(X2) ≥ k the distribution
E(X1, X2) is ε-close to Um.

We sometimes think of E as a function that takes one input of length n. We remark that the definition
we use here is less common in the literature and that it is often required that min(H∞(X1),H∞(X2)) is
large. We choose the formulation above as it makes the calculations we need to make more similar to those
that come up next for decision trees and streaming algorithms. We stress however that we could have used
the more standard formulation with a slightly more careful analysis.

There are explicit constructions of 2-source extractors in the literature [9, 53, 7]. We are interested in a
“less challenging” setup in which k = 9n/10 and use the following theorem due to [53, 9] that variants of
the Hadamard matrix yield extractors (see e.g. [12] for a proof).

Theorem 4.4. [53, 9, 12] There exists a constant η > 0 such that for sufficiently large n there is a function
EHad : {0, 1}n/2 × {0, 1}n/2 → {0, 1}ηn that is computable in polynomial-time and linear space such that
E is a (9n/10, 2−300ηn)-2-source extractor.

We are going to use the extractor EHad to construct a 2-source extractor E that can extract from dis-
tributions with min-entropy k = n − ∆ and can be implemented by explicitly constructible deterministic
communication protocols with complexity O(∆).

Theorem 4.5. Let ∆(n) ≥ m(n) be integer functions computable in time polynomial in n. Assume that
∆(n) ≤ ηn where η is the constant from Theorem 4.4. There is an explicitly constructible family of deter-
ministic communication protocols E = {En} of complexity ∆(n)/η such that for every sufficiently large n,
En : {0, 1}n → {0, 1}m(n) is an (n−∆(n), 2−300m(n))-2-source extractor.

Proof. Given functions ∆(n) ≥ m(n) we consider the extractor EHad when applied on inputs of length
∆(n)/η ≤ n. The output length of this extractor is ∆(n) and we chop it to length m(n). Note that this
extractor has error ε ≤ 2−300m(n).

Given x = (x1, x2) of length n, we construct En(x) by applying EHad on the first ∆(n)/2η bits
of x1 and x2. More precisely, Let T = {1, . . . ,∆(n)/2η} and define En(x1, x2) = Ehad(x1|T , x2|T ).
We first note that this indeed gives that E = {En} is an explicitly constructible family of deterministic
communication protocols of complexity ∆(n)/η. More precisely, each party sends the first ∆(n)/2η bits
of his input and then each of the parties can apply the explicit extractor EHad.
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Let X1, X2 be independent distributions (where each one is over {0, 1}n/2) and H∞(X1)+H∞(X2) ≥
n − ∆(n). Let X ′

1 = X1|T and X ′
2 = X2|T . By Lemma 2.1 we have that for i ∈ {1, 2}, H∞(X ′

i) ≥
H∞(Xi)− (n/2− |T |). Note that X ′

1, X
′
2 are independent and

H∞(X ′
1) + H∞(X ′

2) ≥ H∞(X1) + H∞(X2)− 2(n/2− |T |) ≥ 2|T | −∆(n)

We can assume w.l.o.g. that η ≤ 1/10 and therefore:

H∞(X ′
1) + H∞(X ′

2) ≥ ∆(n)/η −∆(n) ≥ 9
10
· ∆(n)

η

It follows that En(X1, X2) = EHad(X ′
1, X

′
2) is 2−300m(n)-close to uniform as required.

4.1.3 Extractors for distributions recognizable by communication protocols

We now observe that 2-source extractors can be viewed as extractors for distributions recognizable by low
complexity communication protocols.

Theorem 4.6. If E : {0, 1}n/2 ×{0, 1}n/2 → {0, 1}m is a (k− q− log(1/ε), ε)-2-source extractor then E
is a (k, 2ε)-extractor for distributions recognizable by communication protocols of complexity q.

Proof. Let X be a distribution over {0, 1}n that is recognizable by communication protocols of complexity
q and let B : {0, 1}n/2 × {0, 1}n/2 → {0, 1} be a communication protocol that recognizes it. We are
assuming that H∞(X) ≥ k which means that |Supp(X)| ≥ 2k.

Let Q : {0, 1}n → {0, 1}q be the function that maps the input x = (x1, x2) to the transcript Q(x) of
the protocol B(x). Let Sv = {x : Q(x) = v}. As B is a communication protocol we have that for every
v ∈ {0, 1}q there exist sets T 1

v , T 2
v ⊆ {0, 1}n/2 such that Sv = T 1

v × T 2
v . Furthermore as the answer of B

on x is determined by the transcript Q(x), there exists a subset V ⊆ {0, 1}q such that

Supp(X) = {x : B(x) = 1} =
⋃

v∈V

Sv =
⋃

v∈V

(T 1
v × T 2

v ).

We say that v is tiny if |Sv| ≤ 2k−q−log(1/ε) which implies Pr[Q(X) = v] ≤ 2−(q+log(1/ε)). We denote the
set of tiny v by T . Note that

∑

v∈V ∩T

Pr[Q(X) = v] ≤ 2q · 2−(q+log(1/ε)) = ε

For every v ∈ V \ T we have that the distribution Xv = (X|Q(X) = v) can be written as a distribution
(X1, X2) where X1, X2 are independent and H∞(X1) + H∞(X2) = log |Sv| ≥ k − q − log(1/ε). Thus,
for every such v, E(Xv) is ε-close to uniform. We can express X as a convex combination

X =
∑

v∈V

Pr[Q(X) = v] ·Xv

and thus,

E(X) =
∑

v∈V

Pr[Q(X) = v] · E(Xv) =
∑

v∈V \T
Pr[Q(X) = v] · E(Xv) +

∑

v∈V ∩T

Pr[Q(X) = v] · E(Xv)

the distributions on the left term are all ε-close to uniform and the overall weight of the right term is bounded
by ε. Overall we have that E(X) is 2ε-close to uniform.
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4.1.4 Applying the main theorem

We prove Theorem 1.1 by applying Theorem 3.4 using the extractor E from Theorem 4.5.

