
Explicit Uniquely Decodable Codes for Space Bounded Channels
That Achieve List-Decoding Capacity

Ronen Shaltiel∗ Jad Silbak†

November 16, 2020

Abstract

We consider codes for space bounded channels. This is a model for communication under noise that
was introduced by Guruswami and Smith (J. ACM 2016) and lies between the Shannon (random) and
Hamming (adversarial) models. In this model, a channel is a space bounded procedure that reads the
codeword in one pass, and modifies at most a p fraction of the bits of the codeword.

• Explicit uniquely decodable codes for space bounded channels: Our main result is that for every
0 ≤ p < 1

4 , there exists a constant δ > 0 and a uniquely decodable code with rate 1 − H(p) for
channels with space nδ . This code is explicit (meaning that encoding and decoding are in poly-time).
This improves upon previous explicit codes by Guruswami and Smith, and Kopparty, Shaltiel and
Silbak (FOCS 2019). Specifically, we obtain the same space and rate as earlier works, even though
prior work gave only list-decodable codes (rather than uniquely decodable codes).

• Complete characterization of the capacity of space bounded channels: Together with a result by
Guruswami and Smith showing the impossibility of unique decoding for p ≥ 1

4 , our techniques also
give a complete characterization of the capacity R(p) of space n1−o(1) channels, specifically:

R(p) =

{
1−H(p) 0 ≤ p < 1/4

0 p ≥ 1/4.

This capacity is strictly larger than the capacity of Hamming channels for every 0 < p < 1
4 , and

matches the capacity of list decoding, and binary symmetric channels in this range. Curiously, this
shows that R(·) is not continuous at p = 1/4.

Our results are incomparable to recent work on casual channels (these are stronger channels that read
the codeword in one pass, but there is no space restriction). The best known codes for casual channels, due
to Chen, Jaggi and Langberg (STOC 2015), are shown to exist by the probabilistic method, and no explicit
codes are known.

A key new ingredient in our construction is a new notion of “evasiveness” of codes, which is concerned
with whether a decoding algorithm rejects a word that is obtained when a channel induces few errors to a
uniformly chosen (or pseudorandom) string. We use evasiveness (as well as several additional new ideas
related to coding theory and pseudorandomness) to identify the “correct” message in the list obtained by
previous list-decoding algorithms.
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1 Introduction

1.1 Codes and channels

Coding theory studies transmission of messages using noisy channels. In this paper we are interested in binary
codes, and prefer to focus on decoding properties of a code, rather than combinatorial properties like minimal
distance. More specifically, given a family C of (possibly randomized) functions C : {0, 1}n → {0, 1}n
(which we call “channels”) the goal is to design a code (namely, a pair (Enc,Dec) of an encoding map
Enc : {0, 1}k → {0, 1}n and a decoding map Dec : {0, 1}n → {0, 1}k) such that for every message
m ∈ {0, 1}k and every channel C ∈ C, decoding is successful, namely:

Dec(Enc(m)⊕ C(Enc(m))) = m.

The rate of a code is R = k
n . For a family C of channels, we use R(C) to denote the capacity of the family,

which is the best possible rate of a code for this family.1 For a family C of channels, there are two main goals:

1. Determine the capacity R(C).

2. Construct explicit codes (namely codes with poly-time encoding and decoding algorithms).

Let us review some coding scenarios and channel families. In all examples below 0 ≤ p < 1
2 is a parameter.

Binary symmetric channels. A binary symmetric channel (denoted by BSCp) is the randomized function
that ignores its input and produces n i.i.d. random bits, where each of them is one with probability p. This is a
special case of an extensively studied class of randomized channels (often referred to as “Shannon channels”).
A celebrated theorem of Shannon shows that R(BSCp) = 1−H(p).2 Later work on code concatenation (due
to Forney [For65]) produced codes with explicit and even linear time algorithms [GI05].

Hamming channels. The class of Hamming channels (denoted by Hamp) is the class of all functions such
that for every input x, the relative Hamming weight of C(x) is at most p.3 This is probably the most studied
class of channels, and yet, its capacity R(Hamp) is not precisely understood. It is known that R(Hamp) = 0
for p ≥ 1

4 , and that for 0 < p < 1
4 , R(Hamp) < 1 − H(p).4 The Gilbert-Varshamov bound shows that

R(Hamp) ≥ 1−H(2p), but explicit codes with this rate are unknown.

List-decoding. In the relaxed goal of list-decoding, the decoding map is allowed to output a list ofL = O(1)
messages, and decoding is considered successful if Dec(Enc(m) ⊕ C(Enc(m))) 3 m. Unlike the case of
unique decoding, the list decoding capacity of Hamming channels (denoted by RList(Hamp)) is known to be
RList(Hamp) = 1−H(p),5 which allows positive rate even for 1

4 ≤ p < 1
2 (in contrast to unique decoding).

Explicit constructions of such codes are unknown.
1More formally, R(C) is the largest number R such that for every ε > 0, there exist infinitely many n, for which there exists a

code Enc : {0, 1}k → {0, 1}n for C, with rate at least R − ε. We mostly use the term “rate” for a specific (family of) codes, and
“capacity” for a class of channels, but these terms are interchangeable in this paper.

2Here H(p) = p · log(1/p) + (1− p) · log(1/(1− p)) is Shannon’s entropy function.
3The relative Hamming weight of a string z ∈ {0, 1}n is wt(z) = |{i∈[n]:zi 6=0}|

n
.

4This follows because by the Elias-Bassalygo bound, which states that R(Hamp) < RElias-Bassalygo(p) where the latter is
strictly smaller than 1 −H(p). We remark that the Elias-Bassalygo bound gives a stronger result, and that later work by McEliece,
Rodemich, Rumsey and Welch [MRRW77] improves this bound in some ranges. We state the bound R < 1 − H(p) to stress that
R(Hamp) < R(BSCp) = 1−H(p).

5This formally means that for every ε > 0, there exists a constant Lε such that there are infinitely many n, for which there exists
a code with rate R = 1−H(p)− ε and a list-decoding map with list size Lε.
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Intermediate classes of channels. It is natural to consider intermediate classes of channels that lie between
binary symmetric channels and Hamming channels. One such example was studied by Guruswami and Smith
[GS16] that considered the class of additive channels. This class (denoted by Addp) contains all constant
functions C ∈ Hamp. This means that an additive channel C : {0, 1}n → {0, 1}n has a predetermined noise
vector e ∈ {0, 1}n of Hamming weight at most p, and the channel C uses this noise vector regardless of its
input. In particular, the channel does not choose the noise vector as a function of the transmitted codeword.

It turns out that with the standard definition of codes, every code for additive channels is also a code for
Hamming channels.6 In order to take advantage of restricted families of channels, one needs to consider a
different coding scenario. Several such scenarios were considered in the literature, see Section 1.4 on related
work. In this paper, we follow the approach of Guruswami and Smith [GS16] and consider stochastic codes.

Stochastic codes. These are codes where the encoding algorithm is randomized, and decoding only needs
to succeed with high probability. More precisely, an encoding map of a stochastic code, is a function Enc :
{0, 1}k × {0, 1}d → {0, 1}n and it is required that for every m ∈ {0, 1}k, and every channel C in the
considered class:

Pr
S←Ud

[Dec(Enc(m,S)⊕ C(Enc(m,S)) = m] ≥ 1− ν,

where ν is an error parameter. (A precise formal definition is given in Definition 2.17). Note that the decoding
algorithm does not need to receive S, and so, these codes can be used in the standard coding communication
scenario. The rate of a stochastic code is R = k

n . Stochastic codes do not give an improvement in capacity
in the case of Hamming channels (as it is easy to show that a stochastic code for Hamming channels yields a
standard code with the same rate) but they do allow improved capacities for other classes.

Additive channels. Recall that an additive channel C ∈ Addp is a channel that ignores the transmitted
codeword, and always uses a predetermined noise vector. Guruswami and Smith [GS16] showed that the
stochastic capacity, RStoc(Addp) = 1 − H(p), while also providing explicit encoding and decoding algo-
rithms for the stochastic code. Jumping ahead, we mention that prior to our work, the (weak) class of additive
channels is the strongest class for which explicit stochastic codes with rate 1 − H(p) are known. All the
channel classes that we consider below are stronger (and can simulate additive channels). Therefore, an upper
bound of R ≤ 1−H(p) on the stochastic capacity holds for all such classes.

Space bounded channels. Guruswami and Smith [GS16], and later work [SS16, KSS19] also considered
space bounded channels (sometimes called “online channels”). The class of space s channels (denoted by
Spcsp) is the class of all functions C : {0, 1}n → {0, 1}n such that C ∈ Hamp, and furthermore, C can be
implemented by a space s procedure that reads its input in one pass. More precisely, C is a procedure that
reads its input in one pass, and maintains a state of at most s bits. Whenever the channel reads an input bit,
it updates its internal state, and produces an output bit. Both actions are done as a function of the previous
internal state and the read input bit. (A precise definition is given in Definition 2.3.)

Note that unlike additive channels or binary symmetric channels, this allows channels to choose the error
pattern as a function of the transmitted codeword. Additive channels are a subclass of space zero channels.

Guruswami and Smith [GS16] showed that RStoc(Spclogn
p ) = 0, for p > 1

4 . This means that (similar to
the case of standard codes for Hamming channels) unique decoding is impossible for p > 1

4 .
Previous works on explicit stochastic codes for space bounded channels [GS16, SS16, KSS19] did not

achieve unique decoding and settled for list-decoding. Kopparty, Shaltiel and Silbak [KSS19] (building on
[GS16, SS16]) show that for every 0 ≤ p < 1

2 , there exists a constant δ > 0 such that RList,Stoc(Spcn
δ

p ) =
1−H(p). Furthermore, this is achieved by explicit encoding and list-decoding algorithms.

6This follows as if there is a message m ∈ {0, 1}k and a channel C ∈ Hamp such that Dec(Enc(m)⊕C(Enc(m))) 6= m, then
the channel C′(x) = C(Enc(m)) is a channel in Addp on which decoding is not successful.
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Casual channels. The class of casual channels (denoted by Casp) is Spcnp , namely the class of all channels
that read the codeword in one pass, but have no space restriction. No nontrivial explicit codes (even for the case
of list-decoding) are known for casual channels. Chen, Jaggi and Langberg [CJL15] used the probabilistic
method to show existence of codes that match earlier upper bounds by Dey, Jaggi, Langberg and Sarwate
[DJLS13]. Together, this gives that RStoc(Casp) = f(p) for:

f(p) =

{
minp∈[0,p][(1− 4(p− p))(1−H( p

(1−4(p−p))))] 0 ≤ p < 1/4

0 p ≥ 1/4.

It is known that there exists a number p0 ≈ 0.0804 such that f(p) = 1 −H(p) for p < p0, and f(p) <
1−H(p) for p > p0. This means that for p > p0, RStoc(Casp) < 1−H(p).

We summarize all theses surveyed results (as well as our new results) in Table 1. In the case of results that
produce codes, we list whether or not the codes are explicit.

Table 1: Summary of surveyed known results. The results of this paper appear in bold text
Channel Decoding Stochastic? Range Rate Explicit? Reference
BSCp Unique No 0 ≤ p < 1

2 R = 1−H(p) Yes [For65]
Hamp Unique No 0 ≤ p < 1

4 R < 1−H(p) N/A [MRRW77]
Hamp Unique No 1

4 ≤ p <
1
2 R = 0 N/A Easy

Hamp List No 0 ≤ p < 1
2 R = 1−H(p) No Easy

Addp Unique Yes 0 ≤ p < 1
2 R = 1−H(p) Yes [GS16]

Spclogn
p Unique Yes 1

4 < p < 1
2 R = 0 N/A [GS16]

Spcn
Θ(1)

p List Yes 0 ≤ p < 1
2 R = 1−H(p) Yes [KSS19]

Casp = Spcnp Unique Yes 0 ≤ p < 0.0804 R = 1−H(p) No [CJL15]
Casp = Spcnp Unique Yes 0.0804 < p < 1

4 R < 1−H(p) No [DJLS13]

Spcn
Θ(1)

p Unique Yes 0 ≤ p < 1
4 R = 1−H(p) Yes Here

Spcn
1−o(1)

p Unique Yes 0 ≤ p < 1
4 R = 1−H(p) No Here

1.2 Our results

In this paper we study uniquely decodable stochastic codes for space bounded channels. Previous work on
this class considered list-decoding, and the best known lower bound on the capacity of uniquely decodable
codes is given by non-explicit codes for casual channels. Natural questions are:

1. What is the unique decoding capacity of space bounded channels? Is it larger than that of casual
channels?

2. Can we explicitly construct uniquely decodable stochastic codes matching this capacity with poly-time
encoding and decoding?

In this paper we answer both questions affirmatively, and show that:

1. The unique decoding capacity for space bounded channels (with space as high as n1−o(1)) is 1−H(p),
matching the capacity of binary symmetric channels (and list-decoding) for 0 ≤ p < 1

4 . This capacity
is strictly larger than the capacity of casual channels for p > p0 ≈ 0.0804. Curiously, this shows that:

• The capacity of space bounded channels is not continuous at p = 1
4 .
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• Unlike casual channels which do not achieve rate 1 −H(p) for p > p0, space bounded channels
are “better behaved” and achieve rate 1−H(p) all the way up to 1

4 .

2. More importantly, we can achieve this capacity with explicit stochastic codes for slightly smaller space
of s = nΘ(1) (which is exactly the same space bound considered in previous explicit constructions of
list-decodable codes for space bounded channels).

Perspective: Prior to this work, the best explicit uniquely decodable stochastic code with rate 1 − H(p)
could handle additive channels [GS16] (which do not get to look at the transmission). This work gives an
explicit, uniquely decodable code for the much stronger class of space bounded channels.

It was pointed out by Guruswami and Smith [GS16] that many of the “stochastic channels” studied in
Shannon’s framework are captured by space bounded channels (in fact even with spaceO(log n)). Our results
gives explicit codes in all these cases.7

On a more philosophical level, one may postulate that the behavior of most conceivable channels that are
not “fully adversarial” is captured by space bounded channels, which can now be explicitly uniquely decoded
with rate 1−H(p) that matches that of binary symmetric channels for p < 1

4 . This rate beats the best possible
rate for uniquely decodable codes for Hamming channels or casual channels (even if one is satisfied with
non-explicit codes).

Prior to this work, explicit stochastic codes [GS16, SS16, KSS19] for space bounded channels only
achieved list-decoding rather than unique decoding. We stress that there is no difference in list-decoding
capacities between Hamming channels and space bounded channels. In contrast, in the more natural and stan-
dard case of uniquely-decodable codes there is a difference between the capacities of Hamming channels and
space bounded channels, and our codes achieve rate of 1 −H(p), which is impossible to achieve in the case
of uniquely decodable codes for Hamming channels.
Our results are listed in detail below, together with a comparison to relevant previous work.

1.2.1 Explicit uniquely decodable codes for space bounded channels with rate 1−H(p)

The main result of this paper is that for every 0 ≤ p < 1
4 , there exists δ > 0, and an explicit uniquely

decodable stochastic code for Spcn
δ

p with rate 1−H(p).

Theorem 1.1 (Explicit uniquely decodable codes with optimal rate for Spcn
δ

p ). For every constant 0 ≤ p < 1
4

there exists a constant δ > 0 such that for every constant ε > 0, for infinitely many n, there is a stochastic
code (Enc,Dec) for Spcn

δ

p , with rate R = 1−H(p)− ε, and success probability 1−ν for ν = 2−polylog(n).
Furthermore, Enc and Dec run in time poly(n).

Theorem 1.1 is stated in a more general way in Theorem 5.1. Theorem 1.1 achieves the same rate and same
space bound as the results of [KSS19] with the significant advantage of achieving unique decoding rather than
list-decoding. In both cases, the constant δ = c · ((1

4 − p)
2) for some universal constant c > 0. Our result

does not completely subsume the list-decoding of [KSS19] because the latter has three additional advantages:
It works for 1

4 ≤ p < 1
2 which is impossible for unique decoding. It works against channels that can select

the order in which they read the bits of the codeword, whereas our result does not. The running time of
encoding and decoding is quasilinear (namely T (n) = n · polylog(n)). Using optimized components in our
construction, it is possible to achieve time T (n) = n1+o(1) in Theorem 1.1, but we are not sure whether some
of the components can be made to run in quasilinear time (and we plan to look into that in future versions).
See remark 2.13 and Section 5.6.

7Our results clearly extend to any channel that is a convex combination of space s = nΘ(1) channels. Furthermore, with an
additional logn space, a channel can count the number of error that it induces, and avoid inducing more than pn errors. This means
that our theorems handle any distribution over space s channels, in which the probability of inducing significantly more than pn errors
is small.
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1.2.2 The capacity of space bounded channels

Before our work, it was known that the capacity R(p) of space bounded channels is zero for p ≥ 1
4 [GS16],

and at most 1−H(p) for 0 ≤ p < 1
4 . Theorem 1.1 implies that for space s = nθ(1) the capacity is:

R(p) =

{
1−H(p) 0 ≤ p < 1/4

0 p ≥ 1/4.

This capacity is larger than that of Casp = Spcnp for p > p0 ≈ 0.0804. A natural question is whether this
capacity applies also for channels with space s that approaches n. The next theorem shows that the capacity
is 1−H(p) even for space s = n1−o(1).

Theorem 1.2 (The capacity of space n1−o(1) channels). There exists a function s = n1−o(1) such that for every
constant 0 ≤ p < 1

4 and every constant ε > 0, for infinitely many n, there is a stochastic code (Enc,Dec) for
Spcsp, with rate R = 1−H(p)− ε, and success probability 1− ν for ν = 2−polylog(n).

In many cases, existence of good codes follows by a simple analysis of a random code. In the case of
space bounded channels, it is not immediately clear how to analyze a random stochastic code. Theorem 1.2
follows by using the construction used for Theorem 1.1, and replacing a certain explicit code with one that
is shown to exist by the probabilistic method. An advantage of this approach is that it gives a strategy to
constructing explicit codes for larger space.8 We remark that the space bound s in Theorem 1.2 can be pushed
to s = n/polylog(n) if we allow more components in our construction to be nonexplicit. See Section 5.5.

Summing up we have that for every 0 ≤ p < 1
4 :

RStoc(Spcn
1−o(1)

p ) = 1−H(p) = R(BSCp) = RList(Hamp).

This shows a separation between casual channels and space bounded channels with space n1−o(1).

Other tradeoffs in explicit codes. We have chosen the space and success probability in Theorem 1.1 to
match the parameters of [KSS19]. However, other tradeoffs can also be achieved. Specifically:

• For every p < 1
8 the space in Theorem 1.1 can be increased to s = n

1
2
−o(1).

• In [KSS19], the error parameter ν was chosen to be 2−polylog(n). This is because the construction has
steps that inherently run in time n · log(1/ν), and it was desired to get time n · polylog(n). However, it
is also possible to obtain much smaller ν. For example, it is possible to obtain ν = 2−n

Ω(1)
.

• We can get explicit codes for channels with larger space (specifically, space n1−o(1)), for 0 < p ≤ p1

for some constant p1 > 0.

1.3 Overview of the technique

Our construction relies on the recent construction of list-decodable stochastic code for space bounded chan-
nels by Kopparty, Shaltiel and Silbak [KSS19] (which in turn builds on the approach of Guruswami and Smith
[GS16]). The high level idea is that in order to obtain a unique decoding algorithm, we will first apply the list

8More specifically, the component that is needed is a linear code Enc : {0, 1}k → {0, 1}n that has distance approaching 1
2

, its
dual has distance r, and Enc has explicit list decoding from slightly less than 1

2
relative errors. Loosely speaking, our construction

can take such a code and transform it into a stochastic code for space s = r1−o(1) channels. The current best explicit construction of
Kopparty, Shaltiel and Silbak [KSS19] shows that for every p < 1

4
, there exists δ > 0 and a code with r = nδ , and this translates into

the final parameters of Theorem 1.1. If one gives up explicit list-decoding, then by standard calculations, it is easy to show existence
of such codes that give s = n1−o(1) and imply Theorem 1.2. See discussion in Section 7.
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decoding algorithm of [KSS19] (which produces a constant size list of messages) and then apply a pruning
procedure which will identify the correct message. (Note that while this approach is very natural, it cannot
work for Hamming channels).

In order to distinguish the correct message in the list from incorrect ones, we introduce a new concept
of “evasiveness” of codes. Specifically, in the case of standard (that is non-stochastic) codes for binary
symmetric channels, we will be interested in whether a space bounded channel that gets access to a uniform
string Z ← Un, can induce pn errors in a way that will lead the decoding algorithm to correctly decode. We
will say that the channel “wins” if the decoding algorithm correctly decodes.

Our first step is constructing explicit evasive code with rate 1−H(p) (and our final stochastic codes will
inherit this rate). This argument is outlined in Sections 1.3.1, 1.3.2 and the formal treatment is in Section 3.

We then want to argue that a space bounded channel cannot win even in an experiment where it receives
a string Z that was generated by a pseudorandom generator that fools small space algorithms (rather than a
uniform string Z ← Un). This does not follow immediately from the pseudorandomness of the generator,
because whether or not the channel wins is also determined by the actions of the decoding algorithm that does
not run in small space. Nevertheless, by using recent constructions of locally-correctable and locally-testable
codes by Guo, Kopparty and Sudan [GKS13] and Kopparty, Meir, Ron-Zewi and Saraf [KMRS17] we are
able to construct codes that are also evasive on pseudorandom strings. This argument is outlined in Section
1.3.3 and the formal treatment is in Section 3.

Our next step is to modify the construction of Kopparty, Shaltiel and Silbak [KSS19] hoping to argue
that when list-decoding, all incorrect messages in the list were obtained in a scenario that corresponds to the
evasiveness experiment on pseudorandom strings, and are therefore rejected. This argument is outlined in
Sections 1.3.4, 1.3.5, and the formal treatment is in Section 5 and 6.

In the remainder of this section we give a more detailed high level overview of the ideas and techniques
that we use. We allow ourselves to be informal and imprecise (in order to highlight the main ideas). The
reader can safely skip this section, as complete definitions, theorem statements and proofs, appear in later
sections (and these do not rely on the informal description given in this section).

1.3.1 Evasive codes for space bounded channels

A key new ingredient in our construction is a notion of “evasive codes” that we now explain. Let Enc :
{0, 1}k → {0, 1}n and Dec : {0, 1}n → {0, 1}k be a code where Dec is a decoding algorithm for some
communication scenario. To make things less abstract, let us start by focusing on the case that Dec decodes
from BSCp, and rejects words that have relative distance slightly more than p from any codeword. The
evasiveness experiment is concerned with corrupting and decoding a uniform string (rather than a codeword):

The evasiveness experiment: Given a channel C that induces at most p relative errors:
• Choose uniform Z ← Un.
• Treat Z as a “codeword”. That is, let V = Z ⊕ C(Z) be corrupted by the channel C.
• The channel C “wins” if Dec(V ) does not reject.

We say that a code is evasive for C if the probability that C wins is small.9 In this paper we design codes for
BSCp that have rate 1 − H(p), and are evasive against space s = o(n) channels. This is stated informally
below (and the formal statement and treatment is in Section 3).

9A straightforward observation is that any code with rate R slightly smaller than 1 − H(2p) (for example, a code with R =
1 − H(2p) − ε that match the Gilbert-Varshamov bound) is evasive against the class of all channels C ∈ Hamp. This is because
w.h.p., a uniform Z ← Un has distance larger than 2p from any codeword. Consequently, no matter how the unbounded channel C
uses its ability to inject p relative errors, it cannot make V = Z ⊕ C(Z) be within distance p to a codeword.
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Informal Theorem 1.3 (Evasive codes for BSCp). For every p < 1
2 , there are explicit codes for BSCp with

rate 1−H(p) that are evasive against Spcsp for s = o(n).

These codes are an important ingredient in our construction of stochastic codes for space bounded chan-
nels. Our final code inherits the rate of these codes.

1.3.2 Arguing that codes are evasive

We now outline the proof of informal theorem 1.3. A standard way to construct codes for BSCp is to concate-
nate a rate 1− ε outer code over constant size alphabet that corrects from a constant λ = λ(ε) > 0 fraction of
errors, with a constant length inner code with rate 1−H(p)− ε that decodes from BSCp. The concatenated
code has rate approaching 1−H(p) and decodes from errors induced by BSCp

We are interested in showing that this concatenated code is evasive against space bounded channels. It
turns out that for this, it is sufficient to focus on the outer code, and show that it is evasive. Specifically, it will
be sufficient to prove:

Informal Theorem 1.4 (Evasive codes with high rate). For every p < 1
2 and every ε > 0, there exists λ > 0

and explicit codes with constant size alphabet, rate 1− ε that decode from λ relative errors, and are evasive
for Spcsp for s = o(n).

We will now focus on this task. We consider a code Enc : Σk → Σn, where we take some slack, and
assume that there is a decoding algorithm Dec2λ that decodes from 2λ relative errors (rather than just λ relative
errors). This makes no difference in our setup where λ is small. We consider a modified version Dec of the
decoding algorithm Dec2λ, that rejects an input v, if the relative Hamming distance between Enc(Dec2λ(v))
and v is larger than λ. We can safely reject such strings, as we only want Dec to decode from λ relative errors.

We will show that Enc is evasive (using the decoding algorithm Dec) if p < 1
2 − 2λ (which we can

arrange). We will divide the n symbols of a string in Σn into u = O(1) blocks of length ` = n/u, we will
choose the parameters so that s� ` ≤ λ · n. We will denote the i’th block of a string z ∈ Σn by z[i].

