
Low-end Uniform Hardness vs. Randomness
Tradeoffs for AM

Ronen Shaltiel
∗

Department of Computer Science
University of Haifa

Mount Carmel, Haifa 31905, Israel
ronen@haifa.ac.il

Christopher Umans
†

Department of Computer Science
California Institute of Technology

Pasadena, CA 91125
umans@cs.caltech.edu

ABSTRACT
In 1998, Impagliazzo and Wigderson [18] proved a hard-
ness vs. randomness tradeoff for BPP in the uniform setting,
which was subsequently extended to give optimal tradeoffs
for the full range of possible hardness assumptions by Tre-
visan and Vadhan [29] (in a slightly weaker setting). In
2003, Gutfreund, Shaltiel and Ta-Shma [11] proved a uni-
form hardness vs. randomness tradeoff for AM, but that
result only worked on the “high-end” of possible hardness
assumptions.

In this work, we give uniform hardness vs. randomness
tradeoffs for AM that are near-optimal for the full range
of possible hardness assumptions. Following [11], we do
this by constructing a hitting-set-generator (HSG) for AM
with “resilient reconstruction.” Our construction is a re-
cursive variant of the Miltersen-Vinodchandran HSG [24],
the only known HSG construction with this required prop-
erty. The main new idea is to have the reconstruction pro-
cedure operate implicitly and locally on superpolynomially
large objects, using tools from PCPs (low-degree testing,
self-correction) together with a novel use of extractors that
are built from Reed-Muller codes [28, 26] for a sort of locally-
computable error-reduction.

As a consequence we obtain gap theorems for AM (and
AM ∩ coAM) that state, roughly, that either AM (or AM
∩ coAM) protocols running in time t(n) can simulate all of
EXP (“Arthur-Merlin games are powerful”), or else all of
AM (or AM ∩ coAM) can be simulated in nondeterministic
time s(n) (“Arthur-Merlin games can be derandomized”),
for a near-optimal relationship between t(n) and s(n). As
in [11], the case of AM ∩ coAM yields a particularly clean
theorem that is of special interest due to the wide array of
cryptographic and other problems that lie in this class.

∗Supported by BSF grant 2004329.
†Supported by NSF CCF-0346991, BSF 2004329, a Sloan
Research Fellowship, and an Okawa Foundation research
grant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’07,June 11–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-631-8/07/0006 ...$5.00.

Categories and Subject Descriptors: F.2.3 [Theory of
Computation]: Tradeoffs Between Complexity Measures

General Terms: Theory, Algorithms

Keywords: Arthur-Merlin games, hardness vs. randomness
tradeoff, derandomization, hitting-set generator

1. INTRODUCTION
A fundamental question of complexity theory concerns the

power of randomized algorithms: Is it true that every ran-
domized algorithm can be simulated deterministically with
small (say, subexponential) slowdown? Ideally, is a poly-
nomial slowdown possible – i.e., is BPP = P? The analo-
gous question regarding the power of randomness in Arthur-
Merlin protocols is: Is it true that every Arthur-Merlin pro-
tocol can be simulated by a nondeterministic machine with
small slowdown? Is a polynomial slowdown possible – i.e.,
does AM = NP? We refer to efforts to answer the first set
of questions positively as “derandomizing BPP” and efforts
to answer the second set of questions positively as “deran-
domizing AM”. Recent work [13, 20] has shown that deran-
domizing BPP or AM entails proving certain circuit lower
bounds that currently seem well beyond our reach.

The hardness versus randomness paradigm
An influential line of research initiated by [7, 33, 25] tries
to achieve derandomization under the assumption that cer-
tain hard functions exist, thus circumventing the need for
proving circuit lower bounds. More precisely, we will work
with hardness assumptions concerning the circuit complex-
ity of functions computable in exponential time1. Deran-
domizing BPP can be done with lower bounds against size
s(`) deterministic circuits while derandomizing AM typi-
cally requires lower bounds against size s(`) nondeterminis-
tic circuits, where ` is the input length of the hard func-
tion. Naturally, stronger assumptions – higher values of
s(`) – give stronger conclusions, i.e., more efficient deran-
domization. There are two extremes of this range of trade-
offs: In the “high end” of hardness assumptions one assumes
hardness against circuits of very large size s(`) = 2Ω(`) and
can obtain “full derandomization,” i.e., BPP = P [17] or
AM = NP [24]. While in the “low-end” one assumes hard-
ness against smaller circuits of size s(`) = poly(`) and can

1This type of assumption was introduced by [25] whereas the
initial papers [7, 33] relied on cryptographic assumptions.
In this paper we are interested in derandomizing AM which
cannot be achieved by the “cryptographic” line of hardness
versus randomness tradeoffs.

conclude “weak derandomization,” i.e., simulations of BPP
(resp. AM) that run in subexponential deterministic (resp.
nondeterministic subexponential) time [4, 26]. Today, after
a long line of research [25, 4, 12, 17, 2, 21, 24, 14, 15, 26, 30,
31] we have optimal hardness versus randomness tradeoffs
for both BPP and AM that achieve “optimal parameters” in
the non-uniform setting (see the discussion of non-uniform
vs. uniform below).

Pseudorandom generators and hitting set generators
The known hardness versus randomness tradeoffs are all
achieved by constructing a pseudorandom generator (PRG).
This is a deterministic function G which on input m, pro-
duces a small set of T m-bit strings in time poly(T), with the
property that a randomly chosen string from this set cannot
be efficiently distinguished from a uniformly chosen m-bit
string. In this paper we are interested in a weaker variant
of a pseudorandom generator called a hitting set generator
(HSG). A function G is a HSG against a family of circuits on
m variables, if any circuit in the family which accepts at least
1/3 of its inputs also accepts one of the m-bit output strings
of G (when run with input m).2 It is standard that given a
HSG against deterministic (resp. co-nondeterministic) cir-
cuits of size poly(m) one can derandomize RP (resp. AM) in
time poly(T) by simulating the algorithm (resp. protocol)
on all strings output by the HSG, and accepting if at least
one of the runs accepts3.

The proofs of the aforementioned hardness versus ran-
domness tradeoffs are all composed of two parts: first, they
give an efficient way to generate a set of strings (the output
of the PRG or HSG) when given access to some function f .
Second, they give a reduction showing that if the intended
derandomization using this set of strings fails, then the func-
tion f can be computed by a small circuit, which then con-
tradicts the initial hardness assumption when taking f to
be the characteristic function of an EXP complete problem.
We now focus on the reduction part. An easy first step is
that an input x (to the randomized algorithm or AM proto-
col) on which the intended derandomization fails gives rise
to a small circuit Dx that “catches” the generator, i.e., Dx

accepts at least 1/3 of its inputs, but none of the strings in
the generator output. (The obtained circuit Dx is a deter-
ministic circuit when attempting to derandomize BPP and a
co-nondeterministic circuit when attempting to derandom-
ize AM). The main part of all the proofs is to then give a
reduction that transforms this circuit Dx into a small circuit
C that computes f .