Proof. (of Theorem 1.1) Let A = {An} be an explicitly constructible family of randomized communication
protocols with complexity q(n) and m(n) coins. Let η > 0 be the constant from Theorems 4.4 and 4.5.
Fix some integer n and let ∆(n) = 2q(n) + 300m(n). In the assumption of Theorem 1.1 we assume that
there exist a constant β > 0 such that m(n) ≤ βn − q(n). We can choose β so that ∆(n) ≤ ηn. Note
that by the definition of ∆(n) we have that m(n) ≤ ∆(n). We meet the conditions of Theorem 4.5 and
let En be the (n − ∆(n), 2−300m(n))-2-source extractor from Theorem 4.5. Let k = n − 100m(n) and
note that by Theorem 4.6 En is a (k, 2−100m(n))-extractor for distributions recognizable by communication
protocols of complexity 2q(n). Every function C ∈ CAn can be computed by a communication protocol
of complexity 2q(n). This is because C is determined by the outputs of An(x, r) and An(x, r′) for some
r, r′ ∈ {0, 1}m and both An(·, r), An(·, r′) have communication protocols of complexity q(n). Overall, we
meet the conditions of Theorem 3.4 and can conclude that the function Bn(x) = An(x,En(x)) satisfies:

Pr
X←Un

[Bn(X) = fn(X)] ≥ 1− 3ρ(n)− 2−10m(n)

It is left to verify that B = {Bn} is an explicitly constructible family of deterministic communication
protocols with complexity O(m(n)+q(n)). This follows as by Theorem 4.5 E is an explicitly constructible
family of deterministic communication protocols with complexity O(∆(n)) = O(m(n) + q(n)). Thus, we
can implement Bn by first running En and then applying An.

Finally, note that the success of B is 1 − 3ρ(n) − 2−10m(n) and not 1 − ρ(n) as promised. However,
this can be fixed if we slightly amplify the success probability of A before the argument. First note that the
Theorem holds trivially if ρ = 0. Thus we can assume that ρ > 0 and as A tosses m(n) coins this implies
that ρ(n) ≥ 2−m(n). Thus, 1−3ρ−2−10m(n) ≥ 1−4ρ. By a constant number of repetitions we can amplify
the success probability of A from 1− ρ to 1− ρ(n)/4 and this amplification only increases m(n) and q(n)
by a constant factor and does not affect the asymptotic behavior of the parameters in the theorem. Applying
Theorem 3.4 we now get that the success of B is indeed at least 1− ρ(n) as required.

4.2 Decision trees

In this section we prove Theorem 1.3 which gives an explicit version of Yao’s lemma for decision trees. In
Section 4.2.1 we give a precise formal definition of the notion of explicitly constructible decision trees that
is defined loose terms in the introduction. In Section 4.2.2 we define extractors for bit-fixing sources and
survey some constructions. In Section 4.2.3 we observe that extractors for bit-fixing sources can be viewed
as extractors for distributions recognizable by low complexity decision trees. Finally, in Section 4.2.4 we
apply Theorem 3.4 and prove Theorem 1.3.

4.2.1 Formal definition of explicitly constructible decision trees

Decision trees are “sublinear time” algorithms which have random access to the input and need to compute
a function of the input by making few queries into the input. The reader is referred to [8] for a survey article
on decision trees. A formal definition follows:

Definition 4.7 (Decision trees). A deterministic decision tree over {0, 1}n with complexity q is a function
B : {0, 1}n → {0, 1} defined as follows: We consider the full binary tree Tq of height q and require that
there exists a labeling function L that labels the nodes of Tq in the following way: internal nodes v of Tq

are labeled by a number L(v) ∈ [n] and leaves v of Tq are labeled by a bit L(v). Given an input x, B(x)
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is defined by “following the path that corresponds to x in Tq”. More precisely, starting at the root, on any
node v we choose the child of v according to the value of xL(v). This process defines a leaf v of the tree
Tq we denote this leaf by Q(x). Finally, we define B(x) = L(Q(x)) that is “the label of the leaf that is
associated with x in the tree”. (Note that this also makes sense in case that B outputs many bits.)

A randomized decision tree over {0, 1}n with complexity q and m coins is a function A : {0, 1}n ×
{0, 1}m → {0, 1} such that for every r ∈ {0, 1}m the function Ar(x) = A(x, r) is a deterministic decision
tree.

We now define explicitly constructible decision trees. Loosely speaking, the definition requires that the
decision which variable to query can be computed efficiently. In the definition below “efficiently” means
time polynomial in log n + q(n).

Definition 4.8 (Explicitly constructible decision trees). Let q(n) be an integer function that can be computed
in time polynomial in log n. Let B = {Bn} be a family of deterministic decision trees where Bn is over
{0, 1}n and has complexity q(n). The family is explicitly constructible if there exists a polynomial-time
Turing machine which given input (n, v) (where v is a node in the binary tree Tq(n) encoded as q(n) + 1 bit
long string) outputs L(v) where L is the labeling function associated with Bn.

Let q(n), m(n) be integer functions that can be computed in time polynomial in log n. A family A =
{An} of randomized decision trees (where An is over {0, 1}n with complexity q(n) and m(n) coins) is
explicitly constructible if there exists a polynomial-time Turing machine which given input (n, r, v) (where
r ∈ {0, 1}m(n) and v is a node of Tq(n)) outputs L(v) where L is the labeling function associated with
An(·, r).