For every channel C ∈ Spcsp, the evasiveness experiment considers Z ← Un, V = Z ⊕ C(Z), and
Y = Enc(Dec2λ(V )). Our goal is to show that w.h.p. the relative Hamming distance between Y and V is
at least λ. For this purpose we consider the following mental experiment: For every i ∈ [u], we consider the
random variable V (i) which is obtained by taking V and replacing the i’th block V [i] with a constant string
(say a sequence of zeros). Let Y (i) = Enc(Dec2λ(V (i))).

A weakness of a space s channel is that whenever it leaves the i’th block of an input z, it remembers only
s bits of infromation about the `� s symbols it read in the block.

An oversimplifying assumption. Let us make an oversimplifying assumption and pretend that we are deal-
ing with a channel C that “wipes its memory” whenever it leaves a block. This means that the errors injected
on each block are determined by the content of that block (and does not depend on previous blocks). In this
case, we claim that:

• For every i ∈ [u], Y (i) is independent of Z[i].

• Whenever Dec(V ) does not reject, we have that for every i ∈ [u], Y (i) = Y .

For the first item we observe that having erased the i’th block, V (i) is determined by V [1], . . . , V [i−1], V [i+
1], . . . , V [u] which in turn is independent of Z[i]. (The latter follows by the simplifying assumption that the
error induced by C on blocks 1, . . . , i − 1, i + 1, . . . , u does not depend on Z[i]). As Y (i) is determined by
V (i) it is independent of Z[i].

For the second item, we note that the absolute Hamming distance between V and V (i) is at most ` (as
they agree on all blocks except the i’th block) and we have chosen ` so that an absolute distance of ` is a
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relative distance smaller than λ. Therefore, if Dec did not reject V , then V is within relative distance λ to a
codeword, and so, for every i ∈ [u], V (i) is within relative distance 2λ to the same codeword. This gives that
Dec2λ(V (i)) = Dec2λ(V ) and Y (i) = Y . This completes the proof of the second item.

However, by the first item, the expected relative distance between the Y (i)[i] and an independent random
string Z[i] is half. By a union bound and a Chernoff bound, w.h.p. for every i ∈ [u], this distance is very
close to half. This cannot hold together with the second item, because then, for every i, the relative Hamming
distance between Y [i] and Z[i] is very close to half, which means that the relative distance between Y and Z
is very close to half. This is impossible, because Y was obtained from Z by injecting p relative errors, and
then correcting to a codeword that is within distance 2λ. This is impossible as p+ 2λ < 1

2 .

Removing the simplifying assumption. We have made a simplifying assumption that C “wipes its mem-
ory” whenever it leaves a block. In order to justify this assumption, we will perform the previous anal-
ysis for every fixing of the states of C at the end of all u blocks. For every such fixing, the assump-
tion holds (as the states of C at the end of blocks are fixed). Furthermore, the blocks Z[1], . . . , Z[u] re-
main independent under such a fixing. For a typical fixing, the (min)-entropy of a block Z[i] is at least
` · log |Σ|−s = (1−o(1)) ·` · log |Σ|, and the previous analysis can be repeated using the fact that every event
that happens with low probability over the uniform distribution, also happens with slightly larger, but still low
probability, in a high (min)-entropy distribution. This allows us to remove the oversimplifying assumption.

1.3.3 Evasiveness on pseudorandom strings

We will now consider a version of the evasiveness experiment, in which rather than choosing a uniform
Z ← Un, we will choose Z = G(Ud) where G : {0, 1}d → {0, 1}n is a pseudorandom generator against
small space ROBPs with seed length d � n.10 We would like to argue that if a code is evasive, then it is
also evasive on pseudorandom strings. At first glance, it may seem that this follows because G fools small
space ROBPs and C is a space bounded channel. However, this is not the case, because in the evasiveness
experiment, in order to determine whether C wins, one needs to apply the decoding algorithm Dec (which is
not implementable by a small space ROBP) and is not fooled by G.

One way to think about this, is that the “adversary” that we need G to fool is an adversary A(Z) that is
more powerful than C, and in addition to applying C, A(Z) runs an additional computation that is not a small
space ROBP.

This problem is a recurring theme in this paper, and will also come up later on. Fortunately, at this point,
we can use locally correctable and locally testable codes in order to show that a pseudorandom generator G
for small space ROBPs suffices and prove that:

Informal Theorem 1.5. The codes of informal theorems 1.4 and 1.3 remain evasive when Z = G(Ud) where
G is a pseudorandom generator for small space ROBPs.

For this, we use the recent remarkable results of Guo, Kopparty and Sudan [GKS13] and Kopparty, Meir,
Ron-Zewi and Saraf [KMRS17]. These results allow to take an explicit high rate code Enc in informal
theorem 1.4 that is locally correctable and locally testable with Q = no(1) queries.11 A space O(Q) ROBP
can simulate both local correcting and local testing algorithms on an input v by reading v in one pass, and
storing all the Q symbols required by the (non-adaptive) local tester or local corrector. Using these local
correcting and local testing capabilities, a space no(1) ROBP can w.h.p. approximate the distance between

10A read once branching program (ROBP) A(x) is a procedure that reads the input x in one pass using bounded space. A precise
definition is given in Section 2.2. We use “channel” for the case where the ROBP outputs one bit for every input bit, and “ROBP” for
the case of one bit output. A formal definition of pseudorandom generators is given in Section 2.2.2.

11A precise definition of locally correctable codes and locally testable codes appears in Section 2.5.2.
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a given string v and the closest codeword, and determine whether that distance is smaller than λ, which
determines whether C wins (without having to actually run decoding).

This means that the “combined adversary” A(Z) (that on input Z applies the channel to obtain V =
Z ⊕C(Z) and determines whether V is within distance λ from a codeword) can be compute by a small space
ROBP. This means that A(Z) is fooled by the pseudorandom generator G, and we obtain that the codes of
informal theorems 1.4 and 1.3 are evasive on pseudorandom strings.

1.3.4 A high level overview of the list decodable stochastic codes of [GS16, KSS19]

We are planning to use the evasive codes explained in the earlier section as a component in our construction
of uniquely decodable stochastic codes for space bounded channels. This construction will build on the
earlier list decodable stochastic codes for space bounded channels by [GS16, KSS19]. We will modify this
construction in several key ways. We start by giving a high level description of the list-decodable codes of
[GS16, KSS19] (focusing on issues that are important to explain our results).

Codes with shared private randomness. The first ingredient in this construction is a uniquely decodable
code with shared private randomness for space bounded channels. This is a pair of functions Encdata :
{0, 1}k × {0, 1}d → {0, 1}Ndata and Decdata : {0, 1}Ndata × {0, 1}d → {0, 1}k such that for every message
m ∈ {0, 1}k and for every C ∈ Spcsp, let Y = Encdata(m,S) be the codeword, and Ȳ = Y ⊕ C(Y ) be the
“received word”. It is guaranteed that:

Pr
S←Ud

[Decdata(Ȳ , S) = m] ≥ 1− ν.

Note that unlike the setup of stochastic codes, in this setup of shared private randomness, the decoding
algorithm Dec, does receive the randomness S chosen by the encoding procedure. This gives the decoding a
huge advantage over the case of stochastic codes (as the channel does not receive S). Indeed, it is much easier
to construct such codes than stochastic codes (in which the decoding algorithm does not receive S). Explicit
codes with this property, and rate 1 −H(p) were constructed in [GS16, KSS19] (based on earlier ideas due
to Lipton [Lip94], see also [Smi07]). These constructions are based on codes for BSCp. Using the codes of
informal theorem 1.3, and informal theorem 1.5, we can get that this code is evasive on pseudorandom strings.

From codes for shared randomness to list decodable stochastic codes. In order to convert a code with
shared private randomness into a stochastic code, the encoding algorithm needs to send the seed S to the
decoding algorithm in a way that the channel will not be able to learn S, or to prevent the decoding algorithm
from recovering S.

The idea in [GS16, KSS19] is to combine Y and S together into one word Z = Combine(Y, S) of length
N = (1 + o(1))Ndata. It is then shown that after a small space channel C ∈ Spcsp corrupts the codeword Z.
The decoding algorithm that receives Z̄ = Z ⊕ C(Z), can still recover a small list of candidate that contains
the original seed S.

More formally, the list-decoding algorithms of [GS16, KSS19] work by designing such a (random-
ized) procedure Combine together with a list-decoding procedure Recover, that given Z̄ produces a list
(Ȳ 1, S̄1), . . . , (Ȳ L, S̄L) such that there exists i ∈ [L] for which S̄i = S and Ȳ i is a string Ȳ that is ob-
tained by applying the channel C on Y . Consequently, a list-decodable stochastic code (Enc,Dec) with rate
1−H(p) can be constructed by:

Encoding: On a message m and randomness S, Enc(m,S) does the following:
• Compute Y = Encdata(m,S).
• Compute Z = Combine(Y, S), and output Z.
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List-Decoding: On a received word Z̄ = Z ⊕ C(Z), Dec(Z̄) does the following:
• Apply Recover on Z̄ to obtain a list of pairs (S̄1, Ȳ 1), . . . , (S̄L, Ȳ L).
• For every i ∈ [L], output the candidate message Decdata(Ȳ i, S̄i).

It is guaranteed that w.h.p. there exists an i∗ ∈ [L] for which S̄i
∗

= S, and then, Decdata(Ȳ i∗ , S̄i
∗
) =

Decdata(Ȳ , S) = m. This means that w.h.p. the original message m indeed appears in the list.

1.3.5 Using evasiveness to reject incorrect candidates

We would like to use evasiveness to design a pruning procedure that rejects all incorrect messages in the list.
The key will be to identify a property that will allow us to distinguish (S̄i, Ȳ i) for i 6= i∗, from (S̄i

∗
, Ȳ i∗).

We will modify the constructions of the functions Combine and Recover so that we can argue that for
every i 6= i∗, S̄i is independent of S = S̄i

∗
. (We remark that that here we are oversimplifying and we are

not able to achieve this goal as stated).12 Quite a bit of the technical work in the paper is devoted to this step.
Nevertheless, in this high level overview, we will not elaborate on these ideas, as this require delving into the
precise implementation of Combine and Recover. We will now show how to use evasiveness to identify i∗

assuming that for every i 6= i∗, S̄i is independent of S = S̄i
∗
.

We will append an additional short random seed (which we denote by SPRG) to S. This means that S is
composed of two short seeds S = (Sdata, SPRG), where Sdata is the seed used for the data code. We will
use a pseudorandom generator G that upon receiving a short seed SPRG produces a “pseudorandom string”
W = G(SPRG) of length Ndata. (We will discuss the pseudorandomness properties that we require from G
shortly). We will then “mask” the data encoding by xoring it with W (prior to combining it with S). This
leads to the following stochastic encoding/list-decoding scheme.

Encoding: On a message m and randomness S = (SPRG, Sdata), Enc(m,S) does the following:
• Compute X = Encdata(m,Sdata).
• Compute W = G(SPRG).
• Compute Y = X ⊕W .
• Compute Z = Combine(Y, S), and output Z.

List-Decoding: On a received word Z̄ = Z ⊕ C(Z), Dec(Z̄) does the following:
• Apply Recover on Z̄ to obtain a list of pairs (S̄1, Ȳ 1), . . . , (S̄L, Ȳ L).
• For every i ∈ [L],

– Compute W̄ i = G(S̄iPRG).
– Compute X̄i = Ȳ i ⊕ W̄ i.
– Output the candidate message Decdata(X̄i, S̄idata).

This scheme also achieves list decoding, because on the correct i∗, S̄i
∗

= S, meaning that W̄ i∗ =
G(S̄i

∗
) = G(S) = W , and the two strings W̄ i∗ and W cancel each other when i = i∗. Consequently, the

correctness of list-decoding follows from the correctness of the previously described list decoding scheme.
12It turns out that due to the structure of previous constructions, the channel C has quite a bit of control on the L candidates

(S̄1, Ȳ 1), . . . , (S̄L, Ȳ L). More specifically, the channel can control many of these candidates and set them to any fixed value of his
choice. Furthermore, while the channel does not know the correct seed S, it can pick in advance a function f , and guarantee that
some of the candidates in the list will be set to f(S). By modifying the construction of Combine and Recover we will be able to
argue that the number of i for which S̄i and S = S̄i

∗
are correlated is small. This means that we still need to handle the few i which

are correlated, and we ignore this problem in this high level overview.
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Connecting this scheme to the evasiveness of the data code. We now observe that in this scheme, there is
indeed a big difference between i∗ and i 6= i∗, specifically:

• For i = i∗, we have that X̄i∗ = X ⊕ E, where X is the data codeword, and E has relative Hamming
weight at most p, and was generated by a space s channel.

This follows because on the correct i∗, S̄i
∗

= S and so the W = W̄ i∗ and the two strings cancel each
other when list-decoding.

• For i 6= i∗, we have that X̄i = R⊕Ei whereR is a pseudorandom string, andEi has relative Hamming
weight at most p, and was generated by a space s channel.

This loosely follows because on i 6= i∗, S̄i and S are independent. Therefore, the two strings W̄ i andW
that are being xored in the list-decoding algorithm, are independent. Furthermore, we have that W =
G(SPRG) is a pseudorandom string, and so it remains pseudorandom when xored with independent
strings. This gives that the string X̄i is a string that was obtained by corrupting a pseudorandom string
with a space s channel.13

We would like to use the “evasiveness on pseudorandom strings” of the data code (Encdata,Decdata) to
argue that in the last step of the decoding, for i 6= i∗, Decdata is applied on a pseudorandom string that was
corrupted by a small space channel and is therefore rejected.

Unfortunately, we once again run into the problem that the “adversary” A(W ) that we are dealing with
is not a small space ROBP. This is because the computation performed in this experiment on the string W =
G(SPRG) (which we denote by A(W )) includes steps that cannot be computed by a small space ROBP.
Specifically, this computation applies the pseudorandom generator G (as well as other steps hidden in the
procedure Recover) and cannot be computable by a small space ROBP.14

Using evasiveness for strings that are pseudorandomness for ROBPs. We now explain how we overcome
these difficulties. By making some additional modifications to the functions Combine and Recover (which
we will not explain here) we will be able to argue that for every channel C, there exists a not too large set
HC of fixed candidates s̄, such that every candidate S̄i for i 6= i∗, is with high probability in HC . This
means that if we want to simulate A(W ) by a small ROBP (that depends on C), we can guess in advance
which candidates will come up during the computation of A, and for every s̄ ∈ HC , we can consider a “fixed
candidate adversary” As̄(W ) that is hardwired with (the constants) s̄ and G(s̄PRG). This “fixed candidate
adversary” As̄(W ) can now be simulated by a small space ROBP (as it does not need to run G of Recover).

It follows using the evasiveness of Encdata that the probability that As̄(W ) wins is small. We can do a
union bound over all the choices of s̄ ∈ HC to get that the probability that one of these adversaries win is
small, and this gives a bound on the probability that A(W ) wins. Overall, this shows that the probability that
an incorrect i 6= i∗ is not rejected is small, meaning that we can identify the correct candidate i∗.

Finally, we stress once again that this high level explanation is oversimplified, and ignores many issues
that come up in the construction and analysis. The reader is referred to the technical section for precise details.
In particular, Section 5.3 has a high level intuition of the construction.

Organization of this paper

In Section 1.4 we survey some additional related work that is not directly comparable to our work (and was
not surveyed before). In Section 2 we give preliminaries and formal definitions. We also state past work on

13We remark that here we are oversimplifying, and this clean statement doesn’t follow precisely as stated. However, a very similar
statement does follow using some additional properties of Combine and Recover.

14We remark that a pseudorandom generator G that fools adversaries that can compute the pseudorandom generator, immedi-
ately implies one way functions, if it fools strong adversaries. Therefore, such pseudorandom generators are not expected to exist
unconditionally, and require cryptographic assumptions in our current state of knowledge.
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the tools and ingredients that are used in our construction. In Section 3 we construct evasive codes for BSCp

with rate 1−H(p) and list additional properties of these codes that will be used in our construction. In Section
4 we discuss stochastic control codes. These are an important ingredient in our construction, and in order to
achieve unique decoding, we need to introduce a property of “repetition decoding” that was not considered
in earlier work [GS16, SS16, KSS19], and construct codes with this property. Our main construction of
stochastic codes for space bounded channels is presented in Section 5. In that section, we also explain the
difference between our construction and the previous list-decodable codes of [GS16, KSS19]. In Section 6
we prove the correctness of our construction.

1.4 More related work on codes for bounded channels

In this section we survey some additional related work that is not directly comparable to our work (and was
not surveyed before).

1.4.1 Stochastic codes for other classes of channels

poly-size circuits. Guruswami and Smith [GS16] also gave constructions of stochastic codes with rate ap-
proaching 1 − H(p) that are list-decodable for channels that are circuits of size nc, and induce pn errors.
They achieved success probability n−c. A significant drawback of these results is that the running time of the
encoding algorithm was polynomial in nc, for a large and unspecified polynomial (meaning that efficiency
quickly deteriorates even for conservative estimates on channel complexity). The construction of [GS16] is
“Monte-Carlo”. Meaning that it requires a preprocessing stage, in which a random string of length poly(nc) is
shared between the encoding and decoding algorithm. The correctness of encoding and decoding algorithms
is guaranteed w.h.p. over the choice of this string. (This string need not be kept secret from the channel).

Shaltiel and Silbak [SS16] removed the need for a preprocessing stage by slightly modifying the construc-
tion of Guruswami and Smith, and providing explicit constructions for the modified components. They give
results for size nc circuits (here a complexity assumption that there are functions in DTIME(2O(n)) that are
hard for small circuits is used, and is necessary).

Non malleable codes. Non-malleable codes (introduced by Dziembowski, Pietrzak, and Wichs [DPW18])
consider channels that are not restricted in the number of errors that they induce. Instead, channels are
assumed to come from some limited class of functions (or complexity class). Codes are stochastic (meaning
that the encoding procedure is randomized) and it is required that following the corruption by the channel, the
decoder either reproduces the encoded message, or an “unrelated” message. The definition of “unrelated” is
given using the simulation paradigm from cryptography. Several classes have been considered, and some of
the constructions rely on cryptographic assumptions. The reader is referred to [DPW18] and the references
therein for precise definition and a survey of results in non-malleable codes.

1.4.2 Other coding scenarios with randomized encoding or bounded channels

The notion of computationally bounded channels was also studied in other setups. We mention some of these
works below.

Shared private randomness. We start with the notion of codes with “shared private randomness”. While
this setup was considered before the notion of stochastic codes, in this paper, it is natural to view it as a
version of stochastic codes in which the decoding algorithm does receive the randomness S chosen by the
encoding algorithm. This corresponds to a standard symmetric cryptography setup in which honest parties
(the encoder and decoder) share a uniform private key S, and the bad party (the channel) does not get the key.
Lipton [Lip94] and following work (see [Smi07] for more details) gave explicit constructions of uniquely
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decodable codes against computationally bounded channels, in this setup, with rate approaching 1 − H(p),
under cryptographic assumptions.

Note that the setup of stochastic codes is lighter. The encoder and decoder do not need to share a private
random key. Moreover, a fresh key can be chosen on the spot every time the encoder encodes a message.

A related notion of “private codes” was studied by Langberg [Lan04]. This is also in the setup of shared
private randomness. Here channels are computationally unbounded, codes are existential rather than explicit,
and have rate approaching 1−H(p). The focus is on minimizing the length of the shared key. Langberg pro-
vides asymptotically matching upper and lower bounds of Θ(log n+log(1/ν)), on the amount of randomness
that needs to be shared for unique decoding in this setup, where ν is the error parameter.

Public key setup. Micali et al. [MPSW10] considered computationally bounded channels, and a crypto-
graphic public key setup. Their focus is to use this setup to convert a given (standard) explicit list-decodable
code into an explicit uniquely decodable codes (in this specific public key setup).

2 Preliminaries, and ingredients used in the construction

In this section we give formal definitions of the notions and ingredients used in the construction. We also cite
previous results from coding theory and pseudorandomness that are used in the construction.

General notation. We useH(p) to denote the Shannon binary entropy function: H(p) = p·log(1/p)+(1−
p)·log(1/(1−p)). We useUn to define the uniform distribution on n bits. The statistical distance between two
distributions P,Q over Ω is maxA⊆Ω |P (A)−Q(A)|. The min-entropy of P is H∞(P ) = mins∈Ω(log 1

p(s) .
We sometimes use the notation Oλ(·) to emphasize that the constant hidden in the O(·) notation may

depend on λ.

Definition 2.1 (Hamming distance and weight). The Hamming weight of x ∈ [q]n is WT(x) = | {i : xi 6= 0} |.
The relative Hamming weight of x is wt(x) = WT(x)

n . The Hamming distance between x, y ∈ [q]n is
∆(x, y) = | {i : xi 6= yi} |. The relative Hamming distance between x, y ∈ [q]n is δ(x, y) = ∆(x,y)

n .

2.1 Permuting strings

We will use a permutation π : [n] → [n] to “reorder” the bits of a string x ∈ {0, 1}n: The i’th bit in the
rearranged string will be π(i)’th bit in x. This is captured in the definition below.

Definition 2.2 (Permuting strings). Given a string x ∈ {0, 1}n and a permutation π : [n] → [n]. Let π(x)
denote the string x′ ∈ {0, 1}n with x′i = xπ(i).

2.2 Read once branching programs

2.2.1 Formal definition of ROBPs and bounded space channels

We give a formal definition of bounded space computation and channels. The model that we consider is
that of oblivious read once branching programs (ROBP). In the definition below, we will consider several
variants depending on whether the ROBP outputs a single bit, or one bit per any input bit (which is the case
for channels that are function C : {0, 1}n → {0, 1}n).

Definition 2.3 (Read Once Branching Programs (ROBP) and channels). A space s ROBP C which receives
input in {0, 1}n is defined by picking n transition functions δ1, . . . , δn where for each i, δi : {0, 1}s×{0, 1} →
{0, 1}s. On input x ∈ {0, 1}n, the computation path of C is the sequence r0, . . . , rn of states defined by
r0 = 0s and for i ≥ 1, ri = δi(ri−1, xi). We distinguish between two types of ROBPs:

13



• If C : {0, 1}n → {0, 1} is an ROBP that outputs a single bit, then C also has an output function
o : {0, 1}s → {0, 1} and C(x) is defined to be o(rn).

• If C : {0, 1}n → {0, 1}n is an ROBP that outputs n bits, then C also has n output functions o1, . . . , on
where for each i, oi : {0, 1}s → {0, 1} and C(x) is defined by the n bit string o1(r1), . . . , on(rn).

The class Spcsp is the class of all space s ROBPs C : {0, 1}n → {0, 1}n such that for every input x, C(x) has
Hamming weight at most pn. We will say that such channels “induce pn errors”.

We are stating this definition in the terminology of “transition functions” and “output functions” which is
more convenient when discussing ROBPs that output more than one bit. However, we stress that this definition
is equivalent to the more common definition of width w = 2s ROBPs in terms of a layered graph with n+ 1
layers of “width” w, where the i’th transition function specifies the edges from the (i− 1)’th level to the i’th
level.

2.2.2 PRGs for ROBPs

We need the following standard definition of pseudorandom distributions and generators.

Definition 2.4 (Pseudorandom generators). A distribution X on n bits is ε-pseudorandom for a class C of
functions from n bits to one bit, if for every C ∈ C, |Pr[C(X) = 1] − Pr[C(Un)] = 1]| ≤ ε. A function
G : {0, 1}d → {0, 1}n is an ε-PRG for C if G(Ud) is ε-pseudorandom for C.

A long line of work is concerned with pseudorandom generators for small space ROBPs. Some of the
considerations that we make in this paper are reminiscent of [Nis92, NZ96, INW94, RR99]. We will use the
following PRG by Forbes and Kelly [FK18]. The furthermore part is proven in [KSS19]. (We remark that
earlier constructions also have these properties, and we use [FK18] because the furthermore part was verified
in [KSS19]).

Theorem 2.5. For every log n ≤ s ≤ n, there exists an ε-PRGG : {0, 1}d → {0, 1}n for space s ROBPs that
output one bit, with d = O((s+ log 1

ε ) · log2 n). Furthermore, G can be computed in time O(n · polylog(n)).

2.3 Averaging Samplers

The reader is referred to Goldreich’s survey [Gol97] on averaging samplers.

Definition 2.6 (Averaging Samplers). A function Samp : {0, 1}n → ({0, 1}m)t is an (ε, δ)-Sampler if for
every f : {0, 1}m → [0, 1],

Pr
(z1,...,zt)←Samp(Un)

[|1
t

∑
i∈[t]

f(zi)−
1

2m

∑
x∈{0,1}m

f(x)| > ε] ≤ δ.

A sampler has distinct samples if for every x ∈ {0, 1}n, the t elements in Samp(x) are distinct.

The next theorem follows from the “expander sampler”. This particular form can be found (for example)
in [Vad04].

Theorem 2.7. For every sufficiently large m and every ε ≥ δ > 0 such that m ≤ log(1/δ) there is an
(ε, δ)-sampler with distinct samples, Samp : {0, 1}O(log(1/δ)·poly(1/ε)) → ({0, 1}m)t for any t ≤ 2m such
that t ≥ poly(1/ε) · log(1/δ). Furthermore, Samp is computable in time t · poly(1/ε, log(1/δ)) and has
distinct samples.
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2.4 Almost t-wise independent permutations

We also need the following notion of almost t-wise permutations.

Definition 2.8 (Almost t-wise independent permutations). A function π : {0, 1}d× [n]→ [n] is an (ε, t)-wise
independent permutation if:

• For every s ∈ {0, 1}d the function πs(i) = π(s, i) is a permutation over [n].

• For every distinct i1, . . . , it ∈ [n], the random variableR = (R1, . . . , Rt) defined byRj = π(s, ij) : s←
Ud, is ε-close to t uniform samples without repetition from [n].