Uniform hardness versus randomness tradeoffs
All the aforementioned hardness versus randomness trade-
offs are nonuniform tradeoffs because the reduction in the
proof is nonuniform: given Dx it only shows the existence of
a small circuit C that computes f , but doesn’t give an effi-
cient uniform procedure to produce it. (In other words, the
reduction relies on nonuniform advice when transforming
Dx into C). We remark that all the aforementioned results
are “fully black-box” (meaning that they do not use any
properties of the hard function f or circuit Dx) and it was

2An alternative formulation is to think of G as a function
that takes a t = log T bit “seed” as input and outputs the
element in T indexed by the seed.
3By [1], HSGs for deterministic circuits also suffice to de-
randomize two sided error BPP.

shown in [29] that any hardness versus randomness tradeoff
that is “fully black box” cannot have a uniform reduction.

A non-black box uniform reduction for derandomizing BPP
in the low-end was given in [18]. This reduction gives a uni-
form randomized poly-time algorithm (sometimes called a
reconstruction algorithm) for transforming a circuit Dx that
catches the generator into a circuit C that computes the
function f . It follows that if the intended derandomization
fails, and if furthermore one can feasibly generate an input
x on which it fails (by a uniform computation), then one
can use the uniform reduction construct the circuit C in
probabilistic polynomial time, which in turn implies that f
is computable in BPP. (This should be compared to the
non-uniform setting in which one would get that f is in
P/poly). An attractive feature of this result is that it can be
interpreted as a (low-end) gap theorem for BPP that asserts
the following: Either randomized algorithms are somewhat
weak (in the sense that they can be simulated determinis-
tically in subexponential time on feasibly generated inputs)
or else they are very strong (in the sense that they can com-
pute any function in EXP).4 Obtaining a high-end version
of this result is still open. In [29] it was shown how to get
a high-end tradeoff in the slightly weaker setting where the
hard function f is computable in PSPACE rather than EXP.

Uniform hardness versus randomness tradeoffs for AM
A non-black-box uniform reduction for derandomizing AM
in the high-end was given in [11]. It yields gap theorems for
both AM and AM∩coAM. The gap theorem for AM is anal-
ogous to that of [18] (except that it concerns the high-end
and not the low end); it asserts: Either Arthur-Merlin pro-
tocols are very weak (in the sense that they can be simulated
non-deterministically in polynomial time on feasibly gener-
ated inputs) or else they are somewhat strong (in the sense

that they can simulate E = DTIME(2O(`)) in time 2o(`)).5

The gap theorem for AM∩ coAM gives the same result with
“AM” replaced by “AM ∩ coAM.” The statement is in fact
cleaner for AM∩coAM because it does not mention feasibly
generated inputs, and instead applies to all inputs.

The result of [11] relies on identifying a certain “resiliency
property” of an HSG construction of [24] (constructed for
the nonuniform setting) and on “instance checking” [6], which
was previously used in this context by [4, 29]. While it gives
a high-end result it does not generalize to the low-end be-
cause the HSG construction of [24] works only in the high
end. We remark that there is an alternative construction
(in the nonuniform setting) of [26] that does work in the
low-end but does not have the crucial resiliency property.

Our result: low-end uniform hardness versus random-
ness tradeoffs for AM
In this paper we obtain a resilient HSG (with a uniform
reduction proving its correctness) that works over a larger
domain of parameters and covers a wide range of hardness
assumptions (coming very close to the absolute low-end).
Using our result we extend the gap theorems of [11] as fol-

4To state this result formally one needs a precise definition of
“feasibly generated inputs”. The actual result also involves
“infinitely often” quantifiers which we will ignore in this
informal introduction.
5The notions of feasibly generated inputs in [11] is incom-
parable to that in [18] and follows the “pseudo” notion in-
troduced in [19]).

lows (for a formal statement of the two Theorems below see
Theorems 4 and 5 in Section 2):

Theorem (informal) 1. Either EXP = DTIME(2`O(1)
)

is computable by Arthur-Merlin protocols with time s(`) or
for any AM language L there is a nondeterministic machine
that runs in time exponential in ` and solves L correctly on
feasibly generated inputs of length

m = s(`)Θ(1/(log `−log log s(`)))2).

The second Theorem below achieves a clean statement
that works for all inputs (rather than feasibly generated in-
puts). However, this is only achieved for AM ∩ coAM.

Theorem (informal) 2. Either EXP = DTIME(2`O(1)
)

is computable by Arthur-Merlin protocols with time s(`) or
for any AM ∩ coAM language L there is a nondeterministic
(and co-nondeterministic machine) that runs in time expo-
nential in ` and solves L correctly on all inputs of length

m = s(`)Θ(1/(log `−log log s(`)))2).

Here is how to interpret the parameters: Given a problem
in EXP that has “hardness” s(`) on inputs of length ` one

can hope to construct a generator that produces T = 2O(`)

outputs in time exponential in ` where each output is of
length m = s(`)Ω(1), and the generator fools circuits of

size mO(1).6 Our construction achieves only slightly worse
parameters, only fooling circuits of somewhat smaller size,

mΘ(1/(log `−log log s(`)))2). This constrains the length of in-
puts to the AM (or AM ∩ coAM) language we can handle.
Observe that our results are optimal at the high-end when
s(`) = 2Ω(`), and so they truly extend [11].7 At the same
time our results start working very close to the absolute
low-end (which would be s(`) = `O(1)): they produce non-

trivial derandomizations as soon as s(`) ≥ 2ω(log3 `). They
also give a smooth tradeoff in between the two extremes. It
may be helpful to view the consequences for some particu-
lar choices of s(`) and then express the running time of the
nondeterministic machine as a function of the length of its
input.

• For s(`) = 2Ω(`) and EXP replaced with E (the high-
end) the nondeterministic machine runs in polynomial
time in the length of its input (as is the case in [11]).

• For s(`) = 2`δ

and constant δ > 0, the nondeterminis-

tic machine runs in time exp((log m)O(1/δ)) on inputs
of length m.

• For s(`) = 2(log `)a

and constant a > 3, the nondeter-
ministic machine runs in time subexponential in the
length of its input. The a > 3 requirement is subop-
timal as we can hope to get the same behavior even
when a > 1 (which is the absolute low-end).