We remark that explicitness of decision trees can be defined in several natural ways and the results do
not depend on the precise definition given in Definition 4.8.

Remark 4.9 (Decision trees and sublinear time algorithms). In definition 4.8 we are requiring that whenever
the tree needs to make a new query, that query can be computed in time polynomial in log n+q(n). Thus, for
q(n) ≥ log n the overall computation can be simulated by a machine that runs in time polynomial in q(n)
that has random access to the input. Using this definition gives that our model of explicitly constructible
deterministic decision trees captures uniform deterministic sublinear time algorithms that run in time poly-
nomial in q(n), and that for m(n) = q(n)O(1) our model of randomized decision trees captures uniform
randomized sublinear algorithms that run in time polynomial in q(n). An alternative definition would allow
the machine to run in time polynomial in n (rather than polynomial in log n + q(n)). (We can also allow
q(n),m(n) to be computable in time polynomial in n rather than log n). This less stringent requirement
still gives that any function computed by an explicitly constructible decision trees is also computable by
polynomial-time machines. Our results also hold in the less stringent model.

4.2.2 Extractors for bit-fixing sources

Bit-fixing sources were introduced by Chor et al. [10]. (We remark that the variant we consider in this paper
is sometimes called oblivious bit-fixing sources).

Definition 4.10 (bit-fixing source). A distribution X over {0, 1}n is a k-bit-fixing source if there exists a
subset S = {i1, . . . , ik} ⊆ [n] such that Xi1 , Xi2 , . . . , Xik is uniformly distributed over {0, 1}k and for
every i 6∈ S, Xi is constant.

We now define extractors for bit-fixing sources.

Definition 4.11. A function E : {0, 1}n → {0, 1}m is a (k, ε)-bit-fixing source extractor if for every k-bit-
fixing source X over {0, 1}n the distribution E(X) is ε-close to Um.

19



There are many constructions of bit-fixing source extractors in the literature [10, 5, 11, 33, 27, 16, 41].
We are interested in a “less challenging” setup in which k = 9n/10 and use the following theorem which is
a special case of a theorem by Kamp and Zuckerman.

Theorem 4.12. [27] There exists a constant η > 0 such that for sufficiently large n there is a poly(n)-time
computable function EKZ : {0, 1}n → {0, 1}ηn that is a (9n/10, 2−300ηn)-bit-fixing source extractor.

We are going to use the extractor EKZ to construct an extractor E that can extract from k-bit-fixing
sources with k = n − ∆ and can be implemented by explicitly constructible deterministic decision trees
with complexity O(∆). The argument below is very similar to the proof of Theorem 4.5.

Theorem 4.13. Let ∆(n) ≥ m(n) be integer functions that can be computed in time polynomial in log n.
Assume that ∆(n) ≤ ηn where η is the constant from Theorem 4.12. There is an explicitly constructible
family of deterministic decision trees E = {En} of complexity ∆(n)/η such that for every sufficiently large
n, En : {0, 1}n → {0, 1}m(n) is a (n−∆(n), 2−300m(n))-bit-fixing source extractor.

Proof. Given functions ∆(n) ≥ m(n) we consider the extractor EKZ when applied on inputs of length
∆(n)/η ≤ n. The output length of this extractor is ∆(n) and we chop it to length m(n). Note that this
extractor has error ε ≤ 2−300m(n).

Given x of length n, we construct En(x) by applying EKZ on the first ∆(n)/η bits of x. More precisely,
Let T = {1, . . . ,∆(n)/η} and define En(x) = EKZ(xT ). We first note that this indeed gives that E =
{En} is an explicitly constructible family of deterministic decision trees of complexity ∆(n)/η. This is
because the function EKZ can be computed in polynomial-time.

Let X be a (n −∆(n))-bit-fixing source over {0, 1}n and let S ⊂ [n] be the set of size n −∆(n) that
is associated with it. We can assume w.l.o.g. that η ≤ 1/10 and therefore:

|S ∩ T | ≥ |T | −∆(n) ≥ ∆(n)/η −∆(n) ≥ 9
10
· ∆(n)

η

It follows that XT is a k-bit-fixing source with k ≥ 9
10 · ∆(n)

η and therefore En(X) = EKZ(XT ) is
2−300m(n)-close to uniform as required.

4.2.3 Extractors for distributions recognizable by decision trees

We now observe that extractors for bit-fixing sources can be viewed as extractors for distributions recogniz-
able by low complexity decision trees.

Theorem 4.14. If E : {0, 1}n → {0, 1}m is a (n− q, ε)-bit-fixing source extractor then for every k, E is a
(k, ε)-extractor for distributions recognizable by decision trees of complexity q.

Proof. Let X be a distribution over {0, 1}n that is recognizable by decision trees of complexity q and let
B : {0, 1}n → {0, 1} be a decision tree that recognizes it. Let Q : {0, 1}n → {0, 1}q be the function that
maps the input x to the leaf Q(x) of the decision tree B(x). Let Sv = {x : Q(x) = v}. As B is a decision
tree we have that for every leaf v ∈ {0, 1}q there exist i1, . . . , iq ∈ [n] (the variables queried on the path to
v) such that Sv =

{
x ∈ {0, 1}n : ∀j ∈ [q], xij = vj

}
. Furthermore as the answer of B on x is determined

by the leaf Q(x), there exists a subset V ⊆ {0, 1}q such that

Supp(X) = {x : B(x) = 1} =
⋃

v∈V

Sv.
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For every v ∈ V we have that the distribution Xv = (X|Q(X) = v) can be written as a (n − q)-bit-fixing
source. Thus, for every such v, E(Xv) is ε-close to uniform. We can express X as a convex combination

X =
∑

v∈V

Pr[Q(X) = v] ·Xv

and thus,
E(X) =

∑

v∈V

Pr[Q(X) = v] · E(Xv)

Overall we have that E(X) is ε-close to uniform.