Theorem 2.9. [KNR09] For every t and every sufficiently large n, there exists an (ε, t)-wise independent
permutation with d = O(t · log n + log(1/ε)). Furthermore, computing π(s, i) on inputs s ∈ {0, 1}d and
i ∈ [n] can be done in time poly(d, log n).15

2.5 Error-Correcting Codes

In this section we give formal definitions of some of the various notions of error correcting codes used in this
paper. We will also introduce less standard definitions in the next sections.

A code is pair (Enc,Dec) of encoding and decoding algorithms, and different notions are obtained by
considering the requirements on the decoding algorithm.

2.5.1 Standard notions of error correcting codes

We start by giving definitions of error correcting codes that covers the standard cases of Hamming channels
and binary symmetric channels. In the definition below we consider codes that are not necessarily binary (as
we will use non-binary codes as components in our construction).

Definition 2.10 (Codes for Hamming channels). Let k, n, q be parameters and let Enc : {0, 1}k → ({0, 1}log q)n

be a function. We say that Enc is an encoding function for a code that is:

• decodable from t errors, if there exists a function Dec : ({0, 1}log q)n → {0, 1}k such that for every
m ∈ {0, 1}k and every v ∈ ({0, 1}log q)n with ∆(Enc(m), v) ≤ t, Dec(v) = m.

• L-list-decodable from t errors, if the function Dec is allowed to output a list of size at most L, and for
every m ∈ {0, 1}k and every v ∈ ({0, 1}log q)n with ∆(Enc(m), v) ≤ t, Dec(v) 3 m.

• decodable from P , with success probability 1 − ν, if P is a distribution over ({0, 1}log q)n, 0 ≤
ν ≤ 1, and there exists a function Dec : ({0, 1}log q)n → {0, 1}k such that for every m ∈ {0, 1}k,
Pre←P [Dec(Enc(m)⊕ e) = m] ≥ 1− ν.

In the definitions above, we use “δ relative errors” to mean “t = δn errors”.
A code has encoding time [resp. decoding time] T (·), if Enc [resp. Dec] can be computed in time

T (n log q). The code is explicit if both encoding and decoding run in polynomial time. (Naturally, this makes
sense only for a family of encoding and decoding functions with varying block length n, message length k(n),
and alphabet size q(n)).

The rate of the code is the ratio of the message length and output length of Enc, where both lengths are
measured in bits. That is the rate R = k

n·log q .

15We will be interested in the time it takes to compute the permutation on all i ∈ [n] (namely given s, we want to compute
(π(s, i))i∈[n]) and will use n · poly(d) as a bound on the time for this task. Note that this also gives that computing (π−1(s, i))i∈[n]

can be done within the same time bound.
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The notion of “decoding from errors” corresponds to Hamming channels, where the decoding algorithm
needs to decode (or list-decode) from a certain distance. We remark that it is standard that a code is decodable
from t errors if and only if the Hamming distance between every two codewords is at least 2t+ 1.

The notion of decoding from P covers the case of BSC channels, by choosing q = 2 and P to be the
distribution BSCp of n i.i.d. bits where each bit has probability p to be one.

2.5.2 Locally-correctable and locally-testable codes

We will rely on constructions of locally-corerctable and locally-testable codes with high rate by Kopparty,
Meir, Ron-Zewi and Saraf [KMRS17]. For our application it is crucial that these constructions have a non-
adaptive local corrector. This can be verified by inspecting the construction.16 In the definition below, we
restrict ourselves to locally correctable codes and locally testable codes with non-adaptive local correctors.

Definition 2.11 (Locally-correctable and locally testable codes with non-adaptive queries). Let k, n, q be
parameters and let Enc : {0, 1}k → ({0, 1}log q)n be a function.

• We say that Enc is an encoding function for a code that is non-adaptively locally-correctable from t
errors using Q queries, if there exists a randomized local-correcting procedure Dec(·)(·) such that for
every m ∈ {0, 1}k, every i ∈ [n] and every v ∈ ({0, 1}log q)n with ∆(Enc(m), v) ≤ t, we have that
when Dec receives input i, it makes at most Q nonadaptive oracle calls to v, and:

Pr[Decv(i) = Enc(m)i] ≥
2

3
.

• We say that Enc is an encoding function for a code that is non-adaptively locally-testable from t errors
using Q queries, if t ∈ [n], and there exists a randomized local-testing procedure Dec(·)(·) such that
for every v ∈ ({0, 1}log q)n the following holds:

– If there exists m ∈ {0, 1}k such that v = Enc(m) then Pr[Decv = 1] ≥ 2
3 .

– If for every m ∈ {0, 1}k, ∆(v,Enc(m)) > t then Pr[Decv = 1] ≤ 1
3 .

In the definitions above, we use “δ relative errors” to mean “t = δn errors”.

Theorem 2.12 (High rate locally-correctable and locally-testable codes [KMRS17]). For every constants
0 < r < 1 and ε > 0, there exists a constant q = 2poly(1/ε) such that for infinitely many n, there is a function
Enc : {0, 1}r·n·log q → ({0, 1}log q)n (that is, Enc has rate r) such that:

• Enc is computable in polynomial time.

• Enc is decodable from 1−r−ε
2 relative errors, by a decoding algorithm that runs in polynomial time.

• Enc is non-adaptively locally correctable and locally-testable from 1−r−ε
2 relative errors, using Q =

no(1) queries, and a local-correcting and local testing algorithms that run in time poly(Q).

Remark 2.13 (The parameters needed in our construction). The statement of Theorem 2.12 asks for codes that
are simultaneously locally correctable and locally testable. Such codes are stated in Section 1.3 in [KMRS17].
These codes are exceptional as they match the Singleton bound and achieve Q = no(1) queries.

For our purposes, this is not necessary and (using a slightly more careful analysis) our results follow from
codes with weaker parameters. More specifically:

16We remark that by the work of Ben-Sasson, Harsha and Raskhodnikova [BHR05], it follows that every linear code that is locally
testable has a non-adaptive tester. We are not sure whether this also holds for locally-correctable codes.
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• We do not require codes that match the singleton bound. It is sufficient that for every ε > 0 there exists
a constant ε′ > 0 and a code with rate 1− ε that is locally-correctable and locally testable from ε′ > 0
relative errors. We can also allow the alphabet to be any large constant that only depends on ε.

• It is not important that the number of queries is Q = no(1), and our results hold even if Q = nα for
a constant α > 0, as long as we can choose this α to be sufficiently small. We can also allows the
constant ε′ and the alphabet size in the previous item to depend on α.

The codes of Guo, Kopparty and Sudan [GKS13] already achieve this weaker property, and are in fact a
component in the stronger result of [KMRS17] (which amplifies their parameters).

The method of [KMRS17] is known to produce codes with nearly linear time encoding (See Remark 2.6 in
[HRW19] by Hemenway, Ron-Zewi and Wootters). Therefore, it seems likely that a better bound of n1+o(1),
also applies for the encoding time in Theorem 2.12. For this to follow directly, one needs to make a careful
inspection of the encoding time of the codes of Guo, Kopparty and Sudan [GKS13] when set up as locally-
correctable codes. It seems very likely that these codes can be encoded in near linear time, but we have not
carefully verified this.

Plugging codes with encoding time n1+o(1) into our construction gives a stochastic code with (random-
ized) encoding and decoding time n1+o(1). As we have not examined the codes of [GKS13] carefully, we now
explain an alternative, indirect approach that achieves time encoding time n1+o(1).

A less direct approach that gives a code that achieves the parameters mentioned in the second item is
given by “tensored codes”. More specifically, by tensoring a code with itself t times, one can start with a
linear locally-correctable code with Q queries, that has rate larger than R = 1 − β/t, and obtain a code
with rate roughly 1 − β, while still having local correction with roughly Qt queries. The advantage of such
a transformation is that if the initial code is explicit, then the obtained code has time n1+O(1/t) encoding
and decoding. An additional advantage is that Viderman [Vid15] showed that tensored linear codes are also
locally correctable with NO(1/t) queries (where N is the block length of the target code).

This procedure can be applied on the multiplicity codes of Kopparty, Saraf and Yekhanin [KSY14], or
the aforementioned codes of Guo, Kopparty and Sudan [GKS13]. The rate of these codes can be taken to be
larger than say 1−O( 1

t2
), in order to allow the transformation described above for any large constant t. It is

also possible to push t further, by taking versions of these codes that have sub-constant distance, to get better
initial rate. Then, after applying the tensoring transformation, one can increase the distance (without harming
the other parameters by too much) using the methods of Kopparty, Meir, Ron-Zewi and Saraf [KMRS17]. We
defer the exact details to the final version.

2.5.3 Concatenated codes and outer distance

We give the following standard definition of concatenated codes.

Definition 2.14 (Concatenated code). Given functions:

• Encout : {0, 1}kout → ({0, 1}log qout)nout , and

• Encin : {0, 1}kin → ({0, 1}log qin)nin ,

such that log qout = kin we define the concatenated encoding function Enc : {0, 1}kout → ({0, 1}log qin)nout·nin

denoted by Encout ◦ Encin as follows: For iout ∈ [nout], iin ∈ [nin], and i = (iout − 1) · nin + iin we define
Enc(m)i = Encin(Encout(m)iout)iin .

Concatenated codes can be decoded by “concatenated decoding” which is the “natural decoding algorithm”
that decodes each block using a decoding algorithm for the inner code, and then applies a decoding algorithm
of the outer code. This algorithm is defined below. (We remark that in this definition, we don’t care about
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the decoding properties of the outer and inner codes, and the concatenated decoding is defined, without
mentioning the decoding properties of the code.

We also define a notion of relative outer distance. This measure will play an important role in later
sections. The relative outer distance of a “received word” z ∈ {0, 1}n is the relative Hamming distance
between Encout(Dec(z)) and the string that came up in the concatenated decoding algorithm after decoding
the inner code.

Definition 2.15 (Concatenated decoding and outer distance). Let Enc = Encout ◦ Encin be a concatenated
code, and let Decout : ({0, 1}log qout)nout → {0, 1}kout , Decin : ({0, 1}log qin)nin → {0, 1}kin be functions.
For i ∈ [nout] we define Deciin : ({0, 1}log qin)nout·nin → {0, 1}kin by:

Deciin(z) = Decin(z(i−1)·nin+1, . . . , zi·nin).

The concatenated decoding function Dec : ({0, 1}log qin)nout·nin → {0, 1}kout is defined by:

Dec(z) = Decout(Dec1
in(z), . . . ,Decnout

in (z)).

Under the same conditions, given z ∈ {0, 1}n, the relative outer distance of z (for a specific choice of
Encin,Encout,Decin and Decout) is defined by:

outdist(z) =
|
{
i ∈ [nout] : Deciin(z) 6= Encout(Dec(z))i

}
|

nout
.

Meaning and usefulness of outer distance. We will use a concatenated code Enc = Encout ◦ Encin

such that Encout is decodable from λ relative errors, and Encin will have a decoding algorithm Decin with
properties that we don’t discuss at this point. We will use the concatenated decoding algorithm Dec as a
decoding algorithm for Enc.

The relative outer distance outdist(z) measures the fraction of errors that Decout corrected, when the
concatenated decoding algorithm Dec was applies on z. We will be using an inner code Encin in which
qin = 2 and nin is small. We will now argue that in such a setup, even though we’re not sure what Decin is
doing, we can still obtain some properties of Dec with respect to relative outer distance that are analogous to
properties of Encout with respect to relative distance.

Specifically, In the case that Encout decodes from λ relative errors, it is standard that if while running
Decout(z), the fraction of errors that were corrected is λ′ ≤ λ and if δ(z, z′) ≤ λ − λ′ then Decout(z

′) =
Decout(z). The following lemma stated that this holds for the concatenated code Enc, with respect to relative
outer distance, while paying a cost that depends on nin.

Lemma 2.16. Under the setup of Definition 2.15, assume further that Decout is a decoding algorithm showing
that Encout is decodable from λ relative errors. For every z, z′ such that:

• outdist(z) ≤ λ′ ≤ λ, and

• δ(z, z′) ≤ λ−λ′
nin

,

we have that Dec(z′) = Dec(z), and outdist(z′) ≤ outdist(z) + δ(z, z′) · nin.

Proof. Let δ′ = δ(z, z′). The strings z and z′ differ in at most δ′ · n bits, and so when thinking of them as
nout blocks of length nin, they differ in at most δ′n = (δ′ · nin) · nout blocks. This means that when the
concatenated decoding algorithm is applied on z and z′ the word obtained after inner decoding of z differs
from the word obtained by inner decoding of z′ in a δ′ · nin fraction of the nout symbols. We have that when
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concatenated decoding was applied on z, the outer code corrected λ′ relative errors, and so the fraction of
errors that is added is δ′ · nin. Together, the fraction of errors is at most

λ′ + δ′ · nin ≤ λ′ +
λ− λ′

nin
· nin ≤ λ,

and this means that the concatenated decoding algorithm decodes z′ to the same word that z was decoded to,
and the outer relative distance is bounded by λ′ + δ′ · nin.

2.5.4 Stochastic Codes for a class of channels

In this section we give a precise formal definition of the notion of stochastic codes for a class of channels (that
was already explained in the introduction).

Definition 2.17 (Stochastic codes for channels). Let k, n, d be parameters and let Enc : {0, 1}k ×{0, 1}d →
{0, 1}n be a function. Let C be a class of functions from n bits to n bits. We say that Enc is an encoding
function for a stochastic code that is:

• decodable for “channel class” C, with success probability 1−ν, if there exists a (possibly randomized)
procedure Dec : {0, 1}n → {0, 1}k such that for every m ∈ {0, 1}k and every C ∈ C, setting
X = Enc(m,Ud), we have that Pr[Dec(X ⊕C(X)) = m] ≥ 1− ν, where the probability is over coin
tosses of the encoding and decoding procedures.

• L-list-decodable for “channel class” C, with success probability 1−ν, if the procedure Dec is allowed
to output a list of size at most L, and Pr[Dec(X ⊕C(X)) 3 m] ≥ 1− ν, where the probability is over
coin tosses of the encoding and decoding procedures.

A code has encoding time [resp. decoding time] T (·), if Enc [resp. Dec] can be computed in time T (k +
n + d). The code is explicit if both encoding and decoding run in polynomial time. (Naturally, this makes
sense only for a family of encoding and decoding functions with varying block length n, message length k(n)
and seed length d(n)).

The rate of the code is the ratio of the message length and output length of Enc, where both lengths are
measured in bits. That is the rate R = k

n .

Remark 2.18 (Stochastic codes with randomized decoding). Definition 2.17 assumes that the decoding algo-
rithm is deterministic. However, as we are allowing the encoding algorithm to be randomized, and allowing
success probability smaller than one, we may as well allow the decoding algorithm to be randomized.

This approach was used in [KSS19] to speed up the time of the decoding algorithm. Allowing randomized
decoding also allows us to speed up the decoding time from polynomial to almost linear. We will elaborate on
this in Section 5.6.

3 Evasive codes for BSC channels and related variants

In this section, we construct explicit codes with the following properties:

• Explicit decoding from BSCp. (In fact, we will need a related, but stronger property of decoding from
“almost t-wise independent errors” that we will explain later).

• Rate 1−H(p).

• “Evasiveness” against Spcsp.

We start by giving an informal definition of the evasiveness property (we will state things more precisely
below). This description is similar to the one given in Section 1.3.2.
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The evasiveness experiment: Given Enc : {0, 1}k → {0, 1}n and Dec : {0, 1}n → {0, 1}k ∪ {⊥}, and
a channel C: rather than giving the channel C a codeword of Enc to corrupts, we will be interested in the
behavior of the channel and decoding algorithm on a uniformly chosen string. Specifically, we consider the
following experiment:

• A uniform Z ← Un is chosen.

• The “received word” V = Z ⊕ C(Z) is obtained when the channel C “corrupts” Z.

• We apply Dec(V ) and will say that the code (Enc,Dec) is evasive if the probability that Dec(V ) 6= ⊥
is small.

Naturally, evasiveness is only interesting when coupled with some additional decoding properties of the
code, like in our case decoding from BSCp. Previous work on codes for space bounded channels (starting
with Guruswami and Smith [GS16]) uses codes for BSCp with rate approaching 1−H(p), and the additional
evasiveness notion that we introduce will be key in converting the earlier list decoding algorithms to unique
decoding.

Remark 3.1 (Evasiveness and the Gilbert-Varshamov bound). Loosely speaking, evasiveness is one of the keys
that allows us to achieve unique decoding while beating the Gilbert-Varshamov bound. More specifically, it
is easy to see that any code with rate R < 1 − H(2p) (and in particular, a code that achieves the rate
R = 1 −H(2p) − ε for every ε > 0, namely a code that achieves the Gilbert Varshamov bound) is evasive
against the class of all channels. This is because with high probability a random word Z has relative distance
larger than 2p from any codeword. This means that if (an unbounded channel) examines Z and induces p
relative errors, the corrupted word is still not within distance p to a codeword, and therefore will be rejected
by a decoding algorithm that decodes from p relative errors.

Indeed, one of the keys to our unique decoding algorithm is a code with rate approaching 1−H(p) (rather
than 1−H(2p)) while still achieving evasiveness, and decoding from BSCp.

3.1 Road map for this section

Following [GS16, SS16, KSS19] we will require a code with many additional properties (in addition to having
rate 1 − H(p) from BSCp). In this paper, we introduce the notion of evasiveness, and will also require that
the code is evasive. Following [GS16] our starting point are concatenated codes for BSCp channels, that for
every ε > 0 achieve rate R ≥ 1−H(p)− ε. Such codes Enc are constructed by concatenating:

• An outer code Encout with rate 1− ε/10 that is decodable from λ = Ω(ε) errors. The alphabet of this
outer code (which determines the message length of the inner code) is a constant that depends on ε.

• A binary inner code Encin with constant message length that decodes from BSCp and has rate 1 −
H(p) − ε/10. The existence of such a code follows by the probabilistic method, and the decoding
algorithm is maximum likelihood decoding.

This gives an explicit code from BSCp, where the decoding algorithm for the concatenated code is the
concatenated decoding algorithm from Definition 2.15. We will specify this more formally below in Theorem
3.10, and in fact, some additional properties of this code is required by [KSS19] and also here. We start by
focusing on the notion of evasiveness and how to achieve it. We will list the additional required properties of
the code as we go along.

Evasiveness of (concatenated) codes. In Section 3.2 we will show that this decoding algorithm is evasive.
More precisely, during the computation of concatenated decoding on a received word v, the concatenated
decoding algorithm Dec also computes outdist(v) (which is the relative outer distance from Definition 2.15).
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The relative outer distance of v is the fraction of errors that were corrected by the decoding algorithm Decout

of the outer code. In our setup, when decoding from BSCp, the outer distance will be smaller than 1
2 · λ with

high probability.
We will show that the probability that a small space channel C can make the decoding algorithm have

outer distance at most ≤ 0.99λ is small. This means that the code Enc can be made evasive (by rejecting
whenever the outer distance during decoding is larger than 1

2 · λ).

Concatenated codes for BSC and related variants. In Section 3.3 we review the constructions of con-
catenated codes for BSCp. We observe that we can take the outer code to be the high rate locally cor-
rectable and testable code of Kopparty, Meir, Ron-Zewi and Saraf [KMRS17]. Furthermore, following
[Smi07, GS16, KSS19] we observe that the construction is also decodable from t-wise independent errors
(that is defined formally in that section). This part is identical to [KSS19] (except for the different choice of
outer code).

Approximating the outer distance by a small space ROBP. We will later be concerned with a “pseudo-
random version” of the evasiveness experiment (which was explained in Section 1.3) in which rather than
choosing a uniform Z ← Un, the string Z is chosen by Z ← G(Ud) where G is a PRG for small space
ROBPs.

This version of the experiment will be crucial in our actual construction, as we will want to argue that
except for the correct message, many other messages that are considered in the list decoding algorithm are
obtained by decoding pseudorandom codewords. We will want to argue that evasiveness (on uniform strings)
implies evasiveness on pseudorandom strings. This will enable us to argue that many incorrect messages are
rejected by the decoding algorithm (and will be a key step in achieving unique decoding).

At first glance, it may appear that because C is a space bounded channel, andG fools small space ROBPs,
then evasiveness implies evasiveness on pseudorandom strings. This isn’t the case, because in the evasiveness
experiment, one needs to run the decoding algorithm in order to decide whether or not the channel succeeds
(and decoding algorithms are inherently not implemented by small space ROBPs).

Fortunately, the way we presented our notion of evasiveness does not require the full power of decoding.
Instead, it is sufficient to compute the outer distance outdist by a small space ROBP.

In Section 3.4 we show that if the outer code Encout is locally correctable and locally testable then the
outer distance outdist can be approximated by a small space ROBP (where the space depends on the number
of queries in the local correcting and locale testing algorithm). This will be sufficient to argue later on that
evasiveness implies evasiveness on pseudorandom strings.

3.2 Evasiveness of concatenated codes

In Theorem 3.3 below, we state conditions under which a concatenated code is evasive. For this statement,
we need the following notion of a “decoding reach”.

Definition 3.2 (Decoding reach of a code). For a pair of functions Enc : {0, 1}k → {0, 1}n and Dec :
{0, 1}n → {0, 1}k, the relative decoding reach of Enc and Dec is

max
v∈{0,1}n

δ(v,Enc(Dec(v))).

Note that a code that decodes from λ-relative errors, can w.l.o.g. have relative decoding reach at most λ
(by re-encoding the decoded message and computing the distance). Note also that if Enc = Encout ◦ Encin

is a concatenated code, and Dec is the concatenated decoding algorithm, then the relative decoding reach of
Enc and Dec is bounded by the sum of the relative decoding reaches of the outer and inner codes.
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3.2.1 Statement of evasiveness theorem

In this section, we state and prove a theorem showing that any concatenated code with certain parameters is
evasive. In our application, we will need a stronger evasiveness property (than the one stated before) that
holds even if the channel C is allowed to choose a permutation σ : [n]→ [n] that is applied to V = Z⊕C(Z)
before it is decoded.

The theorem below shows that under certain conditions, a small space channel that induces few errors
cannot make the concatenated decoding algorithm decode with small relative outer distance. This means that
we can obtain evasiveness of Dec by rejecting strings v ∈ {0, 1}n for which outdist(v) is large. (Jumping
ahead we comment that when decoding from a corrupted codeword (rather than a corrupted uniform string)
we will have the property that the relative outer distance is small, and this will allow us to distinguish between
the case that the channel was applied on a uniform string, from the case that the channel was applied on a
codeword).

Theorem 3.3 (Evasiveness of concatenated codes). For every constant γ1 > 0, there exists a constant γ2 > 0
such that for every sufficiently large nout and a concatenated code Enc = Encout ◦Encin : {0, 1}n → {0, 1}
with n = nout · nin such that:

• Encout : {0, 1}kout → ({0, 1}log qout)nout that is decodable from λ relative errors by a decoding algo-
rithm Decout : ({0, 1}log qout)nout → {0, 1}kout .

• Encin : {0, 1}kin=log qout → {0, 1}nin and Decin : {0, 1}nin → {0, 1}kin is a function such that
Encin,Decin have relative decoding reach β.

Let Dec and outdist be the concatenated decoding algorithm and relative outer distance from Definition 2.15.
If λ+β+ p ≤ 1

2 − γ1 and s ≤ γ2 ·λ ·nout then for every channel C : {0, 1}n → {0, 1}n such that C ∈ Spcsp
and every permutation σ : [n]→ [n], if we choose Z ← Un and set X = σ(Z ⊕ C(Z)), we have that:

Pr[outdist(X) ≤ 0.99 · λ] ≤ 2−Ωγ1 (λ·nout)

In the remainder of this section we prove Theorem 3.3. A high level explanation of this argument was given
in Section 1.3.2.

3.2.2 Concatenated codes are evasive: proof of Theorem 3.3

We will divide Z ∈ {0, 1}n into blocks. Specifically, let u = 100nin
λ and v = n/u = λ·nout

100 . For
a string y ∈ {0, 1}n and i ∈ [u], we use y[i] to denote the v bit long, i’th block of y, namely yi =
y(i−1)·v+1, . . . , y(i−1)·v+v. We now define the probability space that will be used in the proof. We refer
to this experiment as expr.

• We choose: Z ← Un, and set:

• E = C(Z) to be the error induced by C.

• Let q0 be the starting state of C, and for i ∈ [u], let Qi ∈ {0, 1}s be the state that C arrives at after
reading Z[1], . . . , Z[i]. Let Q ∈ ({0, 1}s)u be defined by Q = (Q1, . . . , Qu).

• Y = Z ⊕ E. For every i ∈ [u], let Y (i) be the string obtained from Y by replacing the i’th block with
zeros. Namely, Y (i)[j] = Y [j] for j 6= i and Y (i)[i] = 0v.

• X = σ(Y ), and for every i ∈ [u], X(i) = σ(X(i)).

• M = Dec(X), and for every i ∈ [u], M(i) = Dec(X(i)).

• W = σ−1(Enc(M)), and for every i ∈ [u], W (i) = σ−1(Dec(M(i))).
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In addition to the probability space of the experiment expr, for every q ∈ ({0, 1}s)u such that Pr[Q =
q] > 0, we consider the probability space exprq = (expr|Q = q). The random variables in this experiment
will be denote by adding the superscript q. Thus, for example, Zq = (Z|Q = q), and Eq = (E|Q = q) =
C(Zq).
We start by proving several claims about these experiments.

Claim 3.4. The following holds:

• For every q such that Pr[Q = q] > 0, Zq[1], . . . , Zq[u] are independent.

• For every q such that Pr[Q = q] > 0, there exist functions Cq1 , . . . , C
q
u such that for every i ∈ [u],

E[i] = Cqi (Zq[i]).