6For a discussion on why this is best possible see [16]).
7A technicality is that at the high end it is common to re-
place EXP by E = DTIME(2O(`)) and require that the ma-

chine runs in time 2O(`) rather than 2`O(1)
. This is done

so that for s(`) = 2Ω(`) the running time of the machine is
polynomial in the length of its input. This is the way the
result is presented in [11] and our results also work in this
setting.

Our techniques
There are three new ideas in our construction. First, we use
techniques from PCPs (low-degree testing and self-correction)
to speed up certain steps in the reduction of [24], so that they
run in sublinear time in the size of their input. Although it
has long been observed that there is some similarity between
aspects of PCP constructions and aspects of PRG and HSG
constructions, this seems to be the first time primitives like
low-degree testing have proven useful in such constructions.
Second, we run both the [24] construction and the associ-
ated reduction recursively, in a manner reminiscent of [14,
15, 31] (although the low level details are different). Finally,
we introduce a new primitive called local extractors for Reed-
Muller codes, which are extractors that are computable in
sublinear time when run on inputs that are guaranteed to
be Reed-Muller codewords. A construction of such an ob-
ject can be deduced from [26]. They play a crucial role in
the improved constructions, and may be of interest in their
own right. In Section 5.2 we give a detailed (but not formal)
account of our construction and the way the new ideas fit
into the proof.

Motivation
Uniform hardness vs. randomness tradeoffs represent some
of the most involved proofs of non-trivial relationships be-
tween complexity classes, using “current technology.” Push-
ing them to their limits gives new results, but also may ex-
pose useful new techniques, as we believe this work does.
Moreover, the complexity classes we study, AM and AM ∩
coAM, contain a rich array of important problems, from
hard problems upon which cryptographic primitives are built,
to group-theoretic problems, to graph isomorphism, and in-
deed all of the class SZK (Statistical Zero Knowledge).

A second motivation is the quest for unconditional deran-
domization results. In [11] it was shown that if one can prove
a low-end gap theorem for AM that works for all inputs
rather than just feasibly generated inputs, then it follows
that AM can be derandomized (in a weak sense) uncondi-
tionally (the precise details appear in [11]). In this paper
we come closer to achieving this goal by achieving a low-end
version of [11].

Organization of the paper
In Section 2 we restate our main theorems formally using
precise notation. In Section 3 we describe the new “local
extractors” and some variants of AM protocols that we will
use as sub-protocols. In Section 4 we give the new recursive
HSG and the statement of the main technical theorem. In
Section 5 we describe the ideas that go into the proof of
the main technical theorem. Due to space limitations most
proofs are omitted and will appear in the full version.

2. FORMAL STATEMENT OF RESULTS
In this section we formally state Theorems 1 and 2. In

order to do so we need to precisely define the notion of “de-
randomization on feasibly generated inputs”.

2.1 Feasibly generated inputs
Following [11] we will use the notions defined in [19].

Loosely speaking, we say that two languages L, M are indis-
tinguishable if it is hard to feasibly generate inputs on which
they disagree. For this paper it makes sense to allow the pro-

cedure trying to come up with such inputs (which is called
a refuter in the terminology of [19]) to use nondeterminism.

Definition 3 (Distinguishability of languages).
We say that a nondeterministic machine R (the refuter) dis-
tinguishes between two languages L, M ⊆ {0, 1}∗ on input
length n if R(1n) outputs some x ∈ (L ∪M) \ (L ∩M) on
every one of its accepting computation paths.

With this notation we can formally capture the infor-
mal statements in the introduction. More specifically, when
given a language L ∈ AM, a nondeterministic machine M
running in time t(n) < 2n succeeds on feasibly generated
inputs if for any refuter R running in time t(n), R does not
distinguish L from L(M).8

2.2 Formal restatements of Theorems 1 and 2
We are now ready to restate our main theorems in the

formal notation. The following Theorem is the formal re-
statement of Theorem 1.

Theorem 4. For every function s(`) < 2`, either:

• EXP is computable by Arthur-Merlin protocols running
in time s(`), or

• for any language L ∈ AM there is a nondeterministic

machine M that runs in time 2`O(1)
on inputs of length

m = s(`)Θ(1/(log `−log log s(`)))2) such that for any re-

futer R running in time 2`O(1)
and producing inputs

of length m, R does not distinguish L from L(M), on
infinitely many input lengths.

The following Theorem is the formal restatement of The-
orem 2.

Theorem 5. For every function s(`) < 2`, either:

• EXP is computable by Arthur-Merlin protocols running
in time s(`), or

• for any language L ∈ AM∩ coAM there is a nondeter-

ministic machine M that runs in time 2`O(1)
on inputs

of length m = s(`)Θ(1/(log `−log log s(`)))2) such that L
and L(M) are equal on infinitely many input lengths.

We remark that the two theorems above are also true
when replacing EXP with E and then one can replace all

the occurrences of 2`O(1)
with 2O(`).

Following [11] we can also reverse the order of “infinitely
often” in Theorem 5 and achieve:

Theorem 6. For every function s(`) < 2`, either:

8The statement in [11] uses a formal notation borrowed
from [19] that in the situation above reads AM ⊆
[pseudo(NTIME(t(n)))]–NTIME(t(n)) where the first oc-
currence of NTIME(t(n)) stands for the class of the refuter
and the second one for the class of the machine M . We
choose not to use this notation as it complicates the state-
ments of our results and makes them less clear. However
we stress that our results use exactly the same meaning of
feasibly generated inputs as in [11, 19].

• EXP is infinitely often computable by Arthur-Merlin
protocols running in time s(`)9, or

• for any language L ∈ AM∩ coAM there is a nondeter-

ministic machine M that runs in time 2`O(1)
on inputs

of length m = s(`)Θ(1/(log `−log log s(`)))2) such that L
and L(M) are equal on all input lengths.

3. PRELIMINARIES
We will be working with nondeterministic and co-nonde-

terministic circuits. A nondeterministic circuit is an ordi-
nary Boolean circuit C with two sets of inputs, x and y.
We say that C accepts input x if ∃y C(x, y) = 1 and that
C rejects input x otherwise. A co-nondeterministic circuit
has the opposite acceptance criterion: it accepts input x if
∀y C(x, y) = 1 and rejects input x otherwise.

3.1 Low degree testing and self correctors
The key to our results is that in many places we work

implicitly with functions that are supposed to be low-degree
polynomials – of course this is the central concept in PCPs
as well. Just as with PCPs, we need the ability to locally test
whether an implicitly supplied function is of the “correct”
form: namely, we need to check whether it is (close to) a low-
degree polynomial. As is standard, once we have determined
that an implicitly supplied function is close to a low-degree
one, we can “access” the nearby low-degree function locally
using a self-corrector.