4.2.4 Applying the main theorem

Theorem 1.3 follows by applying Theorem 3.4 using the extractor E from Theorem 4.13 and noting that by
Theorem 4.14 this extractor meets the requirements of Theorem 3.4. The argument and parameter choices
are identical to that used in Section 4.1.4 to prove Theorem 3.4. (In fact, Theorem 4.14 has better parameters
than Theorem 4.6 but we do not gain when using the superior parameters). We omit the precise details.

4.3 Streaming algorithms

In this section we prove Theorem 1.4 which gives an explicit version of Yao’s lemma for streaming algo-
rithms. In Section 4.3.1 we give a precise formal definition of the notion of explicitly constructible streaming
algorithms that is defined in loose terms in the introduction. In Section 4.3.2 we construct the extractors that
we need in this application using 2-source extractors. Finally, in Section 4.3.3 we apply Theorem 3.4 and
prove Theorem 1.4.

4.3.1 Formal definition of explicitly constructible streaming algorithms

A streaming algorithm (see e.g. [3, 15]) is an algorithm that reads its input “in one pass” using sublinear
space. The complexity q of such an algorithm is the length (in bits) of the state that it keeps when scanning
the input. At each step the algorithm B(x) reads a bit from the input and updates its state by some tran-
sition function. The algorithm is explicitly constructible if updating the state (that is running the transition
function) can be done in polynomial-time and linear space. A precise definition of deterministic streaming
algorithms follows.

Definition 4.15 (Deterministic streaming algorithms). A deterministic streaming algorithm over {0, 1}n

with complexity q is a function B : {0, 1}n → {0, 1} defined as follows: We require that there exists a
transition function δ : {0, 1}q × {0, 1} → {0, 1}q. Given x ∈ {0, 1}n we define the state at step i (denoted
by τi(x)) as follows: τ0(x) is the string of q zeros and for j ≥ 1, τj(x) = δ(τj−1(x), xj). The output of
B(x) is the first bit in the final state.

Let q(n) be an integer function that can be computed in time polynomial in log n and space O(log n). Let
B = {Bn} be a family of deterministic streaming algorithms where Bn is over {0, 1}n and has complexity
q(n). The family is explicitly constructible if there exists a polynomial-time Turing machine that runs in
linear space and when given input (n, v, b) where v ∈ {0, 1}q(n) and b ∈ {0, 1}, computes δn(v, b) where
δn is the transition function associated with Bn.

Remark 4.16 (Streaming algorithms that output many bits). There are two possible definitions of streaming
algorithms that output many bits. We can require that the algorithm produces its entire output at the end
(as we do in Definition 4.15). Alternatively, we can allow the algorithm to “print” output bits on the fly.

21



To demonstrate the difference between models, note that the second notion allows a streaming algorithm to
compute the identity function with sublinear complexity whereas the first notion does not (as the algorithm
must remember the output when it finishes reading the input). When we refer to streaming algorithms
that output many bits we use the first notion. In particular, Theorem 1.4 and 1.5 also hold for streaming
algorithms that output many bits using the first notion. The proofs fail if we use the second notion. This is
because the proofs rely on the fact that the output of the algorithm is determined by its final state.

We consider two notions of randomized streaming algorithms depending on whether the algorithm has
one-way access or two-way access to its random coins. In the one-way access case we consider algorithms
that toss coins on the fly. At each step, such an algorithm A(x, r) may either read the next bit from the input
x or the next bit from the “sequence of random coins” r. This is decided by a value of a “decision function”
d that is applied on the internal state. The algorithm is explicitly constructible if both the transition and
decision functions can be computed in polynomial-time and linear space.

Definition 4.17 (Randomized streaming algorithms with one-way access to randomness). A randomized
streaming algorithm with one-way access to randomness over {0, 1}n with complexity q and m random
coins is a function A : {0, 1}n × {0, 1}m → {0, 1} defined as follows: We require that there exist a
transition function δ : {0, 1}q × {0, 1} → {0, 1}q and a decision function d : {0, 1}q → {0, 1}. Given
x ∈ {0, 1}n and r ∈ {0, 1}m we define the state at step i (denoted by τi(x, r)) as follows: τ0(x, r) is the
string of q zeros. For j ≥ 1 we define τj(x, r) = δ(τj−1(x, r), b) where b is the first bit not yet read from x
if d(τj−1(x, r)) = 0, and b is the first bit not yet read from r otherwise. The output of the algorithm A(x, r)
is the first bit of the final state.

Let q(n),m(n) be integer functions computable in time polynomial in log n and space O(log n). A
family A = {An} of randomized streaming algorithms with one-way access to randomness (where An is
over {0, 1}n with complexity q(n) and m(n) coins) is explicitly constructible if there exist two polynomial-
time Turing machines that run in linear space and when given input (n, v, b) where v ∈ {0, 1}q(n) and
b ∈ {0, 1} the first machine computes δn(v, b) and the second machine computes dn(v) where δn, dn are the
transition and decision functions associated with An.

We now consider randomized algorithms A(x, r) that are allowed two-way access to their randomness.
The definition

The two-way access case resembles the way we previously defined randomized communication proto-
cols and streaming algorithms. In this case we only require that the algorithm A(·, r) is a deterministic
streaming algorithm for every r.

Definition 4.18 (Randomized streaming algorithms with two-way access to randomness). A randomized
streaming algorithm with two-way access to randomness over {0, 1}n with complexity q and m coins is a
function A : {0, 1}n×{0, 1}m → {0, 1} such that for every r ∈ {0, 1}m the function Ar(x) = A(x, r) is a
deterministic streaming algorithm.