• Let ρ = γ2 · λ · nout. With probability at least 1 − uρ over the choice of q ← Q, we have that q is
“good”, meaning that for every i ∈ [u], H∞(Zq[i]) ≥ v − s− log(1/ρ) ≥ Ω(λ · nout).

Proof. By the definition of ROBPs, for every 1 < i ≤ u, Qi is determined by Qi−1 and Z[i− 1]. For i ∈ [u]
and q ∈ ({0, 1}s)u, let Dq

i : {0, 1}v → {0, 1} be the space s ROBP that on input x ∈ {0, 1}v, interprets x
as the i’th block of an n bit input string to C, and applies C on x ∈ {0, 1}v starting as if C begins at the i’th
block (that is, at layer (i−1) ·v+1) from the state qi−1. The ROBPDq

i accepts x if this simulation concludes
in state qi. It follows that:

Zq = (Z[1]|Dq
1(Z[1]) = 1), . . . , (Z[u]|Dq

u(Z[u]) = 1)

Showing that the blocks of Zq are independent, proving the first item.
Note that by the definition of ROBPs, E[i] is determined by Qi−1 and Z[i]. This means that Eq[i] is

determined by Zq[i] (as Qqi is fixed to qi) proving the second item.
Note that the definition of the ROBP Dq

i depends only on q1, . . . , qi and not on qi+1, . . . , qu. Thus, we
will allow ourselves to write Dq1,...,qi

i , and this is well defined.
We say that q ∈ ({0, 1}s)j is good at position i ≤ j if

Pr[Dq
i (Uv) = 1] ≥ ρ · 2−s.

We say that q ∈ ({0, 1}s)u is good, if it is good at every position i ∈ [u]. We claim that:

Pr[Q is good] ≥ 1− u · ρ.

For this, it is sufficient to prove that for every i ∈ [u] and every q1, . . . , qi−1 ∈ {0, 1}s such that (q1, . . . , qi−1)
is good at positions 1, . . . , i− 1, we have that:

Pr[(Q1, . . . , Qi) is not good at position i|Q1 = q1, . . . , Qi−1 = qi−1] ≤ ρ.

In order to show this, for fixed q1, . . . , qi−1, we define:

Bq1,...,qi−1 =
{
qi : Pr[D

(q1,...,qi−1,qi)
i (Uv) = 1] < ρ · 2−s

}
,

and by a union bound over at most 2s choices of qi ∈ Bq1,...,qi−1 we have that:

Pr[Qi ∈ Bq1,...,qi−1 |Q1 = q1, . . . , Qi−1 = qi−1] ≤ 2s · (ρ · 2−s) = ρ.

Finally, for every good q ∈ ({0, 1}s)u, we have that:

H∞(Zq[i]) = H∞(Z[i]|Dq
i (Z[i]) = 1) ≥ v − log(

1

ρ · 2−s
) = v − s− log(1/ρ).
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Claim 3.5. For every good q ∈ ({0, 1}s)u, and every i ∈ [u], M q(i) is independent of Zq[i].

Proof. The message M q(i) is a function of Y q(i), that was obtained after the i’th block of Y was erased, and
is therefore determined by:

Y q[1], . . . , Y q[i− 1], Y q[i+ 1], . . . , Y q[u].

We have that Y q = Zq ⊕Eq, meaning that Y q[i] = Zq[i]⊕Eq[i]. By the second item of Claim 3.4, for every
i ∈ [u], Eq[i] is determined by Zq[i]. This means that Y q[i] is determined by Zq[i]. This means that M q(i) is
determined by:

Zq[1], . . . , Zq[i− 1], Zq[i+ 1], . . . , Zq[u],

and the latter is independent of Zq[i] by the first item of Claim 3.4.

Claim 3.6. For every γ1 > 0, every good q ∈ ({0, 1}s)u, and every i ∈ [u],

Pr[δ(W q(i)[i], Zq[i]) ≤ 1

2
− γ1] ≤ 2−Ωγ1 (λ·nout).

Proof. Let us imagine that the probability space exprq contains an additional random variable U , which is
uniform on {0, 1}v, and independent of all random variables. As W q(i)[i] is independent of U , we have that
the expected relative distance between W q(i)[i] and U is half. By a Chernoff bound:

Pr[δ(W q(i)[i], U) ≤ 1

2
− γ1] ≤ 2−Ω(γ2

1 ·v) ≤ 2−Ωγ1 (λ·nout).

The claim will follow if we argue that:

Pr[δ(W q(i)[i], Zq[i]) ≤ 1

2
− γ1] ≤ Pr[δ(W q(i)[i], U) ≤ 1

2
− γ1] · 22·γ2·λ·nout . (1)

We first note that by Claim 3.5, just like U , Zq[i] is independent of W q(i)[i]. Furthermore, by Claim 3.4 we
have that H∞(Zq[i]) = v − log(2s

ρ ). It follows that for every x ∈ {0, 1}v,

Pr[Zq[i] = v] ≤ Pr[U = v] · 2s

ρ
≤ Pr[U = v] · 22·γ2·λ·nout ,

and this implies (1) and the claim.

Claim 3.7. For every good q ∈ {0, 1}u, if outdist(Xq) ≤ 0.99 · λ then for every i ∈ [u], M q(i) = M q.

Proof. We have chosen u = 100nin
λ , so that 0.99·λ ≤ λ−nin

u . By definition, for every i ∈ [u], ∆(Y q(i), Y q) ≤
v, meaning that δ(Xq(i), Xq) = δ(Y q(i), Y q) ≤ v

n = 1
u . By Lemma 2.16 we get that if outdist(Xq) ≤

λ − nin
u and δ(Xq, Xq(i)) ≤ 1

u , then Dec(Xq) = Dec(Xq(i)), meaning that M q = M q(i), for every
i ∈ [u].

Claim 3.8. For every γ1 > 0, and every good q ∈ {0, 1}u,

Pr[δ(W q, Zq) >
1

2
− γ1] > Pr[outdist(Xq) ≤ 0.99λ]− 2−Ωγ1 (λ·nout).

Proof. By Claim 3.6 and a union bound over all i ∈ [u] we have that:

Pr[∃i ∈ [u] : δ(W q(i)[i], Zq[i]) ≤ 1

2
− γ1] ≤ u · 2−Ωγ1 (λ·nout) = 2−Ωγ1 (λ·nout).
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By Claim 3.7, whenever the event {outdist(Xq) ≤ 0.99 · λ} occurs, we have that for every i ∈ [u], M q(i) =
M q, which implies that W q(i) = W q, and in particular W q(i)[i] = W q[i]. When this event occurs, we have
that for every i ∈ [u], δ(W q[i], Zq[i]) = δ(W q(i)[i], Zq[i]), meaning that

δ(W q, Zq) =
1

u
·
∑
i∈[u]

δ(W q(i)[i], Zq[i]),

and the claim follows.

We are finally ready to prove Theorem 3.3.

Proof. (of Theorem 3.3) By Claim 3.4, Pr[Q is not good] < u · ρ ≤ 2−Ωγ1 (λ·nout). Therefore,

Pr[outdist(X) ≤ 0.99 · λ ∩Q is good] > Pr[outdist(X) ≤ 0.99 · λ]− 2−Ωγ1 (λ·nout).

By averaging, there exists a good q such that:

Pr[outdist(Xq) ≤ 0.99 · λ] > Pr[outdist(X) ≤ 0.99 · λ]− 2−Ωγ1 (λ·nout).

For this q, by Claim 3.8 we have that:

Pr[δ(W q, Zq) >
1

2
− γ1] > Pr[outdist(X) ≤ 0.99 · λ]− 2−Ωγ1 (λ·nout).

We claim that:
Pr[δ(W q, Zq) >

1

2
− γ1] = 0,

which implies Pr[outdist(X) ≤ 0.99 ·λ] ≤ 2−Ωγ1 (λ·nout) and proves the theorem. The claim follows because
by the triangle inequality:

δ(W q, Zq) ≤ δ(W q, Y q) + δ(Y q, Zq) ≤ λ+ β + p ≤ 1

2
− γ1.

The second inequality holds (with probability one) because δ(Y q, Zq) ≤ p, and δ(W q, Zq) is bounded by the
relative decoding reach of Enc,Dec, which in turn is bounded by the sum of the relative decoding reaches of
Decout (which is λ) and Decin (which is β).

3.3 Concatenated codes for binary-symmetric channels and related variants

We will make use of known constructions of codes for binary symmetric channels.

Definition 3.9 (Binary symmetric channel). Let BSCn
p denote the distribution over n bit strings in which

individual bits are i.i.d. and each is one with probability p.

There are constructions of explicit (and even linear time) codes with rate approaching 1 −H(p) that are
decodable from BSCn

p with very high success probability [For65, GI05].
Following [Smi07, GS16, KSS19] we are interested in codes for a somewhat similar scenario of “t-wise

independent errors” in which the error distribution is obtained by:

• Taking an arbitrary string e ∈ {0, 1}n with wt(e) ≤ p.

• Taking an (ε, t)-wise independent permutation π : {0, 1}d × [n]→ [n].

• The error distribution is e′ = πUd(e).
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In this distribution, each noise bit has probability p to be one, and the bits have “negative correlation”. This
negative correlation can be used to argue that current constructions for BSCp (which are based on concate-
nating a high rate outer code that decodes few relative errors, with a random inner code with rate approaching
1−H(p) on constant block length) also work in this scenario.

We will require a code that (in addition to being decodable from t-wise independent errors in the sense
explained above) also has many additional properties. Theorem 3.10 below was proven in [KSS19] for a
different choice of outer code, and very similar arguments were previously made by Smith [Smi07] and in an
early version of [GS16]. The theorem revisits the code construction of [For65, GI05] for BSCn

p , and observes
that the constructed concatenated code has some properties that we will use later on. The theorem is also
stated so that Theorem 3.3 applies, and that in addition to all the properties listed in Theorem 3.10, the code
is also evasive.

The statement of Theorem 3.10 below is essentially identical to that in [KSS19]. A difference is that
we will use an outer code that is also locally correctable and locally testable. Such codes were recently
constructed by Kopparty, Meir, Ron-Zewi and Saraf [KMRS17] and decode from the same fraction of errors
than the codes of Guruswami and Indyk [GI05] which was proved in [KSS19] (and so the proof of [KSS19]
also proves this theorem).

Theorem 3.10 (Similar to [KSS19]). For every constant 0 < p < 1/2, and every sufficiently small constant
ε > 0, there exist integer constants kin, nin, qout and real constants λ1, λ2, λ3 > 0 such that kin = log qout ≤
poly(1

ε ), and for infinitely many choices of nout there exist functions:

• Encout : {0, 1}kout → ({0, 1}log qout)nout ,

• Encin : {0, 1}kin → {0, 1}nin ,

such that:

• Rout = kout
nout·log qout

≥ 1 − ε
10 , and Encout is the code from Theorem 2.12, that is decodable and

non-adaptively locally correctable from λ1 relative errors, the local corrector and local tester make
Q = (nout)

o(1) queries, and runs in time poly(Q).

• Rin = kin
nin
≥ 1 − H(p) − ε/10, and Encin is decodable from BSCnin

p with probability 1 − 2−λ2·nin .
This decoding is achieved by a function Decin that implements “maximum likelihood decoding” from
relative distance p+ ε′′, where ε′′ > 0 is a constant that depends on ε.

• Consequently, setting n = nout · nin, and qin = 2, the concatenated code Enc = Encout ◦ Encin :
{0, 1}kout → {0, 1}n is well defined, has rate R = kout

n ≥ 1−H(p)− ε, and is encodable and in time
O(T (n)) for a universal polynomial T , and the constant c hidden in the O(·) depends on ε, specifically
c(ε) = 2poly(1/ε). The concatenated decoding algorithm also runs in time O(T (n)).

• Let t ≤ n0.1, and let π : {0, 1}d × [n] → [n] be a (2−10·t, t)-wise independent permutation. Let
m ∈ {0, 1}kout , and let Aλm : {0, 1}n → {0, 1} be the function that on input e′ ∈ {0, 1}n, outputs one
iff

|
{
i ∈ [nout] : Deciin(Enc(m)⊕ e′) 6= Encout(m)i

}
| ≤ λ · nout.

Note that for λ ≤ λ1, if Aλm(e′) = 1 then:

– Applying concatenated decoding on v = Enc(m)⊕ e′ indeed recovers m.
– outdist(v) ≤ λ.

For every e ∈ {0, 1}n of Hamming weight at most pn,

Pr[Aλ1/10
m (πUd(e)) = 1] ≥ 1− 2−λ3·t.
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• Consequently, for every e ∈ {0, 1}n of Hamming weight at most pn, the code Enc is decodable from
πUd(e) with probability 1− 2−λ3·t.

The final item in Theorem 3.10 follows from the penultimate item. However, as in [KSS19], for our
purposes, the final item will not be sufficiently strong, and we will need to use the penultimate item (as well
as the previous items).

Preparing ahead, we list the following corollary of Theorem 3.10.

Claim 3.11. Using the notation of Theorem 3.10, for every λ ≤ λ1, every message m ∈ {0, 1}kout and every
error vector e′ ∈ {0, 1}n, if Aλm(e′) = 1 then outdist(Enc(m)⊕ e′) ≤ λ.

Proof. We have thatAρm(e′) = 1 and λ ≤ λ1. This implies that for z = Enc(m)⊕e′ it holds that Dec(z) = m.
This gives that outdist(z) ≤ λ.

3.4 Approximating the outer distance by a small space ROBP.

In this section we show that the relative outer distance of the concatenated code Enc from the previous
section can be approximated by a small space (randomized) ROBP. Thinking ahead, we will show that this
holds even if the ROBP reads the bits in a different order, after a permutation σ was applied on the input v. In
the statement below we approximate min(outdist, λ1), as when using this approximation we will only care
whether the real outer distance is smaller than say 3

4 · λ1.

Lemma 3.12. Let Enc be the code constructed in Theorem 3.10 using all the choices in the statement of
Theorem 3.10. There exists a function a(n) = no(1) such that for every s(n) ≥ a(n), there exists a distribution
D̄ over ROBPs of space s(n) such that for every v ∈ {0, 1}n, and every permutation σ : [n]→ [n]:

Pr
D←D̄

[|D(σ(v)))−min(outdist(v), λ1)| > λ1

100
] ≤ 2

− s(n)
a(n) .

In the remainder of this section we prove Lemma 3.12. Loosely speaking, the lemma follows because a
small space ROBP can decode the inner code (which has constant size alphabet) and simulate a nonadaptive
local testing and correcting algorithms of the outer code, allowing it to compute the outer distance. Details
follow.
For every v ∈ {0, 1}n, let

w(v) = Dec
(1)
in (v), . . . ,Dec

(nout)
in (v)

denote the first step of the concatenated decoding algorithm. We first observe that by investing nin queries,
one can simulate oracle access to w(v) when given oracle access to v.

Claim 3.13. There is an algorithm A that given input i ∈ [nout] and oracle access to σ(v) ∈ {0, 1}n,
computes w(v)i = Dec

(i)
in (v) using nin non-adaptive queries.

Proof. The algorithmA (that knows σ) simply queries σ(v) at the bits corresponding to v(i−1)·nin+1, . . . , vi·nin

and computes:
Deciin(v) = Decin(v(i−1)·nin+1, . . . , vi·nin),

We now observe that using local-correcting and local-testing with relative distance λ1, it is possible to
check whether a word w ∈ ({0, 1}log qout)nout is within distance λ1 to a codeword of Encout.

Claim 3.14. There is an algorithm B that given oracle access to w ∈ ({0, 1}log qout)nout makes O(Q2 ·
logQ) = no(1) non-adaptive queries, and:
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• If there exists m ∈ {0, 1}kout such that δ′ = δ(Encout(m), w) ≤ λ1 then Pr[|Bw − δ′| ≤ λ1
1000 ] ≥ 2

3 .

• Otherwise, Pr[Bw = λ1] ≥ 2
3 .

Proof. The algorithm B acts as follows:

• It simulates the local tester (reducing the failure probability from 1/3 to 1/10). This requires O(Q)
queries of the tester.

• Whenever the local tester makes a query i, the algorithm calls the local correcting algorithm with input
i and oracle w, and returns the answer to the local tester. Each application of the local correcting
algorithm will be amplified so that the error is less than 1

Q4 , and requires O(Q logQ) queries.

• If the local tester rejects, then B answers λ1.

• Choose t = O(1/λ2
1) = O(1) uniform indices i1, . . . , it ∈ [nout]. For each j ∈ [t], B queries w at ij ,

and applies the local correcting algorithm with input ij to obtain a string aj .

• Compute the fraction δ̄ of j ∈ [t] for which wij and the aj differ.

• Output min(δ̄, λ1).

The total number of queries of algorithm B is O(Q2 logQ) = no(1) as required.
The first item follows because if there exists m ∈ {0, 1}kout such that δ′ = δ(Encout(m), w) ≤ λ1 then

by a union bound, with probability at least 1− 1/Q, each of the queries of local correcting algorithm returns
the correct symbol in Encout(m). When this occurs, the local testing algorithm accepts with probability at
least 9/10, and by a Chernoff bound, B gives a suitable approximation δ̄ of δ′.

The second item follows because we can imagine that there is a pre-processing step in which the local
correcting algorithm is applied not only on a subset of the nout indices, but in fact, for every i ∈ [nout] (with
independent choices of random coins that is chosen in advance and fixed). For every fixed random coins (for
all these applications) this process induces a word w′ which at index i is the output of the local correcting
algorithm. Whenever, the local correcting algorithm makes a real query i, we can imagine that it is answered
by w′i. This means that for every fixed choice of the random coins of all applications of the local correcting
algorithm in algorithm B, the local testing algorithm is receiving oracle access to w′. For every such word
w′ we have that the local tester rejects w′ with probability 9/10 if it is not within relative distance λ1 to a
codeword of Encout. This means that if w′ is not rejected and is a codeword, then w′ is not within relative
distance λ1 to w (as w isn’t within distance λ1 to any codeword). This means that if the tester does not reject,
then the approximated distance δ̄ will be at least 99

100 · λ1. Overall, with probability at least 2/3, the algorithm
B outputs δ̄ which is very close to λ1.

We are ready to prove Lemma 3.12.

Proof. (of Lemma 3.12) We first consider an amplified version of the algorithm B of Claim 3.4, where the
error is amplified to 2−s(n)/a(n). This takes no(1)·s(n)

a(n) non-adaptive queries.
We then consider a version of B which receive oracle access to v and uses Claim 3.13 to simulate access

to w(v). This multiplies the number of queries by nin and takes nin · n
o(1)·s(n)
a(n) ≤ s(n) non-adaptive queries

for some choice of w(n) = no(1). The obtained algorithm computes the approximation that is required in the
lemma.

Finally, a randomized ROBP with space s(n) (which is a distribution over space s(n) ROBPs) that reads
σ(v) (and knows σ) can simulate an algorithm with non-adaptive oracle access to v by tossing the coins
in advance, and capturing the required bits while reading σ(v). This gives an ROBP with space s(n) that
computes the desired approximation.
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4 Stochastic control codes

An important ingredient in the previous constructions of [GS16, SS16, KSS19] is a special type of a stochastic
code that is called “control code”. This is a stochastic code Enc : {0, 1}k × {0, 1}d → {0, 1}n which
(in addition to certain decoding properties) also has some pseudorandom properties. In our construction of
stochastic codes for space bounded channels, the control code will be used to encode the seed s of the main
construction, using randomness r. It will therefore be convenient to call the message, and randomness of the
control code s and r respectively.

In this paper we will require (and make use of) additional properties of control codes that were not required
in [GS16, SS16, KSS19]. Fortunately, we will show that the construction of control codes in [KSS19] (which
is based on a linear error correcting code called there “raw Reed-Solomon code” also has these additional
properties).

Repetition decoding and it’s usefulness. The main new property that we require is “repetition decoding”.
This says that for every seed s that is encoded ` times, using an arbitrary choice od r1, . . . , r`, to produce the
“repetition codeword”,

Encctrl(s, r1), . . . ,Encctrl(s, r`),

we require that given any sequence v1, . . . , v` ∈ {0, 1}n, such that the average of the relative distances
between Encctrl(s, ri) and vi is smaller than p, one can uniquely decode and obtain the original seed s.

This repetition decoding property is one of the keys that allow us to obtain unique decoding all the way
up to 1/4 in our final stochastic codes. More specifically, we will be able to obtain codes with repetition
decoding up to 1/4. This will be useful, because while an adversary that picks v1, . . . , v` can make a majority
of the ` individual decodings decode to some s̄ 6= s (by choosing a subset of more than half the indices, and
injecting a large fraction of errors on indices in that subset) it cannot lead the repetition decoding algorithm
to decode to a different string s̄ 6= s.

4.1 Definition and properties of control codes

We start by extending the notion of Hamming distance to stochastic codes. More precisely, in a stochastic
code, each message s has many possible codewords Enc(s, r) for the 2d choices of r ∈ {0, 1}d. The definition
below says that the distance of a stochastic code is the minimum over all choices of s, s′ and r, r′ of the
distance between Enc(s, r) and Enc(s′, r′).

Definition 4.1 (Hamming distance for stochastic codes). Let Enc : {0, 1}k×{0, 1}d → {0, 1}n be a function,
and let s, s′ ∈ {0, 1}k and v ∈ {0, 1}n.

• We define ∆Enc(s, v) = minr∈{0,1}d(∆(Enc(s, r), v)), and ∆Enc(v, s) = ∆Enc(s, v) (this is done, so

that ∆Enc is symmetric). We define δEnc(s, v) = ∆Enc(s,v)
n , and δEnc(v, s) = δEnc(s, v).

• We define ∆Enc(s, s′) = minr,r′∈{0,1}d(∆(Enc(s, r),Enc(s′, r′))), and δEnc(s, s′) = ∆Enc(s,s′)
n .

It is standard that these definitions satisfy the triangle inequality.

• The distance of Enc is ∆(Enc) = mins,s′∈{0,1}k ∆Enc(s, s′) and the relative distance of Enc is
δ(Enc) = mins,s′∈{0,1}k δ

Enc(s, s′).

In the definition below we list several useful properties of control codes.

Definition 4.2 (Pseudorandom stochastic codes decodable from errors). Let k, n, d be parameters and let
Enc : {0, 1}k × {0, 1}d → {0, 1}n be a function. We say that Enc is an encoding function for a stochastic
code that is:
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• ε-pseudorandom for a class C of functions from n bits to one bit, if for every s ∈ {0, 1}k, Enc(s, Ud)
is ε-pseudorandom for C.

• decodable from t errors, if t ∈ [n], and there exists a function Dec : {0, 1}n → {0, 1}k such that for
every s ∈ {0, 1}k, and v ∈ {0, 1}n such that ∆Enc(s, v) ≤ t, we have that Dec(v) = s. We say that
the code is decodable from t errors, with an a-approximation if in addition to s, Dec also outputs a
number w such that |w −∆(s, v)| ≤ a.

• L-list-decodable from t-errors, if the function Dec is allowed to output a list of messages of size at
most L, and for every s ∈ {0, 1}k, and v ∈ {0, 1}n such that ∆Enc(s, v) ≤ t, we have that Dec(v) 3 s.
We say that the code is L-list-decodable from t errors, with an a-approximation if for every message
s′ in the output list, Dec also outputs a number w′ such that |w′ −∆Enc(s′, v)| ≤ a.

• repetition-decodable from t errors, if there exists a function rDec such that for every s ∈ {0, 1}k, if
rDec receives as input a number ` ≤ 2n and v1, . . . , v` ∈ {0, 1}n such that 1

` ·
∑

i∈[`] ∆Enc(s, vi) ≤ t,
we have that rDec(`, v1, . . . , v`) = s,

In the definitions above, we use “δ relative errors” to mean “t = δn errors”, and “η-relative approxima-
tion” to mean “a-approximation for a = ηn”.

A code has encoding time [resp. decoding time] T (·), if Enc [resp. Dec] can be computed in time
T (k + n+ d). A code has repetition decoding amortized time T (·) if when given input `, v1, . . . , v`, rDec
can be computed in time ` · T (k + n + d). (Naturally, this makes sense only for a family of encoding and
decoding functions with varying block length n, message length k(n) and seed length d(n)).

4.2 Discussion and comparison to [GS16, SS16, KSS19]

Following [GS16], in the construction of stochastic codes for space bounded channels, given a message m
and a seed s, we will use a control code to encode s. More specifically, we will choose seeds r1, . . . , rnctrl

at
random, and we will put Enc(s, r1), . . . ,Enc(s, rnctrl

) as blocks in the final codeword. These (few) blocks
are called “control blocks”, and the rest of the blocks are called “data blocks”.

Pseudorandomness. The notion of pseudorandomness was introduced by Guruswami and Smith [GS16].
Loosely speaking, pseudorandomness guarantees that when a channel C from C reads Enc(s, r) it learns no
information about s. Furthermore, the construction will arrange it so that all blocks are pseudorandom, which
loosely means that the channel cannot distinguish control blocks from non-control blocks.

Decoding and list-decoding. The notion of decoding considered in Definition 4.2 is tailored to decode even
against Hamming channels. More precisely, the decoding algorithm is required to decode (or list decode) from
a received word v that is close to some encoding Enc(s, r) in Hamming distance. Note however, that when
Dec is applied on v, it is only required to retrieve s, and is not required to retrieve the seed r. (The usefulness
of this notion was demonstrated in [SS16] and later used in [KSS19], whereas the initial paper of [GS16]
required the decoding algorithm to also retrieve the seed r).