Low-degree testers and self-correctors are standard primi-
tives in the PCP literature. In fact for our intended use of
these primitives, we do not need delicate control of the pa-
rameters; we only need to be able to operate on multivariate
functions over a field F in time poly(|F|) (hence making at
most that many queries), while handling constant relative
distance, and with constant soundness error for both prim-
itives. The formal definitions, and the known results that
we will make use of follow:

Definition 7 (low-degree tester). A low-degree tes-
ter with parameters h, δ, ε is a probabilistic oracle machine
M which has oracle access to a function f : Fd → F, and for
which

• if deg(f) ≤ h then Mf accepts with probability 1, and

• if all polynomials g with deg(g) ≤ h satisfy Prx[f(x) 6=
g(x)] ≥ ε, then Mf rejects with probability at least δ.

Lemma 8 ([9]). There exists a (non-adaptive) low-deg-
ree tester with parameters h, δ, ε = 2δ, running in poly(|F|)
time, provided |F| > ch, δ < δ0, for universal constants c
and δ0.

Definition 9 (self-corrector). A self-corrector with
parameters h, δ, ε is a probabilistic oracle machine M which
has oracle access to a function f , and for which

9The precise meaning of this statement is that for every
language L ∈ EXP there is an Arthur-Merlin protocol that
for infinitely many input lengths:

– Fulfills the AM promise (i.e., has noticeable difference
between completeness and soundness).

– Computes the language L on that input length.

• if there exists a polynomial g of total degree h, for
which Prx[g(x) 6= f(x)] < ε, then

Pr[Mf (x) = g(x)] > 1− δ.

Lemma 10 ([5, 22]). There exists a (non-adaptive) self-
corrector with parameters h, δ = O(1/(ε|F|)), ε, running in
poly(|F|) time, provided ε < 1

4
(1− h/|F|).

We remark that for both low-degree testers and self-cor-
rectors, it is possible decrease the soundness error from a
constant to 2−t by repeating the protocol Θ(t) times.

3.2 Local extractors for subsets
The final object we will use to perform local computations

on an implicitly supplied function is what we call a “local
extractor for subsets”. The notion of “locally computable
extractors” was introduced in [23, 32] in the context of en-
cryption in the bounded-storage model. Loosely speaking, it
requires that the extractor is computable in time sublinear
in the length of its first input. In our construction we require
such extractors for very low “entropy thresholds”. However,
Vadhan [32] proved that it is impossible to have such ex-
tractors unless the entropy threshold is very high. For this
purpose we introduce a new variant of local extractors in
which the first input comes from some prescribed subset
(rather than the set {0, 1}n) and exploit the fact that we
intend to run the extractor on inputs that are codewords in
an error-correcting code. It turns out that the construction
of [26] can be computed in time polynomial in the output
when applied on the Reed-Muller code even when shooting
for low entropy thresholds. The formal details follow:

Definition 11 (local extractor for subsets). A
(k, ε) local C-extractor is an oracle function E : {0, 1}t →
{0, 1}m for which the following holds:

• for every random variable X distributed on C with mi-
nentropy10 at least k, EX(Ut) is ε-close to uniform,
and

• E runs in poly(m, t) time.

Definition 12 (Reed-Muller code). Given param-
eters r, h and a prime power q we define RMr,h,q to be the
set of polynomials p : Fr → F over the field with q elements,
F, and having degree at most h.

The construction of [26] gives the following local extrac-
tor for the Reed-Muller code (we have made no attempt to
optimize the constants):

Lemma 13 (Implicit in [26]). Fix parameters r < h,
and let C = RMr,h,q be a Reed-Muller code. Set k = h5.
There is an explicit (k, 1/k) local C-extractor E with seed

length t = O(r log q) and output length m = h = k1/5.

The following proposition follows from the definition.

Proposition 14. Let E : {0, 1}t → {0, 1}m be a (k, ε)
local C-extractor, and let D be a subset of {0, 1}m. Then at

most 2k elements x ∈ C satisfy: Pry[Ex(y) ∈ D] > |D|
2m + ε.

10The minentropy of a random variable X is
minx∈supp(X)− log(Pr[X = x]).

We will use local extractors in the following way. We will
be interested in the set {x : Pry[Ex(y) ∈ D] = 1}, and we
would like to be able to check whether some x ∈ C is in
this set by performing a local computation on x. This is
not possible in general but a relaxation of this goal is. If we
perform the probabilistic test of checking whether Ex(y) ∈
D for a random y, then we will accept all x in the set,
and not accept too many other x, because by the above
proposition, the set of x ∈ C on which this test accepts
with high probability is “small” – it has size at most 2k.
This relaxation will turn out to be sufficient for our intended
application.

3.3 Commit-and-evaluate protocols
We now define a variant of AM protocols that we will

use repeatedly as a subprotocol when constructing standard
AM protocols. An i round AM protocol is a protocol in
which Arthur and Merlin receive a common input x and at
each round Arthur sends public random coins and Merlin
replies. At the end of the protocol Arthur outputs a value
(not necessarily Boolean), denoted by out(π, M, x), that is a
random variable defined relative to a strategy M for Merlin;
i.e., M is a function that describes Merlin’s response given
a history of the interaction so far. The running time of the
protocol is the running time of Arthur. A protocol may
take an auxiliary common input y, which we will variously
think of as a “commitment” or an “advice string”. In this
case we denote the output by out(π, M, x, y). The output ⊥
(which is intended to be output by Arthur when he detects
a dishonest Merlin) is a distinguished symbol disjoint from
the set of intended output values.

Definition 15 (AM protocols that output values).
Given an AM protocol π and an input domain I, we say that
π with auxiliary input y:

• is PSV (partially single valued) over I with soundness
s if there exists a function g defined over I, such that
for all x ∈ I, and all Merlin strategies M

Pr[out(π, M, x, y) ∈ {g(x),⊥}] ≥ 1− s.

• conforms with a function f defined over I with com-
pleteness c if for all x ∈ I, there exists a Merlin strat-
egy M for which

Pr[out(π, M, x, y) = f(x)] ≥ c.

• computes a function f over domain I with soundness
s and completeness c if π with auxiliary input y is PSV
over I with soundness s and conforms with f with com-
pleteness c.

We may sometimes omit s and c in which case they are fixed
to their default values s = 1/3 and c = 2/3. We also omit I
when it is clear from the context.