Let q(n),m(n) be integer functions computable in time polynomial in log n and space O(log n). A
family A = {An} of randomized streaming algorithms with two-way access to randomness (where An is
over {0, 1}n with complexity q(n) and m(n) coins) is explicitly constructible if there exists a polynomial-
time Turing machines that runs in linear space and when given input (n, v, b, r) where v ∈ {0, 1}q(n),
r ∈ {0, 1}m and b ∈ {0, 1} computes δn,r(v, b) where δn,r is the transition function associated with An(·, r).

In the definition above the input to the machine is of length log n+q(n)+m(n). Thus, the running time
and space may be larger than allowed to algorithms with one-way access if m(n) À q(n) ≥ log n. This
gives algorithms with two-way access to randomness an “unfair” advantage over algorithms with one-way
access. Nevertheless, we use this definition as it makes our results in Theorem 1.5 stronger.
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In the remainder of this section we prove Theorem 1.4 that shows how to weakly derandomize random-
ized streaming algorithms that toss a sublinear amount of random coins even when allowing 2-way access to
randomness. Before proceeding with the proof, we first show that Theorem 1.5 follows from Theorem 1.4.
Theorem 1.5 discusses randomized algorithm with one-way access to randomness that toss a polynomial
number of coins. As we now explain, it is possible to reduce the number of random bits used by such algo-
rithms while only slightly increasing their complecity. A celebrated result by Nisan [36] (see also [21, 42])
explicitly constructs pseudorandom generators against bounded space algorithms that have one-way access
to randomness. Using these pseudorandom generators any randomized algorithm with complexity q and
one-way access to poly(n) random coins can be converted to one that uses only O(q log n) random coins
(where q is the complexity of the initial algorithm). The target algorithm runs the pseudorandom generator
using its input randomness as seed whenever the original algorithm tosses a coin and needs 2-way access
to randomness. This can be bypassed by storing the random coins in the internal memory and this requires
additional storage of O(q log n) bits. We state a corollary of Nisan’s pseudorandom generator for explicitly
constructible streaming algorithms below.

Theorem 4.19 (Corollary of [36]). Let A = {An} be an explicitly constructible family of randomized
streaming algorithms with one-way access to randomness. Assume that the family A has complexity q(n) ≥
log n and a polynomial number of coins and that for every n, An computes a function fn : {0, 1}n → {0, 1}
with success 1 − ρ(n) ≥ 2/3. Then, there is an explicitly constructible family A′ = {A′n} of randomized
streaming algorithms with one-way access to randomness, complexity O(q(n) log n) and O(q(n) log n)
coins such that for every n, A′n computes fn with success 1− ρ(n)− 2−q(n).

Together, Theorem 1.4 and Theorem 4.19 imply Theorem 1.5. In the remainder of this section we prove
Theorem 1.4.

4.3.2 Extractors for distributions recognizable by streaming algorithms

We are interested in constructing extractors for distributions recognizable by streaming algorithms. We show
how to construct such extractors using ideas similar to those used in [30, 26] in the context of extractors for
sources samplable by small width branching programs. In fact, our task will be easier as we are once again
interested in the “high entropy case”.

Theorem 4.20. There exists a constant λ > 0 such that the following holds: Let q(n),m(n) be integer
functions that can be computed in time polynomial in log n and space O(log n) and assume that q(n) +
m(n) ≤ λn. There is an explicitly constructible family of deterministic streaming algorithms E = {En}
of complexity O(q(n) + m(n)) such that for every sufficiently large n, En : {0, 1}n → {0, 1}m(n) is a
(n − 100m(n), 2−100m(n))-extractor for distributions recognizable by streaming algorithms of complexity
q(n). Furthermore, En only depends on a prefix of its input of length O(q(n) + m(n)).

Proof. Let ∆(n) = q(n) + 300m(n) and let η > 0 be the constant from Theorem 4.4. Let `(n) =
max(10∆(n),m(n)/η) and note that `(n) = O(q(n) + m(n)). We can choose the constant λ > 0 in
the theorem statement to be sufficiently small so that `(n) ≤ n. We apply Theorem 4.4 and let E′

n :
{0, 1}`(n)/2 × {0, 1}`(n)/2 → {0, 1}η`(n) be a (9`(n)/10, 2−300η`(n))-2-source extractor from the theorem.
We have that m(n) ≤ η`(n) and can chop the output of E′

n to length m(n) and then the error of E′
n is

less than 2−300m(n). Let T1 = {1, . . . , `(n)/2}, T2 = {`(n)/2 + 1, . . . , `(n)} and define En : {0, 1}n →
{0, 1}m(n) by

En(x) = E′
n(xT1 , xT2)

We now observe that E = {En} can trivially be implemented by an explicitly constructible family of
deterministic streaming algorithms with complexity O(q(n) + m(n)). Consider a streaming algorithm that
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given x ∈ {0, 1}n reads xT1∪T2 and stores it in its memory (this takes space `(n) = O(q(n) + m(n))). At
this point it applies E′

n (that can be computed in time polynomial in `(n) and space O(`(n)) by Theorem
4.4).

We now show that En is a (n−100m(n), 2−100m(n))-extractor for distributions recognizable by stream-
ing algorithms of complexity q(n). Fix some integer n and let X be a distribution on {0, 1}n with H∞(X) ≥
n− 100m(n) and such that X is recognized by a deterministic streaming algorithm B of complexity q(n).
For x ∈ {0, 1}n let s(x) denote the state of B after reading `(n)/2 bits of x. For y ∈ {0, 1}q(n) let
Xy = (X|s(X) = y). We have that X is uniform over {x ∈ {0, 1}n : B(x) = 1} and therefore Xy is uni-
form over {x ∈ {0, 1}n : B(x) = 1, s(X) = y}. It follows that for every y ∈ {0, 1}q(n) the distributions
Xy

T1
, Xy

T2
are independent. This is because after reading `(n)/2 bits, B only remembers the state y. We

define Y = s(X) and using Lemma 2.2 we have that with probability 1− 2−200m(n) over y ← Y ,

H∞(Xy) ≥ H∞(X)− q(n)− 200m(n) ≥ n− q(n)− 300m(n).