Approximation. We will use the construction of control codes by [KSS19]. In that construction decoding
algorithms are not able to retrieve the seed r (although they can obtain a lot of information about it). This
means that even when unique decoding Dec(v) = s, we cannot necessarily efficiently compute the distance
∆Enc(s, v). (Of course, we can compute Enc(s, r) for all r ∈ {0, 1}d and find the closest one, but this may
take exponential time). We will need to be able to estimate these distances, and this is why we introduce
the notion of an a-approximation (that was not used in previous works). We will observe that the decoding
and list-decoding algorithms for the control code of [KSS19] indeed have such a α-relative approximation for
α = o(1).
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Repetition decoding. Finally, another component that we introduce in this paper is the notion of repetition
decoding of a control code. This is done because if we restrict our attention to control blocks, this corresponds
to encoding the same message s using many independent seeds. When decoding against space bounded
channels, if we could identify which of the blocks are control blocks, then it makes sense to run repetition
decoding on these blocks in order to obtain s. (Jumping ahead, we remark that identifying the control blocks
will be quite tricky).

Using repetition decoding is a key idea in which our use of control codes deviates from previous work
(and is crucial for achieving unique decoding, together with our approach to identify the control blocks).

We will argue below that the task of repetition decoding can be reduced to the task of list-decoding with
a good approximation.

4.3 Constructions of control codes

In our main construction of stochastic codes for space bounded channels that induce p relative errors, we will
require stochastic control codes that are pseudorandom, and repetition decodable from slightly more than p
relative errors. The theorem below states the control code that will be used to prove Theorem 1.1.

Theorem 4.3 (Stochastic control codes with repetition decoding up to 1
4 ). For every constant β > 0 there

exists a constant 0 < α ≤ 0.1 such that for every sufficiently large m, setting n = (2m − 1) ·m, k = nα,
d = n log n, and s = nα

log3 n
, there is a stochastic code Enc : {0, 1}k × {0, 1}d → {0, 1}n that is:

• Computable in time nc for a constant c that does not depend on β.

• 2−s-pseudorandom for space s ROBPs.

• Repetition decodable from 1
4 −β relative errors in amortized time nc (and in particular decodable from

1
4 − β relative errors in time nc).

4.3.1 Different tradeoffs in parameters

In the two theorems below, we consider different tradeoffs between the parameters (that lead to alternative
tradeoffs in our main result).

Achieving almost linear time encoding and (randomized) decoding. We can push the running time of
the encoding and repetition decoding to almost linear time. For this, we need to allow the repetition decoding
algorithm to be randomized, and err with small probability.

Theorem 4.4 (Stochastic control codes with almost linear time encoding and repetition decoding). For every
constant β > 0 there exists a constant 0 < α ≤ 0.1 such that for every sufficiently large m, setting n =
((2m − 1) ·m)c (for a universal constant c), k = nα, d = n log n, and s = nα

log3 n
, there is a stochastic code

Enc : {0, 1}k × {0, 1}d → {0, 1}n that is:

• Computable in time n · log2 n.

• 2−s-pseudorandom for space s ROBPs.

• Repetition decodable from 1
4 −β relative errors by a randomized algorithm that runs in amortized time

O(n) and is guaranteed to perform repetition decoding correctly on any ` and v1, . . . , v` ∈ {0, 1}n

with probability at least 1− ` · 2−n1/c′
where c′ is a universal constant.

Using a control code with a randomized repetition decoding algorithm in our main construction translates
into a stochastic code for space bounded channels where the decoding algorithm is randomized. There is no
reason not to allow this, see Remark 2.18.
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Achieving codes that are pseudorandom for larger space for p < 1
8 . A weakness of Theorems 4.3 and

4.4 is that they obtain pseudorandomness for space roughly s = nα where α > 0 is an unspecified constant,
that depends on β. (An inspection of the proof of [KSS19] reveals that α = Ω(β2)). We can do better if
p < 1/8 and obtain a code that is pseudorandom for space s that is roughly n

1
2 .

Theorem 4.5 (Stochastic control codes for larger space with repetition decoding up to 1
8 ). For every constant

0 < α < 1
2 , and for every sufficiently large m, setting n = (2m−1) ·m, k = nα, d = n log n, and s = nα

log3 n
,

there is a stochastic code Enc : {0, 1}k × {0, 1}d → {0, 1}n that is:

• Computable in time nc for a constant c.

• 2−s-pseudorandom for space s ROBPs.

• For every constant p < 1/8, Enc is repetition decodable from p relative errors in amortized time nc

(and in particular decodable from p relative errors in time nc).

In the remainder of this section we prove Theorems 4.3, 4.4 and 4.5.

4.4 Extending the control codes of [KSS19] to have repetition decoding

Kopparty, Shaltiel and Silbak [KSS19] used a binary code which they call the “Raw Reed-Solomon code” to
construct control codes with the following properties:

Theorem 4.6 (Stochastic control codes of [KSS19]). For every constant 0 < α < 1
2 , and for every sufficiently

large m, setting n = (2m − 1) · m, k = nα, d = n log n, and s = nα

log3 n
, there is a stochastic code

Enc : {0, 1}k × {0, 1}d → {0, 1}n that is:

• Computable in time nc for a constant c that does not depend on α.

• 2−s-pseudorandom for space s ROBPs.

• δ(Enc) ≥ 1
2 − o(1).

• For every constant p < 1/4, Enc is decodable from p relative errors, with an O( 1
logn)-relative approx-

imation in time nc.

• There exists a universal constant b such that for every β ≥ b
√
α, Enc is O(1/β2)-list decodable from

(1
2 − β) relative errors, with an O( 1

logn)-relative approximation, and this list-decoding algorithm runs
in time nc.

• If α ≤ 0.1 then encoding nc inputs takes “amortized time” O(n · log2 n), namely, for every nc pairs,
(m1, s1), . . . , (mnc , snc) ∈ {0, 1}k × {0, 1}d, computing (Enc(mi, Si))(i∈[nc]) takes time nc · O(n ·
log2 n).

Theorem 4.6 is stated in [KSS19] without the statement on “distance” and “relative approximation” which
were not considered in [KSS19]. Nevertheless, the proof of [KSS19] gives that the code has large distance,
and that whenever decoding (or list-decoding), one obtains a O( 1

logn) relative approximation.17

Theorems 4.3, 4.4 and 4.5 guarantee repetition decoding (which does not appear in Theorem 4.6). In order
to prove them, we prove the following lemma which shows that repetition decoding follows if the code has
large distance and list-decoding with a good approximation.

17Loosely speaking the control code Enc(s, r) of [KSS19] works by treating r = (r1, r2) as two independent seeds, and
Enc(s, r) = EncRawRS(r1 ◦ s) ⊕ f(r2) where EncRawRS is an encoding map for a (standard) error correcting code that is
decodable from 1/4 − o(1) relative errors (which implies that it has relative distance 1/2 − o(1)), and f(r2) is a string of relative
hamming weight at most η = 1

logn
. This implies that Enc has δ(Enc) = 1/2 − o(1), and that when decoding (or list-decoding) a

received word v ∈ {0, 1}n, one can retrieve s, r1 such that for every r2, Enc(s, r1 ◦ r2) is within relative Hamming distance η from
v. This gives an η-relative approximation to the distance δEnc(s, v).

32



Lemma 4.7 (repetition decoding from distance and list-decoding with a good approximation). Let p > 0 and
let Enc : {0, 1}k × {0, 1}d → {0, 1}n be a stochastic code such that:

• Enc is L-list decodable from ρ = 2p+ 3η relative errors, with an η-relative approximation.

• Enc has relative distance δ(Enc) ≥ ρ.

It follows that Enc is repetition decodable from p relative errors. Furthermore, the amortized time of the
repetition decoding algorithm rDec is bounded O(TDec) where TDec is the running time of the list-decoding
algorithm.

The proof of Lemma 4.7 is given in Section 4.5. Theorem 4.3 immediately follows from Theorem 4.6
and Lemma 4.7. Theorem 4.5 follows by using the decoding algorithm in Theorem 4.6 as a 1-list-decoding
algorithm from slightly less than 1/4 relative errors, and applying Lemma 4.7. The proof of Theorem 4.4
(which is not used in this paper) is deferred to a later version (see Section 5.6 for a discussion of potential
uses of this theorem).

4.5 Repetition decoding from distance and list-decoding: proof of Lemma 4.7

In this section we prove Lemma 4.7. We consider the following repetition decoding algorithm:

Algorithm rDec: On input ` and v1, . . . , v` ∈ {0, 1}n, rDec does the following:

• For i ∈ [`] apply Dec(vi) to obtain a list of L pairs (si1, ω
i
1), . . . , (siL, ω

i
L) of a message and

relative approximation.
• Overall, we obtained at most ` ·L such pairs. Let A be the set of s ∈ {0, 1}k such that for at least

half of i ∈ [`], there exists a j ∈ [L] such that sij = s. Note that |A| ≤ 2 · L.
• For each s ∈ A, and for each i ∈ [`] compute a number ps,i as follows: If s appears in the i’th list

with an approximation ω′, then ps,i = ω′. Otherwise, we set ps,i = ρ.
• We output the s that has the minimal ps =

∑
i∈[`] ps,i out of all strings that were considered. (If

there does not exist such a unique s the algorithm fails).

In order to analyze the algorithm we need the following notion of truncated distance.

Definition 4.8 (truncated distance). For a function δ(·, ·) and a number ρ ≥ 0 we define δρ(x, y) = min(δ(x, y), ρ).

With this notation, it immediately follows that:

Claim 4.9. For every s ∈ A, |ps −
∑

i∈[`] δ
Enc
ρ (s, vi)| ≤ η.

It is standard that if δ is a function that satisfies the triangle inequality, then δρ also satisfies the triangle
inequality for every ρ > 0. As a corollary we get that:

Claim 4.10. If δ(Enc) ≥ ρ, then for every s, s′ ∈ {0, 1}k, and v1, . . . , v` ∈ {0, 1}n,

1

`
·
∑
i∈[`]

δEnc
ρ (s, vi) +

1

`
·
∑
i∈[`]

δEnc
ρ (vi, s

′) ≥ ρ.

Proof. (of Claim 4.10) We have that δEnc(s, s′) ≥ ρ, which means that δEnc
ρ (s, s′) = ρ. This means that for

every v ∈ {0, 1}n,
δEnc
ρ (s, v) + δEnc

ρ (v, s′) ≥ δEnc
ρ (s, s′) = ρ.

The claim follows by applying the inrquality above seperately for each i, and taking the average.
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We need to show that under the conditions of Lemma 4.7, the algorithm rDec is a correct repetition
decoding algorithm. This is done in the next claim.

Claim 4.11. For every s ∈ {0, 1}k, if rDec receives as input a number ` and v1, . . . , v` ∈ {0, 1}n such that
1
` ·
∑

i∈[`] δ
Enc(s, vi) ≤ p, then:

• s ∈ A, and ps ≤ p+ η.

• For every s′ 6= s, such that s′ ∈ A, ps′ > p+ η.

Together, this implies that rDec(`, v1, . . . , v`) = s as required.

Proof. (of Claim 4.11). By Markov’s inequality, for at least half of i ∈ [`] we have that δEnc(s, vi) ≤ 2p ≤ ρ.
For such an i, s is one of the L strings obtained when applying Dec(vi). This means that s ∈ A. The first
item now follows using Claim 4.9:

ps ≤
∑
i∈[`]

δEnc
ρ (s, vi) + η

≤
∑
i∈[`]

δEnc(s, vi) + η

≤ p+ η.

For the second item, we apply Claim 4.9 and Claim 4.10 to conclude that:

ps′ ≥
1

`
·
∑
i∈[`]

δEnc
ρ (s′, vi)− η

≥ ρ− 1

`
·
∑
i∈[`]

δEnc
ρ (s, vi)− η

≥ (2p+ 3η)− p− η
= p+ 2η.

We now consider the amortized running time of the repetition decoding algorithm rDec. We are assuming
that ` ≤ 2n so that log ` ≤ n. The running time TDec of the list-decoding algorithm is at least n + L as it
needs to read an input of length n and output a list of size L. The algorithm rDec calls Dec ` times (taking
amortized time TDec). For each of the 2L = O(TDec) elements inA, the algorithm rDec sums up ` numbers. It
follows that this step also takes amortized timeO(TDec). Overall, the amortized running time of the repetition
decoding algorithm is O(TDec) as required.

4.6 Stochastic control code in near linear time

In this section we provide a sketch of the proof of Theorem 4.4. The starting point is once again the code of
Theorem 4.6. Let Enc be the code from this theorem (choosing the parameter β in Theorem 4.4 to be say 10β
where this occurrence of β is the constant that is chosen in Theorem 4.4). Let c be the constant guaranteed in
Theorem 4.4.

Let u = nc. The code that we will construct will be denoted by Enc′ : {0, 1}k × {0, 1}ud → {0, 1}N for
N = un, and will be defined as follows:

Enc′(s, (r1, . . . , ru)) = (Enc(s, r1), . . . ,Enc(s, ru)).

34



First of all, we note that k = nα = Nα′ for a constant α′ = α/(c+ 1).
By the last item of Theorem 4.6 Enc′ can be computed in time O(u · n · log2 n) = O(N · log2N), giving

that Enc′ can be computed in the required time.
By a standard hybrid argument, we have that Enc′ is (u · 2−s)-pseudorandom for space s ROBPs. Note

that s = nα/ log3 n ≥ Nα′/ log3N . This also means that u2−s ≤ 2−s/2, and so by choosing α′ > 0 to be
slightly smaller, we can use it as α in Theorem 4.4, and meet the requirement.

So far, we have seen that Enc′ has sufficiently efficient encoding, and is sufficiently pseudorandom. We
would like to show that Enc′ has sufficiently efficient repetition decoding. This would follow from the argu-
ment in Lemma 4.7 if we could show that Enc′ has sufficiently large distance and is also list-decodable with
good parameters.

The distance property of Enc′ follows immediately. We have already seen that bundling many copes of a
code preserves relative distance, and so δ(Enc′) = δ(Enc) ≥ 1

2 − o(1).
While for technical reasons, we can’t use Lemma 4.7 directly, it is possible to imitate the algorithm at the

basis of Lemma 4.7 using the list-decoding algorithm of Theorem 4.6 and randomized subsampling that saves
time, and allows us to read a sample of the blocks of the codeword of Enc′ rather than reading all of them.
The exact details are deferred to a later version.

5 Explicit stochastic codes for space bounded channels

In this section we give our main construction of codes for space bounded channels, and prove Theorem 1.1.
We start by restating the theorem in a more general way:

Theorem 5.1 (Explicit stochastic codes for space bounded channels). For every constants p < 1
4 , and cν > 1,

there exists a constant δ > 0 such that for every sufficiently small constant ε > 0, for infinitely many N , there
is a stochastic code for SpcN

δ

p with rateR = 1−H(p)− ε, and success probability 1−ν for ν = 2−(logN)cν .
Furthermore, the encoding and decoding algorithms run in time polynomial in N .

More specifically, there exists a universal polynomial T0(N) such that encoding and decoding algorithms
run in time T0(N) for every sufficiently large N (where the choice of which N is sufficiently large depends on
p and ε).

5.1 The construction

In this section we present our construction of stochastic codes for bounded channels. The construction is
detailed in three figures: Figure 1 lists parameters and ingredients, Figure 2 describes the encoding algorithm,
and Figure 3 describes the decoding algorithm. We start with some notation and definitions. We remark that
an intuitive explanation of the construction appears in Section 1.3.

Partitioning codewords into control blocks and data blocks. The construction will think of codewords
c ∈ {0, 1}N as being composed of n = nctrl + ndata blocks of length b = N/n. Given a subset I ⊆ [n]
of nctrl distinct indices, we can decompose c into its data part cdata ∈ {0, 1}Ndata=ndata·b and its control part
cctrl ∈ {0, 1}Nctrl=nctrl·b. Similarly, given strings cdata and cctrl we can prepare the codeword c (which we
denote by (cdata, cctrl)

I by the reverse operation. This is stated formally in the definition below.

Definition 5.2 (Data and control portion of a codeword). We view strings c ∈ {0, 1}N as composed of n
blocks of length b = N/n, so that c ∈ ({0, 1}b)n, and ci denotes the b bit long i’th block of c.

Let I = {i1, . . . , inctrl
} ⊆ [n] be a subset of indices of size nctrl.

• Given strings cdata ∈ {0, 1}Ndata and cctrl ∈ {0, 1}Nctrl we define an N bit string c denoted by
(cdata, cctrl)

I as follows: We think of cdata, cctrl, c as being composed of blocks of length b (that is
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Figure 1: Parameters and ingredients for stochastic code

Constants:

• p > 0 - The fraction of errors we need to recover from.
• ε > 0 - The final code will have rate R ≥ 1−H(p)− ε. We assume that ε > 0 is sufficiently small in terms of p.
• δ > 0 - we are aiming to construct codes for space s := Nδ channels.
• cν ≥ 1 - We set ν := 2−(logN)cν .

Parameters that are allowed to vary with N :

• N - The length (in bits) of the codeword. Throughout, we assume that N is sufficiently large, and that other
parameters are chosen as a function of N . Later choices will also restrict N to be a number of a special form. We
divide the N output bits to n := (logN)cν+10 blocks of length b = N/n.

• ` - This is the total length of a “control seed”. Let `′ = `/3. This will be the length of individual “seeds”.
• s′ - Pseudorandom components will be 2−s

′
-pseudorandom for space s′ ROBPS.

Stochastic control code: The construction receives a stochastic code Encctrl : {0, 1}` × {0, 1}d → {0, 1}b such that:

• Encctrl is (2−s
′
)-pseudorandom for space s′ ROBPs.

• Encctrl is repetition decodable from pctrl := p+ ε relative errors with decoding algorithm rDecctrl.

Requirements: s′ ≤ `
(logN)cν+15 , and there exists a constant ξ > 0 such that s′ ≥ s ·Nξ = Nδ+ξ.

Some more parameters:

• Let ε′ > 0 be a sufficiently small constant that will be chosen later as a function of p, ε.
• Let nctrl = ε′ · n, ndata = n− nctrl.
• Let Nctrl = b · nctrl and Ndata = b · ndata. (Note that: n = nctrl + ndata, N = Nctrl +Ndata).
• Later on, in the decoding and analysis we introduce two parameters τ =

nctrl·εsamp

2 and τ ′ = (logN)cν+1.

Other ingredients that are used:

BSC code: Let α = ε
10 log 1

p

, pBSC = p + α, and RBSC = 1 − H(pBSC) − ε/3. We apply Theorem 3.10 us-

ing pBSC, ε/3, Ndata as choices for p, ε, n, respectively. Theorem 3.10 only guarantees the code for infinitely
many block lengths, and so we require that Ndata = (1 − ε′) · N is one of these block lengths. This
translates into a restriction on N (which is satisfied for infinitely many N ). We obtain an encoding function
EncBSC : {0, 1}RBSC·Ndata → {0, 1}Ndata .

t-wise independent permutation: Let t = (logN)cν+2. We use a (2−10·t, t)-wise permutation π : {0, 1}`′ ×
[Ndata]→ [Ndata]. By Theorem 2.9 we have an explicit construction with seed length O(t · logN) ≤ `′.

Averaging Sampler: Let εsamp > 0 be a sufficiently small constant to be chosen later. We use Theorem 2.7 to obtain
an (εsamp,

ν
N3 )-sampler with distinct samples Samp : {0, 1}`′ → [n]nctrl . By Theorem 2.7 we have an explicit

construction with seed length O(log N3

ν ) = O((logN)cν+1) ≤ `′. We use nctrl samples, and indeed nctrl =

ε′ · n ≥ ε′ · (logN)cν+10 � log N3

ν (as required in Theorem 2.7).

PRG for space s′ ROBPs: Let Grobp : {0, 1}O(s′·(logNdata)2) → {0, 1}Ndata/n be the (2−10s′)-PRG for space s′

ROBPs that is provided by Theorem 2.5. We define G(x1, . . . , xndata
) = Grobp(x1), . . . , Grobp(xndata

), and
think of G as a function G : {0, 1}`′ → {0, 1}Ndata , and for this we verify that indeed `′ > n · (s′(logN)3) for
sufficiently large N . By a hybrid argument, we have that G is 2−2s′ -pseudorandom for space s′ ROBPs.
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cdata ∈ ({0, 1}b)ndata , cctrl ∈ ({0, 1}b)nctrl and c ∈ ({0, 1}b)n). We enumerate the indices in [n] \ I by

j1, . . . , jndata
and set c` =

{
(cctrl)k if ` = ik for some k;
(cdata)k if ` = jk for some k

• Given a string c ∈ {0, 1}N (which we think of as c ∈ ({0, 1}b)n) we define strings cIdata, c
I
ctrl by

cIctrl = c|I and cIdata = c|[n]\I , (namely the strings restricted to the indices in I , [n] \ I , respectively).

We omit the superscript I when it is clear from the context.

Figure 2: Encoding algorithm for stochastic code

Input:

• A message m ∈ {0, 1}RBSC·Ndata . (This gives R = RBSC·Ndata

N ).
• A “random coin” for the stochastic encoding that consists of: a string s = (ssamp, sπ, sPRG) where
ssamp, sπ, sPRG ∈ {0, 1}`

′
so that s ∈ {0, 1}`, and r1, . . . , rnctrl

∈ {0, 1}d.

Output: A codeword c = Enc(m; (s, r1, . . . , rnctrl
)) of length N .

Operation:

Determine control blocks: Apply Samp(ssamp) to generate control = {i1, . . . , inctrl
} ⊆ [n]. These

blocks will be called “control blocks”, and the remaining ndata blocks will be called “data blocks”.
Prepare data part: We prepare a string cdata of length Ndata as follows:

• Encode m by x = EncBSC(m).
• Generate an Ndata bit string y by reordering the Ndata bits of the encoding using the (inverse of)

the permutation πsπ (·) = π(sπ, ·). More precisely, y = π−1
sπ (x) = π−1

sπ (EncBSC(m)).
• Mask y using PRG. That is, cdata = y ⊕G(sPRG) = π−1

sπ (EncBSC(m))⊕G(sPRG).

Prepare control part: We prepare a string cctrl of length Nctrl (which we view as nctrl blocks of length
b) as follows:

• (cctrl)j = Encctrl(s, rj).

Merge data and control parts: We prepare the final output codeword c ∈ {0, 1}N by merging cdata and
cctrl. That is, c = (cdata, cctrl)

control.

5.2 Stating the correctness of the construction

In this section we state a general theorem stating the correctness of the construction, assuming that it is
supplied with the right ingredients.

Theorem 5.3 (correctness of the construction). For every constants δ > 0, 0 ≤ p < 1
4 , cν ≥ 1, and

every sufficiently small constant ε > 0, there exist constants ε′ > 0, εsamp > 0 such that for infinitely
many N , we have that for every choice of `, s′, and every choice of Encctrl : {0, 1}` × {0, 1}d → {0, 1}b
that satisfiy the requirements in Figure 1, the following holds: The encoding and decoding functions Enc :
{0, 1}Rn × {0, 1}`+nctrl·d → {0, 1}N and Dec : {0, 1}N → {0, 1}RN specified in Figures 2 and 3 using the
ingredients and parameter choices in Figure 1 satisfy the following properties:

• Enc has rate R ≥ 1−H(p)− ε.
• Dec is a decoding algorithm showing that Enc is decodable for space s = N δ channels that induce at

most pN errors, with probability 1− ν for ν = 2−(logN)cν .
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Figure 3: Decoding algorithm for stochastic code

Input: A “received word” v̄ ∈ {0, 1}N .
Output: A messages m̄ ∈ {0, 1}RN .

Internal procedure DecodeUsingCandidate: On input s̄ ∈ {0, 1}` (which we think of as a candidate for
the control string) this procedure produces a message m̄(s̄) as follows:

Determine control blocks: Apply Samp(s̄samp) to generate control = {̄i1, . . . , īnctrl
}. Compute

v̄data = v̄control
data .

Unmask PRG: Compute ȳ = v̄data ⊕G(s̄PRG).
Reverse permutation: Let x̄ be the Ndata bit string obtained by “undoing” the permutation. More

precisely, let πs̄π (·) = π(s̄π, ·), and let x̄ = πs̄π (ȳ) = πs̄π (v̄data ⊕G(s̄PRG)).
Decode data: Compute m̄ = DecBSC(x̄).
output: We use ȳ(s̄), x̄(s̄) and m̄(s̄) to denote the variables ȳ, x̄, m̄ when DecodeUsingCandidate is

applied on s̄.

Operation of decoding algorithm: On input v̄ ∈ {0, 1}N :

Compute control candidates: For i ∈ [n], let s̄i = Decctrl(v̄i). (Here v̄i is the i’th block of v̄ and
Decctrl(v̄i) = rDecctrl(1, v̄i), recall that decoding is a special case of repetition decoding).
Let candidates = {s̄i : i ∈ [n]}.

Compute viable candidates: We say that s̄ ∈ {0, 1}` is viable if for at least τ :=
nctrl·εsamp

2 choices of
i ∈ [n], s̄ = s̄i. Let viable be the set of all s̄ ∈ candidates such that s̄ is viable. Note that viable is of
size at most nctrl/τ which is a constant (that depends on εsamp).

Compute valid candidates: We say that s̄ is successful, if when computing the procedure
DecodeUsingCandidate(s̄), we obtain x̄(s̄) such that outdist(x̄) ≤ λ1/4. (Here λ1 is the constant
from Theorem 3.10). Let valid be the set of s̄ ∈ viable which are successful, such a string s̄ is
called valid.

Compute Active blocks: A block i ∈ [n] is active if si is valid. Let a be the number of active blocks, and
denote their indices by j1, . . . , ja ∈ [n].

Perform repetition decoding: Compute s∗ = rDecctrl(a; v̄j1 , . . . , v̄ja).
Output message: Compute DecodeUsingCandidate(s∗) and output m̄ = m̄(s∗).