We will be interested in protocols that are composed of
two phases, and operate over the domain I = {0, 1}n. The
first phase is called the commit phase. This is an AM proto-
col whose input is 1n, and whose auxiliary input is an advice
string α that depends only on n. Loosely speaking, the role
of this phase is to generate an auxiliary input to the sec-
ond phase. The second phase is called the evaluation phase.
This is an AM protocol whose input is x ∈ I, and whose

auxiliary input is the output of the commit phase proto-
col. The reason we distinguish between two different phases
is that we make the additional requirement that there is a
function computed by the combined protocol that is com-
pletely determined at the end of the commit phase (that is
before Merlin knows the input x). The exact details appear
below.

Definition 16 (commit-and-evaluate). A commit-and-
evaluate protocol is a pair of AM protocols π = (πcommit, πeval).
Given π and an input domain I = {0, 1}n, we say that π with
advice α:

• conforms with a function f defined over I if there exists
a Merlin strategy Mcommit for which

Pr[πeval with auxiliary input

out(πcommit, Mcommit, 1
n, α) conforms with f] = 1.

• is γ-resilient over I if for all Merlin strategies Mcommit,

Pr[πeval with auxiliary input

out(πcommit, Mcommit, 1
n, α) is PSV] ≥ γ.

• runs in time t(n) for some function t if both πcommit

and πeval run in time bounded by t(n).

We may sometimes omit γ, in which case it is fixed to its
default value γ = 2/3.

We now argue that completeness, soundness and resiliency
can be amplified from their default values by parallel repe-
tition.11

Proposition 17. Let π = (πcommit, πeval) be a commit-
and-evaluate protocol that is resilient and conforms with f ,
with completeness 1, resiliency 2/3 and soundness 1/3. Fur-
thermore, assume that πcommit is a one round protocol. Then
π can be transformed (by parallel repetition) into a commit-
and-evaluate protocol π′ = (π′commit, π

′
eval) that is resilient

and conforms with f , with completeness 1, resiliency 1−2−t

and soundness 2−t. The transformation multiplies the run-
ning time and the output length of the commit protocol by
Θ(t), and the running time of the evaluation protocol by
Θ(t2). The transformation preserves the number of rounds
for both the commit protocol and the evaluation protocol.

Note that after running the commitment protocol πcommit

it is possible to run the evaluation protocol πeval (with the
auxiliary input output by πcommit) many times on many
different inputs in I.

Note also that a γ-resilient commit-and-evaluate protocol
that conforms with f does not necessarily “compute” f in
any meaningful way. This is because in the commit phase,
Merlin may not cooperate, causing the evaluation phase to
receive an auxiliary input leading it to compute a function

11In the next proposition we only claim amplification for
protocols where the commit protocol has one round and
the evaluation protocol has perfect completeness. We make
these relaxations because all protocols constructed in this
paper have these properties. However, we remark that a
more careful argument can get the same conclusion without
these two assumptions. This follows along the same lines
that parallel repetition of multi-round AM protocols ampli-
fies soundness (see for example [10, p.145–148]).

different from f . To demonstrate the usefulness of this no-
tion we mention the following result from [11] (which follows
from the instance-checkability of EXP-complete problems [3,
6]) stated informally:

Theorem (informal) 18. Let f be the characteristic func-
tion of an EXP-complete problem. If f has a commit-and-
evaluate protocol π that conforms with f resiliently, then
there is an AM protocol π′ that computes f and runs in
time comparable to that of π using one additional round.

It follows that to construct a (standard) AM protocol
for EXP languages it is sufficient to construct commit-and-
evaluate protocols that conform resiliently with an EXP-
complete problem.

On a more technical level, commit-and-evaluate protocol
are useful because the commit phase can be executed before
the input x is revealed, and following the commit phase it
is guaranteed that Merlin is committed to some function f .
This allows Arthur to make “local tests” on the function f .
For concreteness let us demonstrate this approach on low-
degree testing (that is testing whether f is close to a low de-
gree polynomial). Consider the following protocol: Arthur
and Merlin play the commit phase of the protocol (which de-
termines a function f). Then Arthur sends randomness for a
low-degree test which in turn determines queries x1, . . . , xm

to f . On each one of the queries xi, Arthur and Merlin
play the evaluation protocol and in the end Arthur checks
that the low-degree test passes with the obtained evalua-
tions. Note that no matter how Merlin plays he cannot
make Arthur accept a function f that is far from a low de-
gree polynomial, even though Merlin may never explicitly
specify f .

4. A RECURSIVE HSG CONSTRUCTION
In this section we present a recursive version of the Milter-

sen-Vinodchandran (MV) generator [24], that receives a poly-
nomial p (which can be thought of as the encoding of a hard
function f) and outputs a multiset of m-bit strings. We also
state the theorem asserting that it works as intended.

4.1 The construction
Let F be a field with q elements. We need one definition

before giving the construction.

Definition 19 (Grouping variables and MV lines).
Given a function p : Fr → F and a parameter d that divides
r we define B = Fr/d and identify p with a function from
Bd to F.

Given a point x ∈ Bd and i ∈ [d] we define the line passing
through x in direction i to be the function L : B → Bd

given by L(z) = (x1, . . . , xi−1, z, xi+1, . . . , xd). This is an
axis-parallel, combinatorial line, which we call an MV line
for short.

Given a function p : Fr → F and an MV line L we define
a function pL : B → F by pL(z) = p(L(z)).

Note that if p : Fr → F is a polynomial then pL : Fr/d →
F is also a polynomial with degree bounded by that of p.
We present our construction in Figure 1. The proof of the
following Lemma will appear in the full version.

Lemma 20. The construction RMVh,d(p) runs in time

qO(r) and outputs at most qO(r) strings.

Input A multivariate polynomial p : Fr
q → Fq of degree h.

Output A multiset of m bit strings.

Parameters and requirements We require that r is a power of d and that h is a prime power. We set q = h100 and
m = h1/100.

Ingredients The (k, 1/k) local C-extractor E from Lemma 13 for Reed Muller code C = RMr/d,h,q. Note that k = h5,
the extractor uses seed length O((r/d) · log q) and it outputs m bits.

Operation of RMVh,d(p) :

• Set B = Fr/d
q . For every x ∈ Bd and i ∈ [d], let L : B → Bd be the MV-line passing through x in direction i.

Note that pL is an element of the Reed-Muller code RMr/d,h,q. Compute EpL(y) for all seeds y. Let Hp denote
the set of these m bit strings, as L ranges over all MV lines.

• If r = d then output Hp.