We call y ∈ {0, 1}q good if the condition above holds. For each good y by Lemma 2.1

H∞(Xy
T1∪T2

) ≥ `(n)− q(n)− 300m(n) ≥ 9`(n)/10

It follows that for every good y, En(Xy) = E′
n(Xy

T1
, Xy

T2
)) is 2−300m(n)-close to uniform. Overall we have

that En(X) is 2−100m(n)-close to uniform as required.

4.3.3 Applying the main theorem

Theorem 1.4 follows by applying Theorem 3.4 using the extractor E from Theorem 4.20. The proof is
very similar to the previous arguments for communication protocols and decision trees and therefore we
only highlight the differences. Similarly to the previous proofs, given a randomized streaming algorithm
A = {An} with complexity q(n) and m(n) coins we have that every function in CAn can be computed by
a deterministic streaming algorithm of complexity 2q(n). Therefore, Theorem 4.20 (setting the complexity
to 2q(n)) is precisely what we need in Theorem 3.4. Finally we note that B(x) = A(x, E(x)) can be
implemented by an explicitly constructible streaming algorithm of complexity O(q(n) + m(n)). This is
done by first reading ` = O(q(n)+m(n)) bits of the input x and storing them in memory. By Theorem 4.20
we can now compute E(x) (without reading the rest of the input x). At this point we simulate A(x, E(x))
which requires one-way access to x. As we already read ` bits of x we use the bits stored in memory first
and once A wants to read bit (`+1) of x we access x directly and continue reading more bits from the input
x.

4.4 Constant-depth algorithms

In this section we prove Theorem 1.6 which gives an explicit version of Yao’s lemma for AC0 algorithms.
In Section 4.4.1 we construct the extractors that we need in this application. These extractors are based on
the hardness of the parity function. Finally, in Section 4.4.2 we apply Theorem 3.4 and prove Theorem 1.6.

4.4.1 Extractors for distributions recognized by constant-depth circuits

For this application we construct the following extractor.

Theorem 4.21. For any constants c, d, e > 1 there is a constant d′ > 1 and a uniform family E = {En} of
circuits of polynomial-size and depth d′ such that En : {0, 1}n → {0, 1}m for m(n) = (log n)e and En is
a (n− 100m(n), 2−100m(n))-extractor for sources recognizable by circuits of size nc and depth d.
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The key ingredient in the proof is the classical results of Hastad on hardness of the parity function.

Theorem 4.22 (Hardness of parity [19]). Let pn : {0, 1}n → {0, 1} denote the parity function on n bits. For
every integer d, sufficiently large n, and every circuit C of size t = 2n1/(d+1)

and depth d, PrY←Un [C(Y ) =
pn(Y )] ≤ 1/2 + t−1.

It is easy to see that Theorem 4.22 implies that the parity function is an extractor for high values of k.

Theorem 4.23 (Parity is an extractor). For every integer d and large enough n, let t = 2n1/(d+1)
and assume

that ∆ ≤ n1/3d (so that 2−2∆ > t−1). Then pn is a (n − ∆, 2−∆)-extractor for sources recognizable by
circuits of size s = t−O(1) and depth d.

Proof. Assume otherwise. Then there exists a distribution X over {0, 1}n that is recognizable by circuits
of size s and depth d such that H∞(X) ≥ n−∆ and pn(X) is not (2−∆)-close to uniform. Let R(x) be a
circuit that recognizes X and consider the following probabilistic circuit C(x) which on input x ∈ {0, 1}n

runs R(x). If R(x) outputs one, then C outputs the more likely value of pn on X (this constant an can be
hardwired to C). Otherwise, C outputs a random bit. We now compute the success probability of C on a
uniformly chosen input Y ← {0, 1}n.

Pr[C(Y ) = pn(Y )] ≥ 1/2 + Pr[R(Y ) = 1] · 2−∆ ≥ 1/2 + 2−2∆ > 1/2 + t−1

Note that C has size s + O(1) ≤ t and depth d + 1. By a standard argument we can transform C into a
deterministic circuit with the same complexity and thus, we get a contradiction to Theorem 4.22.

In fact, when transforming C into a deterministic circuit we obtain one of the following four circuits
(depending on the constant an and the choice of the random bit): the constant zero, the constant one, the
circuit R or the negation of R. All these circuits have depth that is bounded by the depth of R and so the
final depth is d and not d + 1.

For our application we need extractors that output many bits. We do this by applying the parity function
on disjoint blocks of the input. The theorem below shows that using the construction above produces an
extractor. We introduce the following notation: Let n and ` be integers. Given a string x ∈ {0, 1}n

we consider a partition of x into n/` substrings where each is of length `. We denote these strings by
x[1], . . . , x[`].

Theorem 4.24. Let m ≤ n/` and let E′ : {0, 1}` → {0, 1} be a (` − (∆ + log(3m/ε)), ε/2m)-
extractor for sources recognizable by size s and depth d. Let E : {0, 1}n → {0, 1}m be defined by
E(x) = E′(x[1]), . . . , E′(x[m]). Then E is a (n−∆, ε)-extractor for distributions recognizable by circuits
of size s− n and depth d.