• If Encctrl,Decctrl can be computed in polynomial time, then Enc,Dec can be computed in polynomial
time.

More specifically, there exists a universal constant c0 > 1 such that the time of Enc,Dec is bounded
by O(N · (logN)c0·cν + n · Tctrl + Tdata) where Tdata is a bound on the running time on the encoding
and decoding time of EncBSC and Tctrl is a bound on the running time of running Encctrl and on
the amortized running time of the repetition decoding algorithm rDecctrl, where both Enc, rDec are
applied with block length b = N/n. (Here, the constant hidden in the O(·) depends on the p, ε, δ).

We prove Theorem 5.3 in Section 6. In the next section, we plug in specific ingredients to prove our main
theorems.

5.3 High level intuition and comparison to [KSS19]

Our construction heavily builds on the list-decodable code of Kopparty, Shaltiel and Silbak [KSS19] (which
in turn heavily builds on the construction of Guruswami and Smith [GS16] and the modifications made by

38



Shaltiel and Silbak [SS16]). The high level intuition is that we repeat the list-decoding algorithm of [KSS19],
to end up with a constant size list of candidate messages, and unique decoding is achieved by pruning the list
using additional steps.

Indeed, using our terminology (modulu some small changes to explain later on) the construction of
[KSS19] achieves list decoding by taking all viable candidates s̄ ∈ viable (defined in the second step of
the operation of the decoding algorithm) and outputting the list of messages

{m̄(s̄) : s̄ ∈ viable} .

The proof of [KSS19] shows that the original message is in this list w.h.p.
Somewhat oversimplifying, our high level plan is to show that:

• Data blocks (namely blocks in [n] \ control) are unlikely to be successful, and therefore, are unlikely
to be declared active. In order to achieve this we will argue that on data candidates, the evasiveness of
the code EncBSC will make these candidates unsuccessful. This requires many additional ideas that are
explained later on.

• We will also show that at least τ of the control blocks (namely blocks in control) will choose the correct
candidate s as their candidate s̄. This support of τ blocks will make this candidate viable. Furthermore,
we will show that s is successful, and so these τ blocks will be declared active.

• We will show that any other control block is either not active, or within relative distance roughly p to
Encctrl(s, Ud).

• Overall, we will get that if we apply repetition decoding on active blocks, we obtain the correct candi-
date s. This will allow us to identify the correct candidate s in the set viable, and we will output m̄(s̄)
which is the correct message (w.h.p.).

• The actual argument is more complicated as we cannot rule out that few data blocks will be successful
and declared active.

We now point out a few additional differences in the choice of parameters and ingredients relative to
[KSS19] that are crucial to our approach, and will allow us to implement the plan above.

Evasiveness of the data encoding: The code from Theorem 3.10 meets the requirements of Theorem 3.3
and is therefore evasive. This means that when decoding is applied on uniform strings, it is unlikely
to be successful. A significant portion of the analysis below is used to argue that each data block is
sufficiently pseudorandom so that we can argue that w.h.p. data blocks are not successful.

Unique decoding of control blocks: In [KSS19] the decoding algorithm of the control code is list-decoding
from slightly less than 1

2 relative errors, and so, every block has several candidates. We are interested
in p < 1

4 and therefore can replace this by unique decoding (which is used to specify the candidate s̄ of
each block). Unique decoding is a special case of repetition decoding.

Repetition decoding of control blocks: We will be able to guarantee that the correct candidate s is valid.
However, it is no hard to see that the channel can inject a related candidate s̄ (that depends on s) so
that s̄ is also valid. Moreover, the channel can inject several such strings. How can we identify the
correct candidate amongst all valid candidates? This is where repetition decoding comes in. We argue
that although the incorrect candidate s̄ is valid, and was decoded on at least τ of the control blocks, the
correct candidate is the only valid candidate that is within small average distance from all the active
blocks. This is key to achieving unique decoding for p ≥ 1

8 . The high level intuition for the correctness
of repetition decoding is that the channel has a budget of roughly p to spend on control blocks. Initially,
the control portion of the codeword consists of control encodings of the correct string s. The channel
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can place 1/4 fraction of errors on almost all blocks, leading them to decode to some other related
string s̄. However, in doing so, on all these blocks, the received word will be pretty far from a control
encoding of s̄, and so, when we repetition decode, we will still get s (even though on most internal
specific decdoings we get s̄).

PRG with truly independent blocks: We want different blocks of G(U`′) to be truly independent (and not
just indistinguishable from truly independent). This will allow us to argue that even though Decctrl

cannot be implemented by a small space ROBP, it’s behavior on different blocks is independent. This
will be crucial in showing that candidates of data blocks are not successful. The need to keep the seed
short dictates using fewer longer blocks.

Shorter control piece: The method devised in [GS16] and used in [KSS19] is to have the encoding consist
of a long data piece of length Ndata = (1 − ε′)N , and a short control piece of length ε′N . In these
works the final list size is roughly polynomial in the fraction ε′, and so it is natural to choose ε′ = Ω(ε)
to minimize the list size. For our pruning technique, it is beneficial if ε′ is much smaller. Loosely
speaking, this allows us to account for a deletion of an ε′-fraction of the data, as an additional “few
errors” that can be later decoded. This leads us to choose ε′ to be much smaller than in [KSS19].

5.4 Deriving Theorem 1.1

We now show that Theorem 5.1 (which generalizes Theorem 1.1) follows by picking specific components in
Theorem 5.3. We are given constant p < 1

4 , cν > 1 and a sufficiently small constant ε > 0. Throughout we
will assume that p+ ε < 1

4 .
We want to choose parameters `, s′, as well as a control code to plug into Theorem 5.3. We start with

choosing the control code. Our plan is to use Theorem 4.3 as a control code. Theorem 4.3 allows us to choose
β > 0, and we choose β to be sufficiently small so that p+ ε ≤ 1

4 − β. By theorem 4.3 we obtain a constant
α > 0 so that we can obtain a control code Encctrl : {0, 1}bα × {0, 1}b log b → {0, 1}b. Recall that we need
to set b = N/n. We are allowed to choose b of the form (2m − 1) · m and such numbers are sufficiently
dense so that by slightly changing n by a constant factor (which makes no difference in the construction and
analysis) we can make sure that b = N/n is of this form. The code we obtain has poly(b) time encoding and
repetition decoding. This code is repetition decodable from pctrl = p + ε relative errors. We choose ` = bα

and s′ = `
(logN)cν+15 . It follows that Encctrl is 2−s

′
-pseudorandom for space s′ ROBPs. This means that

Encctrl : {0, 1}` × {0, 1}d → {0, 1}b satisfies the requirements from a control code in Figure 1.
We have that

s′ = bαlog3N ≥ Nα

n · log3N
≥ Nα/2.

We choose δ = ξ = Nα/4 and set s = N δ. We indeed have that s′ ≥ N δ+ξ as required in Figure 1. This
means that the requirements in Figure 1 are met by our choices of ` and s′. It follows that we meet all the
conditions of Theorem 5.3 and obtain that:

• Enc has rate R ≥ 1−H(p)− ε.
• There is a decoding algorithm Dec showing that Enc is list decodable for space s channels that induce

at most pN errors, with probability 1− ν.

• The running time of Enc and Dec is some fixed polynomial T0.

This completes the proof of Theorem 5.1
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5.5 Deriving Theorem 1.2

In order to prove Theorem 1.2 we will use a nonexplicit stochastic code. More specifically, using the prob-
abilistic method, it is easy to show that if we take ` and d to be sufficiently large as a function of b, but
set `, d = o(b), (for example, say `, d = Θ(b/ log log b)) and if furthermore, we choose s′ = Ω(`), then a
uniformly chosen stochastic code (that is a code where for every s ∈ {0, 1}` and r ∈ {0, 1}d, the output
Encctrl(s, r) is chosen uniformly and independently in {0, 1}b) is likely to have the following properties:

• Encctrl is 2−Ω(`)-pseudorandom for space Ω(`) ROBPs.

This follows because it is standard that for every family of M functions on b bits, and every ε, a
uniformly chosen subset of size t = O( logM

ε ) is with probability 1 − 2−Ω(t) a discrepancy set against
the family, meaning that a uniformly chosen element from the subset is ε-pseudorandom for the family.
The number of ROBPs of space s′ is at most M = 2O(N ·22s′ ), and for every seed s, the set Encctrl(s, ·)
was chosen uniformly. This means that assuming that s′ ≥ logN , if we choose s′ ≤ `/c and ` ≤ d/c
for a sufficiently large constant c > 1, we can argue that that for every s, with probability 1 − 2−Ω(d),
Enc(s, Ud) is ε-pseudorandom for space s′ ROBPs. We can do a union bound over all 2` ≤ 2Ω(d)

choices of s, and obtain the pseudorandomness property.

• Encctrl is repetition decodable from 1/4− o(1) relative errors.

This follows because if we view Encctrl(s, r) as a function Enc(s ◦ r), then by standard results on
random codes, as we have taken the rate (which is ` + d/b) to be o(1), the relative distance of such a
code will be 1/2− o(1). This means that it is possible to uniquely decode (s, r) when given a received
word v that is within distance 1/4− o(1) from Enc(s, r). This immediately implies the existence of (a
nonexplicit) repetition decoding algorithm up to 1/4− o(1) relative errors.

This means that we obtain a stochastic control code which allows encoding of a string s of length
` = Ω(b) = Ω(N/n) = N1−o(1) and fool ROBPs of size Ω(`) = N1−o(1). Plugging such a code in our
construction yields a final code with space s = N1−o(1). We do not go into the precise details of Theorem 5.3,
because as we will soon explain that it is possible to improve Theorem 5.3 and achieve s = N/polylog(N)
by using a nonexplicit PRG Grobp, instead of the choice made in Figure 1. We describe this approach below.

Linear codes with large dual distance. The argument above uses the nonexplicitness of Encctrl in a very
strong way. However, we remark that the results of Koppparty, Shaltiel and Silbak [KSS19], together with
the reduction from list-decoding to repetition decoding in Section 4, reduce the task of constructing control
codes to that of constructing linear codes with distance roughly 2p and dual distance roughly s, with explicit
list-decoding from roughly 2p relative errors. The control codes of [KSS19] are based on such a construction
called the “Raw Reed-Solomon code” which only achieves ` = bα where α > 0 is a constant that deteriorates
when 1

4 − p approaches zero. An explicit construction of codes that achieves larger dual distance (a proba-
bilistic argument show that achieving s = b1−o(1) is possible) will translate into stochastic codes for space
N1−o(1).

Using PRGs that fool size 2s circuits. The proof of Theorem 5.3 becomes much easier if the generator
Grobp from Figure 1, fools circuits rather than ROBPs. In that case, we needn’t worry about “simulating
adversaries by ROBPs” and can fool them directly.

This means that we no longer need to use locally-correctable and testable codes, and leads to a tighter
connection between s and s′, Specifcally, this allows s = s′/polylogN rather than s = (s′/polylogN)1−ξ

that is given by our analysis. This observation is useful in two setups:

Nonexplicit codes: It is standard that a uniformly chosen function Grobp will be 2−Ω(`)-pseudorandom for
circuits of size 2Ω(`). Using such nonexplicit PRGs, gives the space bound s = N/(logN)c·cν for some
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universal constant c > 1, and translates into a nonexplicit code for space N/polylogN channels. We
defer the precise details to a later version.

Explicit codes assuming one-way functions: Under the widely believed cryptographic assumption that one-
way functions for subexponential size circuits exist, there are explicit PRGs that stretch ` bits into
M = 2`

α
bits, and are 1

M pseudorandom for size M circuits. As explained earlier, using such PRGs
removes the need for locally correctable and locally testable codes, meaning that the outer code in The-
orem 3.10 can be chosen to be a code that is linear time encodable and decodable (as in [KSS19]). At
the moment, assuming cryptographic assumptions give no advantage in final results over unconditional
results, but we mention this possibility, as it may help in future research.

5.6 Discussion of other possible tradeoffs

In Section 1 we mention that it is possible to achieve explicit codes with some additional tradeoffs. We now
sketch how to achieve these tradeoffs.

Codes for space s = N
1
2
−o(1) for p < 1

8 : As we have explained in the previous section, the reason that out
explicit codes don’t achieve space N1−o(1) is that we don’t have sufficiently good explicit stochastic
control codes. However, for p < 1

8 , Theorem 4.5 gives a stochastic control code which can achieve any
α < 1

2 . Plugging these codes into Theorem 5.3 gives the desired result.

Codes for space s = N1−o(1) for p < p1 for some constant p1 > 0: For small p, there are better construc-
tions of stochastic control codes in [KSS19] (which are based on the algebraic geometric codes of
Garcia and Stichtenoth [GS96]). Using these codes, gives the desired result. We defer the details to a
later version.

Codes with almost linear time encoding and decoding: The list-decodable codes of Kopparty, Shaltiel and
Silbak [KSS19] achieved quailinear (that isN ·polylog(N)) time encoding and (randomized) decoding.
There are two reasons why the proof of Theorem 5.1 does not directly give the same time bounds:

• We use the locally-correctable and locally testable codes of Kopparty, Meir, Ron-Zewi and Saraf
[KMRS17] from Theorem 2.12 rather than a code that is known to have linear time encoding and
decoding which was used by previous work. Nevertheless, as explained in Remark 2.13, it is
possible to obtain such codes with encoding and decoding time n1+o(1).
• For technical reasons, we need to choose the block size b to be much larger than the choice in

[KSS19]. While this allows handling larger space (as can be seen in the code with space s
1
2
−o(1)),

it means that more work needs to be done in order to show that the control code has near linear time
encoding. It is possible to achieve such control codes, with randomized (rather than deterministic)
decoding. A precise statement was given in Theorem 4.4.

With these two modifications, we can apply Theorem 5.3 and obtain the same results as in Theorem 5.1
with encoding and (randomized) decoding in time N1+o(1).

6 Analysis of the construction of stochastic codes for space bounded channels

This section is devoted to proving Theorem 5.3, and show the correctness of the main construction.

The setup: Throughout the remainder of the section, we fix the setup of Theorem 5.3. Specifically, let
δ > 0, 0 ≤ p < 1

4 , cν ≥ 1 be constants, and let ε > 0 be a sufficiently small constant. We will later
choose sufficiently small constants ε′, εsamp > 0. In particular, we will choose εsamp to be sufficiently small
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so that pctrl = p + ε ≥ p + 3εsamp. Let N be sufficiently large, such that Ndata = (1 − ε′)N is one of the
infinitely many block lengths that are guaranteed in Theorem 3.10, as explained in Figure 1. We also receive
a stochastic code Encctrl : {0, 1}` × {0, 1}d → {0, 1}b, and we assume that all requirements in Figure 1 are
satisfied.

Let Enc : {0, 1}RN×{0, 1}`+nctrl·d → {0, 1}N and Dec : {0, 1}N → {0, 1}RN be the functions specified
in Figures 2, 3 using the ingredients and parameter choices in Figure 1.

6.1 Bounding the rate and running time of Enc,Dec

The rate of Enc. The rate R of Enc is given by:

R =
RBSC ·Ndata

N
=

(1−H(pBSC)− ε/3) · (1− ε′) ·N
N

≥ (1−H(p+ α)− ε/3) · (1− ε/3).

We chose α = ε
10 log 1

p

, so thatH(p+α) ≤ H(p)+ε/10. This holds because the derivativeH ′(p) is decreasing

in the interval (0, 1) and H ′(p) ≤ log(1/p). This means that H(p+α) ≤ H(p) +α ·H ′(p) ≤ H(p) + ε/10.
Consequently,

R ≥ (1−H(p)− ε/3− ε/10) · (1− ε/3) ≥ 1−H(p)− ε.

This proves the first item of Theorem 5.3

The running time of encoding. The encoding algorithm Enc of Figure 2 performs the following tasks:

• It applies the sampler of Theorem 2.7, to get nctrl ≤ n samples. This takes time n · poly(log(N)cν ) ≤
N · poly(log(N)cν ).

• It applies the encoding of of EncBSC from Theorem 3.10. This takes time Tdata.

• It applies the (2−10t, t)-wise independent permutation π from Theorem 2.9, Ndata ≤ N times for
t = poly((logN)cν ). Each such application takes time poly(t · logN) = poly((logN)cν ), and overall,
this takes time N · poly((logN)cν ).

• It applies the PRGG, which in turn makes n calls to the PRGGrobp of Theorem 2.5. Each call obtains a
pseudorandom string of length at most N that is (2−10s′)-pseudorandom for any-order space s′ ROBPs
(and takes time N · poly(logN)). Overall, n calls take time N · (logN)cν+O(1).

• It applies Encctrl on nctrl ≤ n pairs (s, r1), . . . , (s, rnctrl
) ∈ {0, 1}` × {0, 1}d. Each application takes

time Tctrl and the overall time is n · Tctrl.

Overall, for a sufficiently large universal constant c0, the total running time of Enc is bounded by N ·
(logN)c0·cν + n · Tctrl + Tdata. This proves the third item of Theorem 5.3.

The running time of decoding. The decoding algorithm Dec of Figure 3 performs additional steps (com-
pared to the encoding algorithm). The additional steps are:

• It computes a list viable candidates. This list is of size at most n/τ which is a constant c that depends
on ε′, εsamp which in turn depend on p, ε.

• For each of the c candidates:

– It applies the sampler of Theorem 2.7 (with the same parameter used in the encoding) to get t
samples where t = nctrl ≤ n. This takes time n · poly(log(N)cν ) ≤ N · poly(log(N)cν ).

– It applies the (2−10t, t)-wise independent permutation π from Theorem 2.9 Ndata ≤ N times
for t = poly((logN)cν ) (same parameters as in encoding). Each such application takes time
poly(t · logN) = poly((logN)cν ), and overall, this takes time N · poly((logN)cν ).
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– It applies the PRG Grobp of Theorem 2.5 n times, to obtain a pseudorandom string of length
Ndata ≤ N that is (2−s

′
)-pseudorandom for any-order space s′ ROBPs (same parameters as in

encoding). This takes time N · (logN)cν+O(1).
– It applies DecBSC from Theorem 3.10. This takes time Tdata.
– It computes repetition decoding using a ≤ n blocks, which takes time at most n · Tctrl.

Overall, for a sufficiently large universal constant c0, the total running time of Enc is bounded by O(N ·
(logN)c0·cν + n · Tctrl + Tdata). This proves the fourth item of Theorem 5.3.

6.2 Road map for arguing the correctness of decoding

The main part in proving Theorem 5.3 is showing that the decoding algorithm is correct. The remainder of
this section is devoted to this proof, and in this subsection we give a roadmap of this proof.

The setup:

• Let m ∈ {0, 1}RN be a message.

• Let C : {0, 1}N → {0, 1}N be a space s channel that induces at most pN errors.

We will keep these choices of m,C fixed throughout this section.
We need to show that w.h.p. the message m is decoded correctly when applying encoding, channel

and decoding. We will refer to this experiment as the encoding/decoding experiment, and will denote it by
expred(m,C). This experiment is described in full detail in Figure 4. Below is a brief sketch:

In this experiment S ∈ {0, 1}` andR ∈ ({0, 1}d)nctrl are chosen uniformly at random. Z = Enc(m,S,R)
is the codeword, E = C(Z) is the error pattern chosen by the channel, V̄ = Z ⊕ E is the received word
given to the decoding, and M̄ = Dec(V̄ ) is the message returned by the decoding. We use the convention
that capital letters denote the random variables associated with small letters used in the construction, and a
complete specification of experiment expred(m,C) is given in Figure 4.

In order to complete the proof of Theorem 5.3 we need to show that the probability that the decoded
message M̄ is equal to m is large. That is, that:

Pr
expred(m,C)

[M̄ = m] ≥ 1− ν. (2)

Recall that in the experiment, every candidate control string s̄ ∈ VIABLE ⊆ CANDIDATES is used to
produce a candidate message M̄(s̄). We first claim that w.h.p. the correct control string S is in VIABLE
and that when decoding using this candidate we obtain the correct message m. (The earlier work of [KSS19]
stopped here, and outputted the list of messages

{
M̄(s̄) : s̄ ∈ VIABLE

}
). The next lemma is stating that this

list indeed contains the original message m.

Lemma 6.1 (The correct message is list-decoded).

Pr
expred(m,C)

[S ∈ VIABLE and M̄(S) = m] ≥ 1− ν/2.

Loosely speaking, this follows by the correctness of the list-decoding algorithm of [KSS19] which guaran-
tees that the correct candidate control string appears in the list VIABLE, and that when decoding with this can-
didate, the original message m is obtained. We explain the technique of previous work [GS16, SS16, KSS19]
in the next section.

The main contribution of this paper is that we achieve unique decoding. That is, our decoding algorithm
is able to output a single candidate control string S∗, and we will show that w.h.p. S∗ = S (namely, that we
identify the correct candidate). This is formally stated in the next lemma.
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Figure 4: The encoding/decoding experiment expred(m,C).

Parameters: A message m ∈ {0, 1}RN and a space s channel C.
Encoding phase: Choose uniformly at random S ∈ {0, 1}` and R ∈ ({0, 1}d)nctrl , and let Z = Enc(m,S,R).

More specifically, divide S into three parts of length `′ = `/3, so that S = (Ssamp, SPRG, Sπ) and perform
the following:

• CONTROL = {I1 < . . . < Inctrl
} = Samp(Ssamp).

• We denote the elements of [n] \ CONTROL by {W1, . . . ,Wndata
}.

• x = EncBSC(m)

• Y = π−1
Sπ

(x).

• Z ∈ {0, 1}N is defined as follows:

– ZCONTROL
data = Y ⊕G(SPRG).

– ZCONTROL
ctrl is defined as follows: for every j ∈ [nctrl], ZIj = Encctrl(S,Rj).

Channel phase: Let E = C(Z). More specifically:

• Apply C on Z and for i ∈ [n], let STi ∈ {0, 1}s be the state of C after it reads the i’th block.
• Let E = C(Z) and V̄ = Z ⊕ E.

Decoding phase: Let M̄ = Dec(V̄ ). More specifically:

Compute viable candidates:
• For every i ∈ [n], let S̄i = Decctrl(V̄i) = rDecctrl(1, V̄i).
• Let CANDIDATES =

{
S̄i : i ∈ [n]

}
.

• Let VIABLE =
{
s̄ ∈ CANDIDATES : for at least τ choices of i ∈ [n], it holds that: S̄i = s̄

}
.

Decode using viable candidates: For every s̄ ∈ VIABLE, compute DecodeUsingCandidate(s̄), more
specifically:

• Let CONTROL(s̄) = Samp(s̄samp) and compute V̄data(s̄) = V̄ (s̄)CONTROL
data .

• Let Ȳ (s̄) = V̄data(s̄)⊕G(s̄PRG).
• Let X̄(s̄) = πs̄π (Ȳ (s̄)).
• Let M̄(s̄) = DecBSC(X̄(s̄)).

Compute valid candidates:
• For every s̄ ∈ VIABLE, determine whether s̄ is successful, that is, if outdist(X̄(s̄)) ≤ λ1/4.
• Let VALID be the set of s̄ ∈ VIABLE that are successful.

Compute active blocks:
• Let ACTIVE =

{
i : S̄i ∈ VALID

}
and let A = |ACTIVE|.

• Let J1, . . . , JA be the indices in ACTIVE.

Perform repetition decoding: Let S∗ = rDecctrl(A, V̄J1 , . . . , V̄JA).
Output message: Compute DecodeUsingCandidate(S∗) and output M̄ = M̄(S∗).

Lemma 6.2 (The correct candidate survives pruning).

Pr
expred(m,C)

[S∗ = S] ≥ 1− ν/2.

Together, Lemmata 6.1 and 6.2 imply that with probability at least 1 − ν, we have that S∗ = S and
M̄ = M̄(S∗) = M̄(S) = m. This means that (2) holds, and the correct message is decoded with probability
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1− ν, concluding the proof of Theorem 5.3.
It remains to prove Lemmas 6.1 and Lemma 6.2. The former is proven in Section 6.3 and the latter is

proven in Section 6.4.

6.3 The correct message is list-decoded

In this subsection we prove Lemma 6.1. Loosely speaking, this follows because as the first step in our
decoding, we use the list-decoding algorithm of [KSS19]. Specifically, we use the “milestones” technique
of [KSS19] to prove that two “milestone events” (called the “control milestone” and “data milestone”) occur
with high probability in our experiment.

6.3.1 The milestones lemmas of [KSS19]

We first state the control milestone.

Lemma 6.3 (Control milestone from [KSS19]).

Pr
expred(m,C)

[
1

nctrl
·

∑
i∈CONTROL

wt(Ei) > p+ 2εsamp] ≤ ν

100
.

The control milestone states that the fraction of errors that were induced on the “control part” (namely the
indices in CONTROL) is very close to p. Lemma 6.3 would follow immediately from the sampler guarantee
if C is an additive channel (meaning that there exists a fixed e ∈ {0, 1}N such that C(Z) = e). In that case,
the error E = e is independent of Ssamp and so, when we sample a subset CONTROL ⊆ [n] of size nctrl

using a sampler, we indeed obtain that:

1

nctrl
·

∑
i∈CONTROL

wt(Ei) ≈
1

n
·
∑
i∈[n]

wt(Ei) ≤ p.

In our case, C is not necessarily an additive channel, and so as Z depends on Ssamp (by construction), it
might be that E = C(Z) depends on Ssamp, spoiling the argument above. Nevertheless, [KSS19] (building
on earlier ideas of [GS16]) show that the pseudorandomness of G and Encctrl can be used to argue that the
channel C “cannot make E = C(Z) depend on Ssamp”, so that the previous argument applies. We explain
this argument in Remark 6.5 below.