• If r > d then for each MV line L make a recursive call to RMVh,d(pL). Note that while the dimension of p was
r, the dimension of pL is r/d. Each one of these recursive calls returns a multiset of m bit strings that we will
call HL. Output the union of Hp and HL as L ranges over all MV lines.

Figure 1: Recursive MV generator RMVh,d(p)

4.2 The main technical theorem
Recall that the proof that a construction is indeed a HSG

takes the form of a protocol for computing the hard function
if the HSG fails. We will specify a commit-and-evaluate pro-
tocol π = (πcommit, πeval) that takes advice α = D (where
D is a co-nondeterministic circuit) and attempts to compute
the polynomial p. We will prove that whenever D catches
the generator RMVh,d(p) then the protocol π conforms with
p resiliently. (Note that this does not mean that π computes
p. However, in our application we will be able to use π
to construct a protocol that does compute p). Our main
theorem is stated below. In fact, following [11], we prove
a slightly stronger statement in which the resiliency of the
protocol follows regardless of whether D catches RMVh,d(p)
as long as D rejects few inputs. This will be useful later on.

Theorem 21. Let d, h, r, m, q be as in Figure 1. Let p :
Fr

q → Fq be a polynomial of degree at most h. Then there
is a commit-and-evaluate protocol π = (πcommit, πeval) with
advice α = D, where D is a co-nondeterministic circuit of
size poly(m), that satisfies:

Conformity If D rejects every element of RMVm,d(p) then
π conforms with p.

Resiliency If D rejects at most a 1/3-fraction of its inputs
then π is resilient.

Efficiency π runs in time hO(d logd r) and has logd r rounds.

Moreover, πeval has completeness 1, and πcommit is a 1-
round protocol.

The proof of Theorem 21 is described informally in Section
5. Our main results (Theorems 4 and 5) then follow from
Theorem 21 largely using machinery already worked out in
[11]. The details will appear in the full version.

5. THE REDUCTION
In this section we describe the reduction that proves The-

orem 21.

5.1 Miltersen-Vinodchandran consistency test
We first abstract a certain primitive from the original

Miltersen-Vinodchandran construction [24], and prove con-
formity and resiliency for it. This primitive, together with
the three primitives in Sections 3.1 and 3.2 will be the main
ingredients in the reduction proving correctness of the new
generator. The main point of the abstraction is that the test
makes sense when the “lines” of the original MV construc-
tion are replaced by what we are calling “MV lines,” which
are more general. We need one definition first:

Definition 22 (MV paths and S-boxes). Given x ∈
Bd and a set S ⊆ B we define a sequence of d sets T1, . . . , Td

called the MV path to x using S. Each of these sets con-
tains MV lines as follows: Ti contains all MV lines through
points {(x1, . . . , xi, si+1, . . . , sd) : si+1, . . . , sd ∈ S} in direc-
tion i. We say that a line L appears in the MV path if
L ∈ ∪iTi. Note that for |S| > 1 there are Σd

i=1|S|i−1 ≤ |S|d
MV lines appearing in the MV path. Given a set S ⊆ B, an
S-box is a function a : Sd → F.

Figure 2 describes a test that we call the “MV consistency
test”. The usefulness of this procedure is captured in the
following lemmas: (The proofs follow using the arguments
of [24] and will appear in the full version).

Lemma 23 (Conformity of MV consistency test).
Fix a function p : Bd → F, an x ∈ Bd, and a subset
S ⊆ B. The MV consistency test passes when given as in-
put x, S, the S-box a : Sd → F defined by a(s1, . . . , sd) =
p(s1, . . . , sd), and the collection of functions pL ranging over
all MV lines L in the MV path. Furthermore, if L is the sin-
gle line in Td, then pL(xd) = p(x).

Lemma 24 (Resilience of MV consistency test).
Let Z be a set of at most K functions where each one is a
function from B to F and assume that for any two functions
g1, g2 ∈ Z, with g1 6= g2, Prz∈B [g1(z) = g2(z)] ≤ β. Then
with probability at least γ over the choice of a random subset

Input A point x ∈ Bd, a subset S ⊆ B, and an S-box a : Sd → F. Also, the following collection of functions: for every
line L appearing in the MV path to x using S, a function gL : B → F.

Operation Let T1, . . . , Td be the MV path to x using S. The MV consistency test passes if the two tests below pass:

• (agreement with the S-box) For every line L in T1 and z ∈ S, we check that gL(z) = a(L(z)).

• (agreement at intersection points) For every pair of lines L1 ∈ Ti and L2 ∈ Tj for some i, j: if L1(z1) = L2(z2)
for some z1, z2, we check that gL1(z1) = gL2(z2).

Figure 2: MV consistency test

S ⊆ B with |S| ≥ (2 log K + log(1/(1 − γ)))/ log(1/β) the
following event holds: for every S-box a : Sd → F and for
every x, there is at most one collection of functions from Z
that passes the MV consistency test.

5.2 Overview of the construction and proof
In this section we survey and motivate the main ideas

that go into the construction and proof, while highlighting
the new ideas in this paper that allow us to improve the
previous work of [24, 11].

The original MV generator
We start by describing the original Miltersen-Vinodchan-
dran generator (using some of our language).

Given a polynomial p : Fd → F of degree h the construc-
tion sets q and m to be slightly larger than h and (the stan-
dard choice is say m = q = 2h). For every MV line12 L it
outputs the vector zL = (pL(t))t∈F – the restriction of p to
the line L.

Given a co-nondeterministic circuit D such that D rejects
every output of the generator we would like to show that
there is an commit-and-evaluate protocol π (that receives
D as advice) and conforms with p resiliently. We need to
make the additional assumption that D rejects very few –

say 2mδ

– strings of length m overall. In the context of
AM derandomization this can be achieved by amplifying
the AM protocol we are attempting to derandomize using
dispersers. We stress, as this will be important later on, that
this amplification can only achieve a constant 0 < δ < 1
efficiently.

We now describe the commit-and-evaluate protocol for
evaluating p. In the commit phase Arthur sends a uniformly
chosen set S of size v ≈ hδ and Merlin replies with an S-box
that is supposed to be the “correct” S-box a(s1, . . . , sd) =
p(s1, . . . , sd). In the evaluation phase the two parties are
given a point x ∈ Fd and Arthur wants to evaluate p(x).
Arthur and Merlin first compute the MV path to x using S
(this path has at most vd MV lines) and for each MV line
in the path, Merlin sends Arthur a univariate polynomial
gL : F → F (that is supposed to be the polynomial pL) by
sending its h + 1 coefficients. Arthur performs the following
tests:

Small-set test Arthur asks Merlin to supply witnesses show-
ing that D rejects gL for all MV lines L on the MV
path. (Note that Merlin can do this as D is a co-
nondeterministic circuit).