Proof. Assume otherwise. Then there exists a distribution X over {0, 1}n that is recognizable by circuits of
size s−n and depth d such that H∞(X) ≥ n−∆ and E(X) is not ε-close to uniform. Let R(x) be a circuit
that recognizes X . By a standard hybrid argument the fact that E(X) is not ε-close to uniform gives that it
is possible to predict the next bit of E(X) at some index i. More precisely, that there exists 1 ≤ i ≤ m and
a “predictor function” P : {0, 1}i−1 → {0, 1} such that:

Pr[P (E′(X[1]), . . . , E′(X[i− 1])) = E′(X[i])] ≥ 1/2 + ε/m

Given x ∈ {0, 1}n and 1 ≤ i ≤ n/` we use x−i to denote x[1], . . . , x[i − 1], x[i + 1], . . . , x[n/`] (that
is all the coordinates of x except x[i]). For a ∈ ({0, 1}`)n/`−1 we consider the event Aa =

{
X−i = a

}
. By

an averaging argument we have that with probability at least ε/2m over the choice of a ← X−i it holds that
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Pr[P (E′(X[1]), . . . , E′(X[i− 1])) = E′(X[i]) | Aa] ≥ 1/2 + ε/2m

We call an a that satisfies the condition above “predicting”. We call an a such that H∞(X[i]|Aa) ≥
`−∆− log(3m/ε) “heavy”. By Lemma 2.2 with probability at least 1− ε/3m over the choice of a ← X−i

the element a is heavy. It follows that there exists an element a in the support of X−i that is both predicting
and heavy. Fix such an a and let X ′ denote the distribution (X[i]|Aa). This is a distribution over {0, 1}`.
Note that X ′ is recognizable by a circuit R′ which given x′ ∈ {0, 1}` is defined by:

R′(x′) = R(a1, . . . , ai−1, x
′, ai, . . . , a`−1)

Thus, X ′ is recognizable by circuits of size (s−n)+n ≤ s and depth d. Note that P (E′(a1), . . . , E′(ai−1))
is a constant. We denote it by b ∈ {0, 1}. It follows that

Pr[b = E′(X ′)] = Pr[b = E′(X[i]) | Aa]

= Pr[P (E′(a1), . . . , E′(ai−1)) = E′(X[i]) | Aa]

≥ 1/2 + ε/2m

Which contradicts the fact that E′ is a (`− (∆ + log(3m/ε)), ε/2m)-extractor for sources recognizable
by circuits of size s and depth d.

Using Theorem 4.24 we can get extractors that output m bits using the parity function on ` bits. There
are several ways to set the parameters. The natural one is to set ` = n/m and this gives the following
corollary:

Corollary 4.25. There is a constant α > 0 such that for every sufficiently large n and m ≤ n1/αd the func-
tion E : {0, 1}n → {0, 1}m defined by E(x) = (pn/m(x[1]), . . . , pn/m(x[m])) is a (n − n1/αd, 2−100m)-
extractor for sources recognizable by circuits of size 2n1/αd

and depth d.

The extractor above can be computed in polynomial time and could be plugged into Theorem 3.4
and give exponentially small failure probability. However, we want extractors that are computable by
polynomial-size constant-depth circuits. We choose ` = (log n)a where a is a constant that depends on
the depth so that parity on ` bits can be computed by constant-depth circuits with size polynomial in n. This
gives an extractor with weaker parameters that are still sufficient for our application. Specifically, this gives
the extractor of Theorem 4.21.

Proof. (of Theorem 4.21) We are given n and m(n) = (log n)e. We choose ` so that 2`1/d+1
is larger than

n3c. Note that this can be done for ` = (log n)a for some sufficiently large constant a that depends on c and
d. We also require that a is large enough so that `1/3d = (log n)a/3d ≥ m(n)2 = (log n)2e. For this choice,
Theorem 4.23 gives that p` is a (n− 200m(n), 2−200m(n))-extractor for sources recognizable by circuits of
size n2c and depth d. By applying Theorem 4.24 we get an (n− 100m(n), 2−100m(n))-extractor for sources
recognizable by circuits of size nc and depth d as required.

For every d′ > 2, the function p` can be computed by a uniform family of circuits of size 2O(`
1

d′−1 )

and depth d′. Thus, for sufficiently large d′, p` can be computed by a uniform family of circuits of size
polynomial in n and depth d′. It follows that the family E is computable by a uniform family of polynomial-
size constant-depth circuits.
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4.4.2 Applying the main theorem

We now explain how to prove Theorem 1.6. An advantage of this setup is that we can reduce the number of
random bits of uniform randomized AC0 algorithms with appropriate pseudorandom generators.

Theorem 4.26 (Pseudorandom generators against AC0 [38, 29]). For every randomized uniform AC0 algo-
rithm A that computes some function f with success 1− ρ(n) there is randomized uniform AC0 algorithm
A′ such that for every constant v > 1 A′ computes f with success 1 − ρ(n) − n−v and uses only (log n)e

random coins where e is a constant that depends on the depth of A.

We are given a randomized uniform AC0 algorithm that computes some function f with success 1 −
ρ(n) ≥ 2/3. We can apply Theorem 4.26 to obtain a randomized uniform AC0 algorithm which uses
m(n) = (log n)e coins for some constant e that has success probability 1 − ρ(n) − n−v for any constant
v > 1. Now that we have an algorithm with m(n) = (log n)e coins we can apply Theorem 3.4 using the
extractor of Theorem 4.21 and obtain Theorem 1.6. The argument is similar to that used in the previous
sections. We remark that by reviewing the argument of [38] the term n−v in Theorem 4.26 can be replaced
by 2−(log n)v

. As a consequence (and by slightly modifying the parameters in our proof) it is also possible
to achieve the same replacement in Theorem 1.6.