We now state the data milestone. Loosely speaking, another property that holds if the channels C is
additive and produces a fixed error pattern e is that when Sπ is chosen uniformly and EncBSC(m) is permuted
by a permutation π−1

Sπ
(as is the case in our encoding), then from the “point of view of the decoding algorithm”

the induced error pattern becomes distributed like e′ = πUd(e) (which is the scenario considered in Theorem
3.10).

Let Aρm be the function from Theorem 3.10 when applied as in Figure 1 to give the code EncBSC. Recall
that this is a function that receives an error pattern e′ ∈ {0, 1}Ndata and for ρ ≤ λ1, by Lemma 3.11, if
Aρm(e′) = 1 then applying the decoding algorithm DecBSC on the “received word” v′ = EncBSC(m) ⊕ e′,
the message m is decoded, and that furthermore, during the concatenated decoding, outdist(v′) is at most ρ.

In Theorem 3.10 it is stated that in such a scenario, both Pr[outdist(v′) ≤ λ1/10] and Pr[A
λ1/10
m (e′) = 1]

are very close to one. “The data milestone” below states that this holds also in the case thatC is not an additive
channel. More precisely, the next lemma states that when applying the decoding algorithm with the correct
string S, and computing the received data word X̄(S), if we set E′ = EncBSC(m) ⊕ X̄(S) to be the error
pattern (relative to the encoding of the correct message m) then Aλ1/5

m (E′) accepts with high probability. The
precise statement follows:
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Lemma 6.4 (Data milestone from [KSS19]). Let λ1 > 0 be the constant guaranteed in Theorem 3.10, and let
E′ = EncBSC(m)⊕ X̄(S). For a sufficiently small choice of the constant εsamp > 0 the following holds:

• Prexpred(m,C)[outdist(X̄(S)) ≤ λ1/5] ≥ 1− ν
100 .

• Prexpred(m,C)[A
λ1/5
m (E′) = 1] ≥ 1− ν

100 .

The proof of the milestones lemmas (Lemma 6.3 and Lemma 6.4) follows by the “milestones argument”
used in [KSS19] building on [GS16]. Unfortunately, we cannot formally derive it by [KSS19] as we have
made different parameter choices than the ones made in [KSS19] (but the proof follows in precisely the same
way). Below is a sketch of the argument, and the precise details are deferred to the full version.

Remark 6.5 (High level intuition of the milestones argument). Loosely speaking, the milestones argument
works as follows: Consider an alternative experiment to the encoding/decoding experiment, which we will
call the “additive experiment”. In this experiment, when the channel C produces the error vector E, rather
than running C on the codeword Z, we run it on a uniform and independent string. This means that the error
E generated in this experiment is independent of all other variables in the experiment, and in particular of
Ssamp, Sπ. We claim that any property P (E) of the error pattern such that:

• P (E) holds with probability almost one in the additive experiment.

• P (E) can be decided by a small space ROBP (that may depend on Ssamp, Sπ and m).

We have that P (E) holds with probability almost one in the real encoding/decoding experiment.
In order to show this, one claims that if P does not hold with probability almost one in the real encod-

ing/decoding experiment, then P can be used to break the pseudorandomness of either G or Encctrl. This
follows using the fact that in the real encoding/decoding experiment, it can be argued that for every fixing of
m,Ssamp, Sπ, Z is pseudorandom for small space ROBPs.

We have already observed earlier that the properties P (E) mentioned in Lemma 6.3 and Lemma 6.4 hold
with probability almost one in the additive experiment, and it is not difficult to show that a (randomized) small
space ROBP can decide these properties (w.h.p.).

6.3.2 Milestones imply list-decoding

Following [KSS19, GS16] the two milestone lemmas imply that the correct message is list-decoded. We now
explain this argument. We first claim that the probability that the correct control candidate S is not viable is
small.

Corollary 6.6. Prexpred(m,C)[S 6∈ VALID] ≤ ν
10 , and furhermore:

Pr
expred(m,C)

[|
{
j ∈ CONTROL : S̄Ij = S

}
| < τ ] ≤ ν

10
.

Proof. Lemma 6.3 says that:

Pr
expred(m,C)

[
1

nctrl
·

∑
i∈CONTROL

wt(Ei) > p+ 2εsamp] ≤ ν

100
.

By Markov’s inequality, if
1

nctrl
·

∑
i∈CONTROL

wt(Ei) ≤ p+ 2εsamp,
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then the fraction of i ∈ [nctrl] such that wt(Ei) > p+ 3εsamp is at most 1
1+εsamp

≤ 1− εsamp

2 , for a sufficiently
small choice of εsamp > 0. This means that for at least τ =

εsamp·nctrl

2 of i ∈ CONTROL we have that
wt(Ei) ≤ p+3εsamp. We have already chosen εsamp to be sufficiently small so that p+3εsamp ≤ p+ε = pctrl.
For every i ∈ [CONTROL], if wt(Ei) ≤ p+ 3εsamp ≤ pctrl then by the properties of decoding (or repetition
decoding) of Encctrl we have that:

Decctrl(V̄i) = Decctrl(Enc(S,Ud)⊕ Ei) = S,

because Decctrl(·) = rDecctrl(1, ·) decodes from pctrl relative errors. It follows that:

Pr
expred(m,C)

[|
{
j ∈ CONTROL : S̄Ij = S

}
| < τ ] ≤ ν

10
,

which proves the corollary.

We now claim that when applying DecodeUsingCandidate on the correct control string S, we decode to
M̄(S) = m with high probability.

Corollary 6.7. Prexpred(m,C)[M̄(S) = m] ≥ 1− ν/10.

Proof. By the data milestone we have that for E′ = EncBSC(m)⊕ X̄(S), it holds that:

Pr
expred(m,C)

[Aλ1/5
m (E′) = 1] ≥ 1− ν

10
.

By Theorem 3.10, whenever Aλ1/5
m (e′) = 1 we have that DecBSC(m ⊕ e′) = m. By definition X̄(S) =

EncBSC(m)⊕ E′ and the corollary follows.

Together, Corollaries 6.6 and 6.7 imply Lemma 6.1.

6.4 Strategy for proving that the correct message survives the pruning

In this section we state a strategy for proving Lemma 6.2. This is the main technical contribution of this
paper, and it relies on the new machinery we have developped in Sections 3 and Section 4 as well as several
additional ideas. We will state several lemmas from which we can derive Lemma 6.2. These lemmas will be
proven in later sections.

Lemma 6.2 follows immediately from the next lemma by the repetition decoding properties of Encctrl.

Lemma 6.8 (Active part is close to the correct control string). With probability at least 1 − ν/2 in the
experiment expred(m,C) we have that:

1

A
·
∑

i∈ACTIVE

δEncctrl(S, V̄i) ≤ pctrl.

In order to prove Lemma 6.8 we will split active candidates s̄ according to whether they came from the
data blocks or from the control blocks (it is also possible that they came from both). We will argue that w.h.p.
we have that:

• At least τ of the control blocks are active.

• Furthermore, on these active blocks the relative error induced by the channel is roughly p (which is
smaller than pctrl).
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If we could show that no data block is active, then Lemma 6.8 would follow (because on i ∈ CONTROL,
V̄i = Zi⊕Ei = Encctrl(S,Ud)⊕Ei, meaning that the average distance in Lemma 6.8 is bounded by roughly
p). We cannot rule out the possibility that few data blocks are active, but we will be able to show that:

• The number of data blocks that are active is small.

Together, the three properties will suffice to prove Lemma 6.8. These three properties are stated formally
in the next definition and lemma.

Definition 6.9. We will use the following notation:

• Let ACC = CONTROL ∩ ACTIVE.

• Let ACD = ([n] \ CONTROL) ∩ ACTIVE.

Lemma 6.10. With probability at least 1− ν/2 in the experiment expred(m,C) we have that:

• |ACC| ≥ τ =
εsamp·nctrl

2 =
εsamp·ε′·n

2 .

• 1
|ACC| ·

∑
i∈ACC wt(Ei) ≤ p+ 2εsamp.

• |ACD| ≤ n
logn .

We first prove that Lemma 6.8 follows from Lemma 6.10.

Proof. (of Lemma 6.8) For every i ∈ CONTROL, we have that

V̄i = Zi ⊕ Ei = Encctrl(S,Ud).

It follows by Lemma 6.10 that:

1

|ACC|
·
∑
i∈ACC

δEncctrl(S, V̄i) ≤
1

|ACC|
·
∑
i∈ACC

wt(Ei) ≤ p+ 2εsamp.

By definition ACTIVE = ACC ∪ ACD and A = |ACTIVE|. It follows that:

1

A
·
∑

i∈ACTIVE

δEncctrl(S, V̄i) =
1

A
·
∑
i∈ACC

δEncctrl(S, V̄i) +
1

A
·

∑
i∈ACD\ACC

δEncctrl(S, V̄i)

≤ |ACC|
A
· (p+ 2εsamp) +

1

A
· |ACD|

≤ p+ 2εsamp + o(1)

≤ p+ 3εsamp,

and we have chosen p+ 3εsamp ≤ pctrl.

The next lemma states that it is unlikely that many data blocks can agree on a successful candidate s̄.
This means in particular that a candidate s̄ cannot become valid if it only has support from data blocks. More
specifically, if a candidate does not “receive votes” from control blocks, then either it does not receive enough
votes from data blocks to make it viable, or, if it does, then it will be unsuccessful, and will not be declared
valid. For this purpose we introduce another threshold parameter, τ ′ that was already mentioned in Figure 1,
and set to be:

τ ′ = (logN)cν+1.
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Lemma 6.11 (Behavior on data blocks).

Pr
expred(m,C)

[∃j1 < . . . < jτ ′ ∈ [n] \ CONTROL s.t. S̄j1 = . . . = S̄jτ ′ and outdist(X̄(S̄j1)) ≤ λ1/4] ≤ ν

10
.

We now prove that Lemma 6.10 follows from Lemma 6.11.

Proof. (of Lemma 6.10) By Lemma 6.3 we have that:

Pr
expred(m,C)

[
1

nctrl
·

∑
i∈CONTROL

wt(Ei) ≤ p+ 2εsamp] ≥ 1− ν

100
.

By Corollary 6.6 we have that:

Pr
expred(m,C)

[|
{
j ∈ [nctrl] : S̄Ij = S

}
| ≥ τ ] ≥ 1− ν/10.

By Lemma 6.4 we have that:

Pr
expred(m,C)

[outdist(X̄(S)) ≤ λ1/5] ≥ 1− ν/100.

By Lemma 6.11 we have that:

Pr
expred(m,C)

[∀j1 < . . . < jτ ′ ∈ [n]\CONTROL if S̄j1 = . . . = S̄jτ ′ , then outdist(X̄(S̄j1)) > λ1/4] ≥ 1− ν

10
.

Assume that these four events occur (this happens with probability at least 1 − ν/2). The second event says
that S is viable. The third event implies that S is successful. It follows that S is valid. This means that every
block i for which S̄i = S is active. In particular, there are at least τ such blocks in CONTROL and the first
item follows.

For the second item, we note that for every i ∈ CONTROL, if wt(Ei) ≤ pctrl then

S̄i = Decctrl(V̄i) = Decctrl(Zi ⊕ Ei) = Decctrl(Encctrl(S,Ud)⊕ Ei) = S.

Therefore, for every i ∈ CONTROL, if wt(Ei) ≤ pctrl then i is active, and i ∈ ACC. This means that on
every i ∈ CONTROL \ ACC we have that wt(Ei) > pctrl. It follows that:∑

i∈ACC

wt(Ei) =
∑

i∈CONTROL

wt(Ei)−
∑

i∈CONTROL\ACC

wt(Ei)

≤ nctrl · (p+ 2εsamp)− (nctrl − |ACC|) · pctrl

≤ nctrl · (p+ 2εsamp)− (nctrl − |ACC|) · (p+ 2εsamp)

≤ |ACC| · (p+ 2εsamp).

Where the second to last item uses that p+ 2εsamp ≤ pctrl. This gives the second item.
We now prove the third item. For a candidate s̄ ∈ CANDIDATES to become valid, it must first be

viable and have the support of at least τ blocks (meaning that there are at least τ blocks i such that S̄i = s̄).
Secondly s̄ needs to be successful. The number of candidates that collected support from at least τ/2 blocks
in CONTROL is bounded by nctrl

τ/2 = 2nctrl
τ . By the fourth event, any candidate that collected support from

more than τ/2 ≥ τ ′ candidates from [n]\CONTROL is not successful, and therefore not valid. It follows that
the number of blocks i ∈ [n]\CONTROL for which S̄i is valid is bounded by 2nctrl

τ ·τ ′. This is because every
such block has to be successful, and so, in order to be viable, must be equal to one of the 2nctrl

τ candidates
that received at least τ/2 votes from blocks in CONTROL (as otherwise, the candidate cannot collect τ votes
and become viable). For each choice of the 2nctrl

τ candidates that received at least τ/2 votes from blocks in
CONTROL, there are at most τ ′ blocks in [n] \ CONTROL which have the same candidate. Overall, we get
that |ACD| (that is the number of active blocks in [n]\CONTROL) is at most 2nctrl

τ ·τ
′ ≤ n

logn as required.
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This means that in order to prove Lemma 6.2, we now need to prove Lemma 6.11. The remainder of this
section is devoted to proving Lemma 6.11. This is done in Section 6.5.

6.5 Behavior on data blocks: Proof of Lemma 6.11

We will prove Lemma 6.11 by using the pseudorandomness properties of our ingredients to connect the
statement of Lemma 6.11 (which is in the encoding/decoding experiment, to a similar statement that occurs
in an experiment where the codeword Z is chosen uniformly. We will then argue that the lemma holds in the
latter experiment. In order to relate the two experiments, we will introduce several hybrid experiments.

6.5.1 The adversarial experiment

In order to prove Lemma 6.11 we will show that for every choice of ssamp, sπ ∈ {0, 1}`
′

the lemma holds con-
ditioned on the event {Ssamp = ssamp, Sπ = sπ}. It will be convenient to describe the experiment that comes
up in the lemma as a separate experiment (with the additional conditioning on specific values of ssamp, sπ).
We call “the adversarial encoding/decoding experiment” and denote it by exprad

ssamp,sπ(m,C). This experi-
ment is stated precisely, in Figure 5.

In this experiment, we imagine that there is an “adversary” which tries to choose a channel C and an
implementation of the ingredients of our decoding algorithm so that the “bad event” in Lemma 6.11 occurs
with probability that is not small. More specifically, in the adversarial experiment we are only interested in a
subset DCANDIDATES ⊆ CANDIDATES of candidates that came from data blocks, and the adversary wins
if there exists such a candidate s̄ ∈ DCANDIDATES that was obtained on τ ′ data blocks, and is successful
(meaning that: outdist(X̄(s̄)) ≤ λ1/4). Other candidates in DCANDIDATES are said to be “rejected”.

The adversarial experiment is defined so that it immediately holds that:

Lemma 6.12. If for every ssamp, sπ ∈ {0, 1}`
′
, Prexprad

ssamp,sπ
(m,C)[Adversary wins] ≤ ν/10 then Lemma

6.11 holds.

Therefore, in order to prove Lemma 6.11 it is sufficient to prove the following Lemma.

Lemma 6.13. If for every ssamp, sπ ∈ {0, 1}`
′
,

Pr
exprad

ssamp,sπ
(m,C)

[Adversary wins] ≤ ν/50.

The remainder of this section is devoted to proving Lemma 6.13.

6.5.2 Road map for proving Lemma 6.13.

We want to prove that the probability that the adversary wins the adversarial experiment is small. Our plan is
the following:

• We will use the pseudorandomness of Encctrl and G to argue that if the adversary wins the adversarial
experiment, then it wins in a version of the experiment where pseudorandom strings are replaced with
random strings.

• We will use the evasiveness of the code EncBSC to argue that the adversary cannot win the experiment
where pseudorandom strings are replaced by random strings. (Recall that evasiveness says that a small
space channel cannot make the decoding algorithm DecBSC decode when the channel corrupts a random
word).
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Figure 5: The adversarial experiment exprad
ssamp,sπ(m,C).

Parameters: A message m ∈ {0, 1}RN , a space s channel C, a sampler seed ssamp and a permutation seed sπ .

Encoding phase: Choose uniformly at random SPRG ∈ {0, 1}`′ and R ∈ ({0, 1}d)nctrl , and let Z =
Enc(m, (ssamp, sπ, SPRG), R). More specifically:

• Let S = (ssamp, sπ, SPRG). comment: In this experiment SPRG is chosen at random, while ssamp

and sπ are fixed.
• control = {i1 < . . . < inctrl

} = Samp(ssamp). comment: In this experiment CONTROL is fixed to
a constant control.

• We denote the elements of [n] \ control by {w1, . . . , wndata
}.

• x = EncBSC(m)

• y = π−1
sπ (x). comment: In this experiment, y is constant.

• Z ∈ {0, 1}N is defined as follows:

– Zcontrol
data = y ⊕G(SPRG).

– Zcontrol
ctrl is defined as follows: for every j ∈ [nctrl], Zij = Encctrl(S,Rj).

Channel phase: Let E = C(Z). More specifically:

• Apply C on Z and for i ∈ [n], let STi ∈ {0, 1}s be the state of C after it reads the i’th block.
• Let E = C(Z) and V̄ = Z ⊕ E.

Decoding phase: Let M̄ = Dec(V̄ ). More specifically:

Check whether candidates from data blocks are successful: comment: In this experiment, we will
only be interested in candidates from data blocks, and the adversary wins if there is a candidate s̄
that is successful, and was decoded at least τ ′ times in data blocks.

• For every i ∈ [n], let S̄i = Decctrl(V̄i) = rDecctrl(1, V̄i).
• Let DCANDIDATES =

{
S̄i : i ∈ [n] \ control

}
. comment: In this experiment, we are only

interested in candidates from data blocks.
• For every s̄ ∈ DCANDIDATES, compute DecodeUsingCandidate(s̄), more specifically:

– Let CONTROL(s̄) = Samp(s̄samp) and compute V̄data(s̄) = V̄ (s̄)CONTROL
data .

– Let Ȳ (s̄) = V̄data(s̄)⊕G(s̄PRG).
– Let X̄(s̄) = πs̄π (Ȳ (s̄)).

Outcome of experiment: We say that the adversary wins if there exists s̄ ∈ DCANDIDATES such that
for at least τ ′ choices of i ∈ [n] \ control, we have that S̄i = s̄, and outdist(X̄(s̄)) ≤ λ1/4. (Every
s̄ ∈ DCANDIDATES that was not used to win the experiment is said to be “rejected”).

If the adversary in the adversarial experiment could be implemented by a small space ROBP, then the first
step in our plan would follow directly from the pseudorandomness of Encctrl and G.

A significant difficulty in implementing the first step in this plan is that the adversary (that tries to win
this experiment) is not a small space ROBP. More precisely, this adversary is a procedure that receives the
codeword Z, corrupts it by a space s channel C, and then performs additional computation on the received
word V̄ = Z ⊕ C(Z). In this additional computation (that is described in detail in Figure 5):

• The adversary applies Decctrl (to compute the set DCANDIDATES of data candidates).

• On every s̄ ∈ DCANDIDATES, the adversary applies the sampler Samp(s̄samp), permutation πs̄π and
PRG G(s̄PRG).
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• The adversary also needs to compute outdist(X̄(s̄)) on every candidate s̄.

None of these steps are computable by small space ROBPs. Moreover, a generator G which needs to fool
polynomial time adversaries that are able to apply G, inherently implies cryptographic assumptions such as
one way functions, and therefore, we have no hope of arguing that the adversary cannot distinguish unless
we assume the existence of one-way functions. (We remark that under the assumption that one-way functions
exist, this argument can be performed).

Our goal is to argue that pseudorandomness against ROBPs (which we have unconditionally) suffices. We
will need additional ideas in order to implement the first step and connect the probability that the adversary
wins the adversarial experiment to the probability that it wins in a version of the experiment in which pseu-
dorandom strings are replaced with random strings. Here is an outline of our plan (with pointers to relevant
sections):

• We first consider a hybrid experiment (called the simulated adversarial experiment) in which the (pseu-
dorandom) control blocks are replaced with random strings. By carefully analyzing the behavior of
our decoding algorithm, and using the pseudorandomenss of Encctrl, we can argue that if the adversary
wins the adversarial experiment, then it also wins the simulated adversarial experiment. (Here, a dif-
ficulty is that it is only the channel C that is being fooled by the pseudorandomness of Encctrl, while
later steps in the computation of the adversary are not fooled). This part of the argument is done in
Section 6.5.3.

• We then consider another hybrid experiment in which we replace (pseudorandom) data blocks with
random strings. We would like to argue that if the adversary wins the simulated adversarial experiment,
then it also wins this experiment. Again, a difficulty is that we cannot use the pseudorandomness of G
directly, as the adversary (which is not simulated by a small space ROBP) is not fooled by G.

• We have chosen the generator G so that different data blocks are truly independent and not just indis-
tinguishable from independent by small space ROBPs. We will argue that (once S̄π and the states ST =
(STw1 , . . . ,STwndata

) of the channel C at the end of data blocks are fixed) the error Ew1 , . . . , Ewndata

that the channel induces on data blocks are independent (as each such error Ewj is determined by the
state of C at the beginning of the j’th data block, and the content of the j’th data block). This intu-
itively means that the adversary cannot make the candidates S̄wj of τ ′ different data blocks agree on
the same value, unless this value can be “guessed in advance”. This means that if the adversary wins
the simulated adversarial experiment, then (except for small probability) it wins with a string s̄ that can
be guessed in advance. We call such strings “heavy” and it can be shown that their number is not too
large. This is done in Section 6.5.4.

• For every fixed heavy string s̄, we can consider a weaker version of the adversary which is hardwired
with Samp(s̄samp), πs̄π and G(s̄PRG), and only tries to win using s̄. This “fixed candidate adversary”
does not need to compute Decctrl, Samp, π or G. However, it still needs to compute outdist(X̄(s̄)).

• We use the local correcting and testing properties of the outer code in the construction of EncBSC to
show that on a fixed string s̄, a small space ROBP can approximate outdist(X̄(s̄)). More precisely, by
Lemma 3.12 a small space ROBP can approximate the outer distance.

• This means that the “fixed candidate adversary” can be computed (at least approximately) by a small
space ROBP, and so we can use the pseudorandomness of G to argue that the fixed candidate adversary
cannot distinguish between the simulated adversarial experiment and the uniform adversarial exper-
iment. This implies that if the adversary wins the simulated adversarial experiment, then one of a
small number of fixed candidate adversaries wins the adversarial uniform experiment. This part of the
argument is done in Section 6.5.5.
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• Finally, we argue that by the evasiveness properties of EncBSC for every fixed candidate adversary, the
probability that it wins the adversarial uniform experiment is small. By doing a union bound over the
small number of fixed candidate adversaries for heavy candidates, we conclude that the probability that
the initial adversary wins the initial adversarial experiment is small, which is what we wanted to prove.
This part of the argument is done in Section 6.5.6.

6.5.3 The simulated adversarial experiment

We will introduce several hybrid experiments in order to implement the plan sketched in Section 6.5.2. The
first such experiment will be called the “simulated adversarial experiment” and denoted by exprsa

ssamp,sπ(m,C).
In this experiment we make two modifications (relative to the adversarial experiment):

1. In the encoding phase, when preparing Z, rather than preparing Zcontrol
ctrl in the way specified in the

encoding algorithm, we will instead pick Zcontrol
ctrl ∈ {0, 1}Nctrl uniformly at random, independently of

all other variables.

2. In the outcome of the experiment, rather than allowing the adversary to win if outdist(X̄(s̄)) ≤ λ1/4,
we will be more lenient and replace λ1/4 by λ1/2.

The next lemma states that in order to bound the probability that the adversary wins the adversarial exper-
iment (and prove Lemma 6.13), it is sufficient to bound the probability that the adversary wins the simulated
adversarial experiment.

Lemma 6.14. For every ssamp, sπ ∈ {0, 1}`
′
,

Pr
exprad

ssamp,sπ
(m,C)

[Adversary wins] ≤ Pr
exprsa

ssamp,sπ
(m,C)

[Adversary wins] +
ν

100
.

Proof. Consider a version of these two experiments in which we also fix SPRG to some constant sPRG. As
SPRG is identically distributed in both experiments, it is sufficient to show the lemma for every such fixing.
Let us fixm,C, ssamp, sπ, sPRG and to avoid clutter, we will denote by exprad and exprsa the two experiments
with all the fixings (including SPRG = sPRG).

We consider hybrid experiments between the adversarial experiment and the simulated experiment. More
specifically, for fixed m,C, ssamp, sπ, sPRG (which we will omit from the notation to avoid clutter) for 0 ≤
k ≤ nctrl, let expr(k) denote the experiment which is like exprad with the following modifications:

1. In the encoding phase, when preparing Z, rather than preparing Zcontrol
ctrl in the way specified in the

decoding algorithm, we will do the following:

• For j ≤ k, we set Zij = Encctrl((ssamp, sπ, sPRG), Rj) (as in experiment exprad).
• For j > k, we set Zij to be a uniform b bit string (as in experiment exprsa).

2. When deciding whether the adversary wins, we replace λ1/4 by λ1/2− kλ1
4nctrl

.

With these choices, it follows that:

• expr(0) = exprsa, and

• expr(nctrl) = exprad.