12For the definitions of MV lines and MV paths to make
sense, we set r = d and B = F for the moment.

Consistency test Arthur performs the MV consistency test
using the polynomials gL sent by Merlin.

If both the tests pass then Arthur decides that p(x) equals
gL(xd) where L is the single line in the set Td.

The conformity and resiliency properties of this protocol
follow from Lemmas 23 and 24. More precisely, an honest
Merlin can indeed conform to p by following the protocol.
A cheating Merlin has the freedom to choose an S-box a
that is incorrect and in this case the evaluation protocol
does not necessarily conform with p. However the evaluation
protocol is (with high probability over the choice of S) PSV
as Lemma 24 guarantees that there is at most one collection
of functions from the small set Z = {z : D rejects z} that
passes the consistency test. This means that once Merlin
commits to the S-box a he cannot make Arthur output two
different values on a given input x.

We stress that this argument uses the structure of poly-
nomials in a very weak way. To perform the argument we
only need that the set of vectors C = {zL : L is an MV line}
is an error-correcting code, as is stated precisely in Lemma
24. In the present construction all of the zL are sequences
of m > h evaluations of a degree h univariate polynomial
and so the zL are codewords of a Reed-Solomon code.

We now turn our attention to the running time of the pro-
tocol. There are roughly vd MV lines on the MV path and
for each one of them Merlin needs to send h + 1 coefficients
to define each pL. Thus, overall the time is about hvd. For
Lemma 24 we need to set v ≈ mδ ≈ hδ (this comes from the
bound we have on the set Z, which in turn comes from the
initial amplification of the AM protocol we are derandom-
izing). Overall the running time is about hδd. Specifying
the polynomial p explicitly requires roughly hd coefficients
and thus the protocol achieves something non-trivial since
it runs in time that is only some constant root of hd.

Goal: achieve the low end
The parameters achieved by the construction outlined above
correspond to the “high-end” of hardness assumptions. More
specifically when given a Boolean function f over ` bits we
can encode it as a d = O(1) variate polynomial p (the

low-degree-extension of f) with h, m ≈ 2`/d. The proto-
col13 above then gives us exactly the kind of parameters one
wants; i.e., it runs in time polynomial in the output length,
m, of the generator.

13We have only argued that the protocol conforms resiliently,
so we don’t yet have an AM protocol for computing p . How-
ever, recall that in our intended application, we will have
that f is complete for EXP and thus we can transform the
AM protocol into one that computes f (see Theorem 18).

However, this relationship is only achieved at the “high
end”, that is when m = 2Ω(`) and in fact the construction
fails completely when m becomes significantly smaller. Our
goal is to achieve the “low-end” so we must modify the con-
struction of the generator so that we get a running time of
poly(m) for any m, ideally all the way down to m = poly(`).

Reducing the degreeh and distinguishing betweenr, d

A very natural idea (that has been useful in previous works
in this area, e.g., [27, 26]) is to encode the function f using a
polynomial p with more than a constant number of variables.
This will enable the encoding to use smaller degree. Note
however that because the number of variables increases when
the degree decreases, the running time of the protocol we
constructed does not benefit from reducing the degree h, as
the gain over the trivial protocol depends only on δ which
cannot be smaller than a constant. Thus, at this point it is
not clear what we can gain from reducing the degree.

We will attempt to circumvent this problem by achiev-
ing the “best of both worlds”: having a small degree while
keeping the number of variables a constant. To achieve a
behavior with that flavor we distinguish between two pa-
rameters r (the number of variables) and d (the number of
“grouped variables”). More precisely, we now encode the
function f as a polynomial p : Fr → F for super-constant
r (at the absolute low-end we will use r as small as `/ log `
which allows the degree to go down to h = poly(`)). While
doing so we keep d as a constant and identify Fr with Bd,
where B = Fr/d, as in Definition 19.

We can now run the original MV generator just as before
by thinking of p as a function p : Bd → F. This follows
from our observation that we only need the MV lines to
form an error-correcting code, and here for every MV line
L, the associated function pL : Fr/d → F is a Reed-Muller
codeword. In the commit-and-evaluate protocol for p that
we already saw, we only need to alter one thing: Merlin will
need to supply coefficients for pL which is now a degree h
polynomial in r/d variables and has about hr/d coefficients
(as compared to h coefficients previously).

At first glance it may seem that we have made progress
and can handle m much smaller than the original MV con-
struction required, but this is not the case. For the pL to
form a code (which is needed for Lemma 24 to apply), we

need to output m > hr/d evaluations, and thus overall we
do not gain (we were hoping to take m only slightly larger

than h, not hr/d.). However, intuitively we did make some
progress as various quantities in the protocol (such as the
size of the S-box and the length of the MV path) depend on
d (which is constant) rather than on r.

Reducingm by using local extractors for Reed-Muller
codes
We will reduce m by modifying the generator construction
further. For each MV line L, instead of outputting enough
evaluations of pL to induce an error-correcting code, we will
use an extractor. More precisely, we take E to be an extrac-
tor with output length m ≈ h, and we output the strings
E(zL, y) for all possible seeds y.

Then, in the AM protocol, we can replace the small-set
test with a probabilistic small-set test: check that D rejects
E(zL, y), for a random y. All of the zL that formerly passed
the small-set test will still do so, since by assumption all of
the outputs of the generator (and thus all of the outputs of

E run on input zL) are rejected by D. At the same time,
by the extractor property, there can be only a small number

(say, 2m2
) of strings that pass the new probabilistic test

with reasonable probability. This ensures that Lemma 24
still applies to this modified generator and protocol.

However, our goal was to reduce m and have the protocol
run in time poly(m). But even invoking the extractor once
for the probabilistic small-set test takes time linear in its
input length hr/d, which is much larger than m.

The crucial realization at this point is that we are only
ever interested in running the extractor on strings zL that
are evaluations of low-degree polynomials! We can thus re-
place E with a local extractor for the Reed-Muller code,
and consequently reduce the running time of the extractor
to poly(m) when given oracle access to its input.

So, we can do the small-set test in time poly(m), given
oracle access to pL. For our choice of parameters, the MV
consistency test also runs in time poly(m) given oracle access
to pL. However one hurdle remains: the step in which Merlin
sends the coefficients of the polynomials pL still requires
hr/d À m time to send the hr/d coefficients of pL, while we
are shooting for poly(m) time.