4.5 General polynomial-time algorithms

We now explain how to prove Theorem 1.7 that gives a conditional explicit version of Yao’s lemma for
general polynomial-time algorithms. The proof of Theorem 1.7 imitates the proof of Theorem 1.6. The
latter can be seen as providing a reduction that given a randomized algorithm A(x, r) that is not weakly
derandomized by the suggested extractor provides a circuit C that computes the parity function well on
average where the size and depth of C are not much larger than that of A. We stress that the reduction and
its proof do not use any properties of the parity function. Thus, we can replace the parity function with any
function h and repeat the construction of the extractor from Theorem 4.21 replacing parity with h. The same
argument would show that if there is a polynomial-time randomized algorithm A(x, r) that is not weakly
derandomized using the extractor then h can be computed well on the average by a polynomial-size circuit
(where the precise polynomial depends on the running time of A). This implies that given a language in
BPP that is accepted by some polynomial-time randomized algorithm A we can compute a polynomial nc

that depends on the running time of A such that given a function h that is sufficiently hard on average for
circuits of size nc , the deterministic algorithm B(x) = A(x,E(x)) (where E is the extractor of Theorem
4.21 using h instead of parity) weakly derandomizes A.

This high level summary hides a lot of details. Specifically, we want B to be computed in polynomial-
time and therefore require that E is computed in polynomial-time. Note that the computation of E needs to
apply h on certain blocks of the input x. In the case of parity, we used the fact that for size ≈ 2`1/d

, parity
on ` bits is very hard on average for circuits of depth d but is easy for circuits of depth O(d). We chose
` = polylog(n) so that 2`1/d

is polynomial in n and the extractor construction applied parity on inputs of
length `. In the current setup we need that h behaves like parity in the sense that h is very hard on average for
algorithms with limited resources but easy for algorithms with larger resources. Specifically we want that
the function h is very hard on average for circuits of size nc yet easy for circuits of larger polynomial-size.
This is indeed the assumption made in Theorem 1.7 and this allows B to be computed in polynomial-time.

While the overall argument proving Theorem 1.7 is similar to that made in the proof of Theorem 1.6 the
parameter choices are somewhat different. We omit the precise details as subsequent to this paper [28] gave
a simpler proof of an improved version of Theorem 1.7. See Section 5 for a discussion.
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5 Open problems and subsequent work

In this paper we present a general technique to prove explicit versions of Yao’s lemma and apply it in sev-
eral computational settings. A natural research direction is to handle other classes of randomized algorithms.
Specifically, the approach of “extracting randomness from the input” was used in [17] to give a weak deran-
domization of the class SL. (These results are superseded by Reingold’s breakthrough result that SL = L
[43]). It is open whether RL = L and we find it interesting to try and get weak derandomization of RL.

The notion of weak derandomization that we consider only requires that the deterministic algorithm
succeeds with high probability when the input is chosen according to the uniform distribution. A stronger
notion considered in [23, 50] requires the deterministic algorithm to succeed with high probability on every
distribution that is efficiently samplable. We find it interesting to extend the results of this paper to hold for
“interesting distributions”. We remark that the approach of this paper can be extended to allow every high
min-entropy distribution that is recognizable by the corresponding class of algorithms. Loosely speaking,
this is because our extractors already extract randomness from such distributions. More generally, in Theo-
rem 3.4 it is possible to replace the uniform distribution over inputs with any distribution P of sufficiently
high min-entropy by modifying the definition of recognizable distributions (and appropriately modifying
the parameters). A sketch of the argument is that Definition 3.1 says that a distribution is recognizable by a
function C if it is of the form (X|C(X) = 1) where X ← Un. We can repeat the argument for a distribution
P with sufficiently high min-entropy by modifying the definition and replacing the experiment X ← Un

with X ← P in the definition of recognizable distributions.

Subsequent work: Subsequent to this work Salil Vadhan and Dieter van Melkebeek suggested an alterna-
tive proof for Theorems 1.6 and 1.7. This approach is described and further developed by Jeff Kinne, Dieter
van Melkebeek and the author in [28]. The approach of [28] uses “seed-extending pseudoramdom genera-
tors”. These are pseudorandom generators that remain secure even when the distinguisher receives the seed
of the pseudorandom generator. It is shown in [28] that every class of randomized algorithms can be weakly
derandomized if one can construct a seed-extending pseudorandom generator for the “non-uniform version”
of the class. In some setups, one can construct such generators from functions that are hard one average for
the “non-uniform version” of the class by using the pseudorandom generator construction of [38] (which is
seed-extending). This approach gives simpler and proofs of Theorems 1.6 and 1.7. Furthermore, it proves
stronger versions of these theorems as explained in the introduction

The approach of [28] can also be used for communication protocols. In particular, [28] extends Theorem
1.1 to the setup of k-party communication protocols for k ≥ 2. However, the approach of [28] gives inferior
parameters than Theorem 1.1 in case k = 2. Specifically, for 2-party communication protocols and the setup
of Theorem 1.1 [28] gives a deterministic communication protocol with complexity Ω(q(n) ·m(n)) whereas
Theorem 1.1 gives a protocol with complexity O(q(n) + m(n)). A natural open problem is to obtain the
behavior of Theorem 1.1 for k-party protocols. One way to achieve this is to explicitly construct an extractor
for distributions recognizable by k-party communication protocols.

In [28] there is a formal comparison between the extractor based approach of this paper and the pseudo-
random generator based approach. It is observed that the technique used to prove Theorem 3.4 can be used
to argue that extractors for recognizable distributions give rise to seed-extending pseudorandom generators.
In particular, this means that the results in this paper can be recast as following using the pseudorandom
generator approach. The reader is referred to [28] for precise details.
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