Thus, by a hybrid argument, it is sufficient to show that for every 0 ≤ k < nctrl,

Pr
expr(k+1)

[Adversary wins] ≤ Pr
expr(k)

[Adversary wins] + 2−s
′
.
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Let us use the superscript (k) for random variables from experiment expr(k). As is standard in hybrid
arguments we can imagine that all these experiments happen in the same probability space, where initially,
the only difference between the k’th experiment, and the (k + 1)’th experiment is in the way the block Zik+1

is selected. This view allows us to write events that mixes random variables from different experiment.
The key observation is that w.h.p. the sequence of states that the ROBP C sees at the end of blocks, is

essentially identical in the two experiments. Specifically, we claim that:

Claim 6.15. The statistical distance between (ST
(k)
1 , . . . ,ST

(k)
n ) and (ST

(k+1)
1 , . . . ,ST

(k+1)
n ) is at most 2−s

′
.

Proof. (of claim) Let i∗ = ik+1. The two distributions are identical on ST1, . . . ,STi∗−1, by definition. On
the block i∗, Z(k+1)

i∗ = Encctrl((ssamp, sπ, sPRG), R
(k)
i∗ ) while Z(k)

i∗ is uniform and independent.
It follows from the pseudorandomness property of Encctrl that the two distributions are 2−s

′
-close in

statistical distance. This is because if the distributions of output states on the two distributions were 2−s
′

far,
then C would give rise to a space s ≤ s′ ROBP distinguishing Encctrl((ssamp, sπ, sPRG), Ud) from uniform
(contradicting the pseudorandomness of Encctrl).

The two experiments expr(k) and expr(k+1) produce the same distribution of states STi∗+1, . . . ,STn if
ST

(k)
i∗ = ST

(k+1)
i∗ , and the claim follows.

We also have that:

Claim 6.16. If (ST
(k)
1 , . . . ,ST

(k)
n ) = (ST

(k+1)
1 , . . . ,ST

(k+1)
n ) then:

• For every i 6= ik+1, E(k)
i = E

(k+1)
i , and V̄ (k)

i = V̄
(k+1)
i .

• DCANDIDATES(k) = DCANDIDATES(k+1).

• The Hamming distance of V̄ (k) and V̄ (k+1) is at most b.

• For every s̄ ∈ DCANDIDATES(k), the Hamming distance of V̄ (k)
data(s̄) and V̄ (k+1)

data (s̄) is at most b.

Proof. (of claim) Note that for all i 6= ik+1, Z(k)
i = Z

(k+1)
i . As C is an ROBP, we have that the error Ei that

it induces on the i’th block, is a function of it’s state at the beginning of the block (namely, STi−1) and of the
block content (namely, Zi). We also have that V̄i = Zi ⊕ Ei. This gives the first item.

In both experiments DCANDIDATES is a function only of V̄ control
data and does not depend on V̄ik+1

. This
gives the second item.

The third item follows because except for the block ik+1 which is of length b, V̄ is identical in the two
experiments.

The fourth item follows from the second and third item.

We are finally ready to tackle the main claim, namely that:

Claim 6.17.
Pr

expr(k+1)
[Adversary wins] ≤ Pr

expr(k)
[Adversary wins] + 2−s

′
.

Proof. By the two previous claims, except with probability 2−s
′
, all the four consequences of the previous

claim hold. We will show that when this happens, if the adversary wins the (k + 1)’th experiment then the
adversary wins the k’th experiment, proving the claim.

If the (k + 1)’th experiment is successful, then let s̄ ∈ DCANDIDATES(k+1) be the control string that
was used by the adversary to win the (k + 1)’th experiment. We will show that s̄ (which also belongs to
DCANDIDATES(k) = DCANDIDATES(k+1)) is not rejected in the k’th is experiment.
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We have that the Hamming distance between V̄ (k)
data(s̄) and V̄ (k+1)

data (s̄) is at most b. It follows that the
Hamming distance between X̄(k)(s̄) and X̄(k+1)(s̄) is at most b. We would like to express this distance as a
relative distance. We have that:

δ(X̄(k)(s̄), X̄(k+1)(s̄)) ≤ b

Ndata
=

1

ndata
≤ 2

n

Let nin be the (constant) block length from Theorem 3.10. We are allowed to choose the constant ε′ > 0 as
a function of λ1 and nin. In particular, if we can choose ε′ > 0 so that λ1

4ε′·nin
≥ 2. With this choice we can

continue and have that:

δ(X̄(k)(s̄), X̄(k+1)(s̄)) ≤ λ1

4ε′ · n · nin
=

λ1

4nctrl · nin
,

(where the last inequality follows because we can choose ε′ > 0 to be sufficiently small as a function of λ1,
nin, so that λ1

4ε′·nin
≥ 2). We know that in the (k + 1)’th experiment s̄ was used to win the experiment. This

means that

outdist(X̄(k+1)(s̄)) ≤ λ1

2
− (k + 1)λ1

4nctrl
≤ λ1.

We will use Lemma 2.16 to bound outdist(X̄(k)(s̄)) in terms of outdist(X̄(k+1)(s̄)) and δ(X̄(k)(s̄), X̄(k+1)(s̄)).
In order to apply the lemma we need to check that:

δ(X̄(k)(s̄), X̄(k+1)(s̄)) ≤ λ1 − outdist(X̄(k+1)(s̄))

nin
.

We have set up the parameters so that this indeed holds, and we can conclude that:

outdist(X̄(k)(s̄)) ≤ λ1

2
− (k + 1)λ1

4nctrl
+

λ1

4nctrl · nin
· nin ≤

λ1

2
− kλ1

4nctrl
.

This means that the adversary wins the k’th experiment using s̄, and the claim and lemma follow.

Overall, we obtain that:

Pr
exprad

ssamp,sπ
(m,C)

[Adversary wins] ≤ Pr
exprsa

ssamp,sπ
(m,C)

[Adversary wins] + nctrl · 2−s
′
,

and by our choice of parameters nctrl · 2−s
′ ≤ ν

100 .

By Lemma 6.14 we are left with the task of bounding the probability that the adversary wins the simulated
uniform experiment.

6.5.4 Bounding the probability that the adversary wins with a light candidate

We are working in the simulated adversarial experiment exprsa
ssamp,sπ(m,C) for some fixed ssamp, sπ. We

now define a set H of candidate strings s̄ which we call “heavy”. Recall that ST = (ST1, . . . ,STn) are the
sequence of states of C when reading Z, and note that ST is of length sn. For every q ∈ ({0, 1}s)n we
consider the experiment exprq which will be defined as

exprqssamp,sπ(m,C) = (exprsa
ssamp,sπ(m,C)|ST = q).

To avoid clutter, we will refer to this experiment as exprq within this section. We will use a superscript of
q to denote the random variables of the experiment exprq. Random variables without superscripts are in the
experiment exprqssamp,sπ(m,C).
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We define the following sets:

Hq,i =

{
s̄ : Pr[S̄qi = s̄] ≥ 1

n2

}
.

Hq =
⋃
i∈[n]

Hq,i.

H =
⋃

q∈{0,1}sn
Hq.

It immediately follows that:

Lemma 6.18. For every q ∈ ({0, 1}s)n such that Pr[ST = q] > 0, |Hq| ≤ n3, and consequently |H| ≤
2sn · n3.

Proof. By definition for every q ∈ ({0, 1}s)n such that Pr[ST = q] > 0, and every i ∈ [n], |Hq,i| ≤ n2, and
Hq is the union of n such sets.

We claim that in the experiment exprq, candidates are independent.

Lemma 6.19. For every q ∈ ({0, 1}s)n such that Pr[ST = q] > 0, S̄q1 , . . . , S̄
q
n are independent.

Proof. The definition of G′ was tailored so that (Zdata)1, . . . , (Zdata)ndata
are truly independent (and not just

indistinguishable from independent). As Zctrl is uniform and independent of Zdata we have that Z1, . . . , Zn
are independent. The variables Zq1 , . . . , Z

q
n are also independent, as the condition {ST = q} can be seen as the

conjunction of n separate conditions of the form {STi = qi}. It also follows thatEq1 , . . . , E
q
n are independent.

This is because having fixed the states in ST to q, the error that the channel induces on a block is a function of
the state at the beginning of the block (which is fixed) and the contents of the block. This gives that eachEqi is
a function only of Zqi . As V̄ q

i = Zqi ⊕E
q
i , this gives that V̄ q

1 , . . . , V̄
q
n are independent. As S̄qi = Decctrl(V̄

q
i ),

this gives that S̄q1 , . . . , S̄
q
n are independent.

The next lemma shows that the contribution of s̄ 6∈ H to the win probability of the adversary. This will
allow us to focus on candidates in H .

Lemma 6.20. For every ssamp, sπ ∈ {0, 1}`
′
,

Pr
exprsa

ssamp,sπ
(m,C)

[Adversary wins] ≤ Pr
exprsa

ssamp,sπ
(m,C)

[∃s̄ ∈ H : The adversary wins with s̄] + ν/100.

Proof. We first claim that for every q ∈ ({0, 1}s)n such that Pr[ST = q] > 0:

Pr
exprq

[Adversary wins] ≤ Pr
exprq

[∃s̄ ∈ H : The adversary wins with s̄] + ν/100.

The lemma follows from this claim by noting that in the right hand side of the claim, q can be replaced by ST
(as ST = q in exprq), using the law of total probability.

We now prove the claim. Fix some q ∈ ({0, 1}s)n such that Pr[ST = q] > 0. By Lemma 6.19 we
have that S̄q1 , . . . , S̄

q
n are independent. In order for the adversary to win exprq, there has to be a value s̄ ∈

DCANDIDATESq, and a subset B of τ ′ distinct indices in [n] \ control, such that for every j ∈ B, S̄qj = s̄.
We now show that the latter event has low probability if s̄ 6∈ Hq.

For every i ∈ [n] \ control, and s̄ 6∈ Hq, we have that Pr[S̄qi = s̄] < 1/n2. For every fixed subset
B =

{
i′1, . . . , i

′
τ ′
}

, the probability that S̄q
i′1

= . . . = S̄q
i′
τ ′

= s̄ for some s̄ 6∈ Hq, is smaller than ( 1
n2 )τ

′−1

because conditioned on S̄q
i′1
6∈ Hq, each of the remaining τ ′ − 1 independent candidates have probability less
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than 1/n2 to be equal S̄q
i′1

. Taking a union bound over all
(
n
τ ′

)
≤ nτ ′ subsets B of size τ ′, the probability that

S̄q
i′1

= . . . = S̄q
i′
τ ′

= s̄ for some s̄ 6∈ Hq, is smaller than:

(
n

τ ′

)(
1

n2

)τ ′−1

≤ nτ
′

n2τ ′−2
≤ 1

2τ ′
=

1

2(logN)cν+1 ≤
ν

100
,

where the last inequality follows because τ ′ ≥ (logN)cν+1. The claim now follows, because if the adversary
wins exprq, then except for probability ν/100, the adversary wins using an element s̄ ∈ H .

6.5.5 The fixed candidate adversary

We will now consider a version of the adversary that tries to win with some fixed candidate s̄ ∈ {0, 1}`. This
adversary doesn’t bother to check for viability or validity of s̄. It only checks whether s̄ is successful. This
candidates is called “the fixed candidate adversary”.

Figure 6: The fixed candidate adversary AdvC,s̄ssamp,sπ(Zdata).

Parameters: A space s channel C, a sampler seed ssamp ∈ {0, 1}`
′
, a permutation seed sπ ∈ {0, 1}`

′
, a control

string s̄.
Input: A string Zdata ∈ {0, 1}Ndata .
Additional parameters: These additional parameters (which are functions of the parameters) are “hardwired”

to the adversary.

• Let control = Samp(ssamp)

• Let control = Samp(s̄samp).
• G(s̄PRG).
• πs̄π (·).

Operation:

Encoding phase:
• Choose uniformly at random Zctrl ∈ {0, 1}Nctrl .
• Prepare Z = (Zctrl, Zdata)control. That is, prepare a string Z according to control where placing
Zctrl and Zdata in the control and data blocks.

Channel phase: Let E = C(Z) and V̄ = Z ⊕ E.
Decoding phase: Try to win with s̄. That is:

• Let V̄data(s̄) = V̄ (s̄)control
data .

• Let Ȳ (s̄) = V̄data(s̄)⊕G(s̄PRG).
• Let X̄(s̄) = πs̄π (Ȳ (s̄)).
• Compute outdist(X̄(s̄)).

Outcome of experiment: We say that the adversary wins if outdist(X̄(s̄)) ≤ λ1/2.

The precise definition of the fixed candidate adversary AdvC,s̄ssamp,sπ(Zdata) is given in Figure 6. The
definition of the fixed candidate adversary was tailored so that by a union bound over all s̄ ∈ H , we have that:
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Lemma 6.21. For every ssamp, sπ ∈ {0, 1}`
′
. Let x = EncBSC(m) and y = π−1

sπ (x) (as is done in the
simulated adversarial experiment exprsa

ssamp,sπ(m,C)).

Pr
exprsa

ssamp,sπ
(m,C)

[∃s̄ ∈ H : The adversary wins with s̄] ≤
∑
s̄∈H

Pr
SPRG←U`′

[AdvC,s̄ssamp,sπ(y ⊕G(SPRG)) wins].

More precisely, this follows because the fixed state adversary is more relaxed than the adversary defined
in the earlier experiment, and so whenever the latter wins, the former also wins.

Continuing with our plan, we now aim to bound the probability that the fixed candidate adversary Adv
wins when it receives input y ⊕ G(SPRG). If we could argue that Adv can be implemented by a space s′

ROBP, then (as we have that G is pseudorandom for space s ROBP) we could bound this probability by the
probability that Adv wins when it receives input UNdata

. While we won’t be able to argue that Adv can be
implemented by a small space ROBP, we can prove that Adv can be approximated by a small space ROBP,
which will allow us to use the argument above (accounting for the approximation error). We first introduce
the notion of approximation that we will use.

Definition 6.22 (Adversary achieves small outer distance). We say that AdvC,s̄ssamp,sπ achieves distance λ on
input z if when running AdvC,s̄ssamp,sπ(z), when computing outdist(X̄(s̄)) this outer distance is at most λ.

With this definition, saying that Adv wins on z is equivalent to saying that Adv achieves distance λ1/2.
We will prove that:

Lemma 6.23 (Fixed candidate adversary is approximated by ROBP). There exists a function ρ = 2
− s′

No(1)

such that for every 0 ≤ η ≤ 1, every ssamp, sπ ∈ {0, 1}`
′
, and every s̄ ∈ {0, 1}`, there exist a distribution

Adv
C,s̄
ssamp,sπ ,η over space s′ ROBPs such that for every input w ∈ {0, 1}Ndata , and every η < 1− 1

100 :

• Pr[AdvC,s̄ssamp,sπ(w) achieves distance η · λ1] ≤ Pr
D←Adv

C,s̄

ssamp,sπ,η+ 1
100

[D(w) = 1] + ρ.

• Pr
D←Adv

C,s̄
ssamp,sπ,η

[D(w) = 1] ≤ Pr[AdvC,s̄ssamp,sπ(w) achieves distance (η + 1
100)λ1] + ρ.

Proof. Lemma 6.23 follows directly from Lemma 3.12, by considering a distribution Adv
C,s̄
ssamp,sπ ,η over

ROBPs of space s′ which does the following: On input w, simulate AdvC,s̄ssamp,sπ(w) while replacing the step
of computing outdist(X̄(s̄)) with the approximation guaranteed in Lemma 3.12 (that can be performed by a
space s′ ROBP) and outputting one if the obtained approximation is smaller than η · λ1.

We can now implement our plan, and bound the probability that Adv achieves small distance on y ⊕
G(SPRG) by the probability that Adv achieves small distance on y ⊕ UNdata

. Specifically:

Lemma 6.24. For every ssamp, sπ ∈ {0, 1}`
′

and every s̄ ∈ {0, 1}`,

Pr
SPRG←U`′

[AdvC,s̄ssamp,sπ(y⊕G(SPRG)) wins] ≤ Pr
W←UNdata

[AdvC,s̄ssamp,sπ(y⊕W ) achieves distance 3
4 · λ1]+2

− s′

No(1) .

Proof. Within this proof, to avoid clutter, we omit the mention of C, ssamp, sπ and s̄ which are fixed through-
out. By using Lemma 6.23 and the fact that G is 2−2s′-pseudorandom against space s′ ROBPs we have
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that:

Pr
SPRG←U`′

[Adv(y ⊕G(SPRG)) wins] ≤ Pr
SPRG←U`′

[Adv(y ⊕G(SPRG)) achieves λ1/2]

≤ Pr
SPRG←U`′

D←Adv 1
2 + 1

100

[D(y ⊕G(SPRG)) = 1] + ρ

≤ Pr
W←UNdata

D←Adv 1
2 + 1

100

[D(y ⊕W ) = 1] + ρ+ 2−2s′

≤ Pr
W←UNdata

[Adv(y ⊕W ) achieves distance 3
4 · λ1] + 2ρ+ 2−2s′

≤ Pr
W←UNdata

[Adv(y ⊕W ) achieves distance 3
4 · λ1] + 2

− s′

No(1) .

Note that as W is uniform, the distribution y ⊕W is uniform and identical to W , and therefore, the input
of Adv in the right hand side could be replaced by W . We are therefore left with the task of bounding:

Pr
W←UNdata

[AdvC,s̄ssamp,sπ(W ) achieves distance 3
4 · λ1].

In this experiment, the channel is applied on a uniform input, and we need to bound the probability that
the channel can achieve small outer distance. This is very similar to the evasiveness experiment of Theorem
3.3. We will use Theorem 3.3 to argue that the evasiveness property EncBSC gives a bound on this probability.

6.5.6 Using evasiveness to bound the success probability of the fixed candidate adversary

In this section we conclude the proof of Lemma 6.13 and Lemma 6.11 by bounding the probability that the
fixed state adversary achieves small distance. More specifically, we will prove that:

Lemma 6.25. For every ssamp, sπ ∈ {0, 1}`
′
, and every s̄ ∈ {0, 1}`,

Pr
W←UNdata

[AdvC,s̄ssamp,sπ(W ) achieves distance 3
4 · λ1] ≤ 2−Ω(N).

Proof. Within this proof, we will refer to AdvC,s̄ssamp,sπ as Adv to avoid clutter. The adversary Adv receievs
an input W ← UNdata

and uses it to prepare Z. We will be considering two partitions of Z into control and
data. The first one is according to control and the second is according to control. In order to avoid confusion
let us use Zctrl = Zcontrol

ctrl , Zdata = Zcontrol
data = W (as is done in the description of the adversary). We use

Z̄ctrl = Zcontrol
ctrl and Z̄data = Zcontrol

ctrl . This notation is consistent in the sense that all “barred” variables use
the partition control.

We will prove the lemma for every fixing of Z̄ctrl, and note that as Z̄ctrl and Z̄data are independent, fixing
Z̄ctrl doesn’t affect Z̄data. For every such fixing, we can think of C as space s ROBP C ′ that receives a
uniformly chosen Z̄data (using the hardwired fixed choice of Z̄ctrl. The ROBP C ′ induces at most

pN =
pNdata

1− ε′
≤ p · (1 + 2ε′) ·Ndata ≤ (p+ ε′) ·Ndata

errors, meaning that it induces at most p + ε′ ≤ pBSC relative errors (where the last inequality follows by
choosing ε′ > 0 to be sufficiently small). Consequently, we can think about this experiment as if Z̄data is
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chosen uniformly, a channel C ′ ∈ Spcsp+ε′ is applied so that V̄data(s̄) = Z̄data ⊕ C ′(Z̄data). Then, V̄data(s̄)
is xored with a fixed string G(s̄) to obtain Ȳ (s̄), and then a fixed permutation σ = πs̄π is applied on Ȳ (s̄) to
give X̄(s̄).

This experiment is identical to the experiment in Theorem 3.3 except for xoring with a fixed string G(s̄).
We now explain that we can imagine that our experiment does not xor with the fixed string G(s̄). More
precisely, let us imagine a distribution W ′ = W ⊕ G(s̄PRG) (which is also distributed like UNdata

) and a
channel C ′′(w) = C ′(w ⊕G(s̄)) (which is also a space s channel). It follows that:

• The noise generated on W ′ is C ′′(W ′) = C ′(W ).

• The word that is obtained applying C ′′ on W ′ is V̄ (s̄) = W ′ ⊕ C ′′(W ′) = W ⊕ C ′(W )⊕G(s̄PRG).

• This means that when xoring with G(s̄PRG) we obtain

Ȳ (s̄) = V̄ (s̄)⊕G(s̄PRG)

= W ′ ⊕ C ′′(W ′)⊕G(s̄PRG)

= W ⊕ C ′(W )⊕G(s̄PRG)⊕G(s̄PRG)

= W ⊕ C ′(W ).

• This means that X̄(s̄) = σ(W ⊕ C ′(W )) for a uniformly chosen W , and so, this is exactly the experi-
ment considered in Theorem 3.3.

The outer code of EncBSC corrects from λ1 relative errors (where λ1 is a constant that depends on ε). (This
parameter is called λ in Theorem 3.3). This means that if we meet the conditions of Theorem 3.3, then the
probability that outdist(X̄)(s̄)) ≤ 0.99λ1 in our experiment is at most 2−Ωε(nout) = 2−Ωε(Ndata) (where the
last inequality is because in EncBSC the inner code has constant block length nin). We now verify that we
meet all the conditions of Theorem 3.3.

• The code EncBSC was obtained from Theorem 3.10 choosing pBSC = p+ α.

• The constant λ1 is a constant that goes to zero when ε goes to zero, and so we are allowed to assume
that it is sufficiently small as a function of ε.

• The inner code in EncBSC is using maximum likelihood decoding from pBSC +ε′′ relative errors, where
ε′′ is a constant that goes to zero with ε, and so we are allowed to assume that it is sufficiently small as
a function of ε. Overall, the decoding reach of the code EncBSC is at most p+ α+ ε′.

• We have chosen s so that s = o(N) = o(nout) and so we meet the condition on s.

• Following this discussion, we indeed have that for sufficiently small ε > 0, we can choose the parame-
ters so that:

λ1 + (p+ α+ ε′′) + (p+ ε′) <
1

2
− γ1,

for some constant γ1 > 0 (that depends on ε) and we indeed meet the conditions of Theorem 3.3.

We conclude that

Pr
W←UNdata

[AdvC,s̄ssamp,sπ(W ) achieves distance 3
4 · λ1] ≤ 2−Ωε(N).

We are suppressing constants that depend on ε and so for constant ε > 0 this is 2−Ω(N).
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6.5.7 Putting things together: Proof of Lemmas 6.13 and 6.11

We finally have all the tools to Prove Lemma 6.13 which by Lemma 6.12 implies Lemma 6.11.

Proof. (of Lemma 6.13) For every ssamp, sπ ∈ {0, 1}`
′
, we bound a := Prexprad

ssamp,sπ
(m,C)[Adversary wins]

by applying Lemmas 6.14, 6.20, 6.21, 6.18, 6.24, 6.25 in sequence to get that for x = EncBSC(m) and
y = π−1

sπ (x):

a = Pr
exprad

ssamp,sπ
(m,C)

[Adversary wins]

≤ Pr
exprsa

ssamp,sπ
(m,C)

[Adversary wins] +
ν

100

≤ Pr
exprsa

ssamp,sπ
(m,C)

[∃s̄ ∈ H : The adversary wins with s̄] + 2 · ν

100

≤
∑
s̄∈H

Pr
SPRG←U`′

[AdvC,s̄ssamp,sπ(y ⊕G(SPRG)) wins] + 2 · ν

100

≤ 2sn · n3 · Pr
SPRG←U`′

[AdvC,s̄ssamp,sπ(y ⊕G(SPRG)) wins] + 2 · ν

100

≤ 2sn · n3 ·
(

Pr
W←UNdata

[AdvC,s̄ssamp,sπ(y ⊕W ) achieves distance 3
4 · λ1] + 2

− s′

No(1)

)
+ 2 · ν

100

= 2sn · n3 ·
(

Pr
W←UNdata

[AdvC,s̄ssamp,sπ(W ) achieves distance 3
4 · λ1] + 2

− s′

No(1)

)
+ 2 · ν

100

≤ 2sn · n3 ·
(

2−Ω(N) + 2
− s′

No(1)

)
+ 2 · ν

100

≤ 2

(
2sn− s′

No(1)

)
+ 2 · ν

100

≤ ν

10
,

where the last inequality follows by our choice that s
′

s ≥ N
ξ.

7 Conclusion and Open Problems

Our construction give codes that for any 0 ≤ p < 1
4 achieverate 1 − H(p) for space NΘ(1) channels, while

achieving nearly linear time, (specifically time N1+o(1)) algorithms for encoding and decoding. Is it possible
to get linear time algorithms? We remark that the method of [GS16, KSS19] (which we also use) requires at
least time N · logN when evaluating the t-wise independent permutation. This means that additional ideas
are needed in order to achieve this goal, and it cannot be achieved by “optimizing the components”.

This paper completely resolves the capacity of space N1−o(1) channels (even for space N/polylog(N)).
A natural open problem is to achieve explicit construction of codes for space N1−o(1) channels, and rate
1−H(p). In this paper, we give such constructions for any p ≤ p1 where p1 > 0 is some universal constant.

As explained in Section 1 and Section 5, our constructions rely on explicit constructions of list decodable
linear codes with large dual distance. Loosely speaking, plugging in a code that has relative distance roughly
2p, absolute dual distance slightly larger than s, and explicit list decoding from relative 2p errors, translates
(using our machinery) to a stochastic code for Spcsp channels with rate 1 − H(p). Our main constriction
utilizes the linear codes of Kopparty, Shaltiel and Silbak [KSS19]. For every p < 1

4 , these codes achieve
s = N δ for a constant δ > 0 that depends on p. The additional aforementioned result (of handling large space
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channels for p ≤ p1) follows by using the algebraic geometric codes of Garcia and Stichtenoth [GS96] which
achieve larger dual distance, but smaller p. Any improvement in constructions of explicit list-decodable linear
codes with large dual distance, immediately implies improvements in our construction.
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