Sending the polynomialspL implicitly
Let us assume at this point that for some reason we already
knew that for every L the polynomial pL has a commit-
and-evaluate protocol that conforms with it resiliently and
that this protocol runs in time poly(m). Then instead of
having Merlin send the polynomials pL explicitly, Arthur
and Merlin could play the commitment phase of the protocol
for pL, after which Merlin will be able to assist Arthur on
evaluating pL on any input that Arthur wishes.

However, we have now exposed the protocol to the pos-
sibility that Merlin may cheat by committing to a function
that is not a low-degree polynomial, and then (at least) two
things break: the local extractor for Reed-Muller codes may
be run with access to an oracle that is not a Reed-Muller
codeword, destroying the extractor property needed for the
integrity of the small-set test; and, the resiliency of the MV
consistency test relies on all of the received functions having
large distance.

The solution is to run a low-degree test on each function
Merlin commits to, verifying that it is indeed a low-degree
polynomial. This test can be done locally, with oracle access
to the function, and the fact that Merlin is committed to a
function (and cannot alter the requested evaluations upon
seeing the randomness of the test) ensures the validity of
the test.

Let us summarize our current position. If we knew that
for every MV-line L the polynomial pL had a poly(m) time
commit-and-evaluate protocol that conformed with it re-
siliently, then we would be able to produce a commit-and-
evaluate protocol that conforms with p resiliently, and more
importantly, runs in time poly(m) (which is our goal).

Using recursion to obtain the protocol forpL

It is important to note that when trying to construct a pro-
tocol for a polynomial p with r variables, we need to assume
the existence of a protocol polynomials pL with a smaller
number, r/d, of variables. This will allow us to use recur-
sion. The base case will be the standard MV generator,
where r = d. For the base case we already showed how to
construct an AM protocol that runs in time poly(m).

To give us the protocol on MV lines needed in the re-
cursive step, we modify the construction of the generator,
finally arriving at the construction in Figure 1. In this con-
struction, in addition to the original output of our modified
MV generator run on p, we also output all the outputs of
our modified MV generator run on the polynomials pL for
all MV lines L, and continue with this recursively. The in-
puts to the recursive calls are sufficiently smaller than the
original input so that we do not increase the set of outputs
of the generator by more than a polynomial factor. Now, a
circuit D that rejects all the outputs of our generator can be
used as advice to play the protocol on all the polynomials
pL that we will ever be interested in.

The final commit-and-evaluate protocol will invoke the
protocol now available for MV lines it needs to access, con-
tinuing this recursively down to the base case.

We stress that the resiliency property plays a crucial role
inside the recursion (in addition to its role as described in
Theorem 18). Specifically, the resiliency property of the
protocol for pL says that following the commitment phase,
Merlin is committed to some function, and this is what pre-
vents Merlin from cheating when doing the local tests (such
as the low degree test). If it wasn’t for resiliency then Mer-
lin would be able to choose outputs for pL after seeing the
queries of the low degree test which would make the test
useless.

Losses suffered in the recursion
While we can reduce m using the ideas outlined above, there
are also some costs to using this recursive argument. First,
each recursive step in the protocol picks up one additional
round and thus we end up with a protocol with logd r rounds.
Such protocols can be transformed into two round proto-
cols but the running time suffers a blowup which is slightly
super-polynomial. The running time also suffers as each re-
cursive step multiples the running time of the protocol by
poly(m). When taking these two factors into consideration
and transforming to a one round AM protocol we get that

this protocol has running time mO(log2
d r) rather than mO(1).

This accounts for the slight non-optimality of our main gap
theorems.

Acknowledgements We thank Amnon Ta-Shma for help-
ful discussions.

6. REFERENCES
[1] A. E. Andreev, A. E. F. Clementi, and J. D. P. Rolim. Hitting

sets derandomize BPP. In ICALP, pages 357–368, 1996.

[2] V. Arvind and J. Kobler. On pseudorandomness and
resource-bounded measure. Theoretical Computer Science,
255, 2001.

[3] L. Babai, L. Fortnow, and C. Lund. Nondeterministic
exponential time has two-prover interactive protocols.
Computational Complexity, 1(1):3–40, 1991.

[4] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has
subexponential time simulations unless EXPTIME has
publishable proofs. Computational Complexity, 3(4):307–318,
1993.

[5] D. Beaver and J. Feigenbaum. Hiding instances in multioracle
queries. In Choffrut and Lengauer [8], pages 37–48.

[6] M. Blum and S. Kannan. Designing programs that check their
work. Journal of the ACM, 42(1):269–291, 1995.

[7] M. Blum and S. Micali. How to generate cryptographically
strong sequences of pseudo-random bits. SIAM Journal on
Computing, 13(4):850–864, Nov. 1984.

[8] C. Choffrut and T. Lengauer, editors. STACS 90, 7th Annual
Symposium on Theoretical Aspects of Computer Science,
Rouen, France, February 22-24, 1990, Proceedings, volume
415 of Lecture Notes in Computer Science. Springer, 1990.

[9] K. Friedl and M. Sudan. Some improvements to total degree
tests. In ISTCS, pages 190–198, 1995.

[10] O. Goldreich. Modern Cryptography, Probabilistic Proofs and
Pseudorandomness. Springer-Verlag, Algorithms and
Combinatorics, 1998.

[11] D. Gutfreund, R. Shaltiel, and A. Ta-Shma. Uniform hardness
versus randomness tradeoffs for Arthur-Merlin games.
Computational Complexity, 12(3-4):85–130, 2003.

[12] R. Impagliazzo. Hard-core distributions for somewhat hard
problems. In 36th Annual Symposium on Foundations of
Computer Science, pages 538–545, 1995.

[13] R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of
an easy witness: Exponential time vs. probabilistic polynomial
time. In Proceedings of the 16th Annual Conference on
Computational Complexity (CCC-01), pages 2–12, 2001.

[14] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Near-optimal
conversion of hardness into pseudo-randomness. In 40th
Annual Symposium on Foundations of Computer Science,
pages 181–190, 1999.

[15] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Extractors and
pseudo-random generators with optimal seed length. In
Proceedings of the thirty second annual Symposium on
Theory of Computing, pages 1–10, 2000.

[16] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Reducing the
seed length in the Nisan-Wigderson generator. To appear in
Combinatorica, 2006.

[17] R. Impagliazzo and A. Wigderson. P = BPP if E requires
exponential circuits: Derandomizing the XOR lemma. In
Proceedings of the Twenty-Ninth Annual ACM Symposium
on Theory of Computing, pages 220–229, 1997.

[18] R. Impagliazzo and A. Wigderson. Randomness vs. time:
De-randomization under a uniform assumption. In 39th
Annual Symposium on Foundations of Computer Science,
pages 734–743, 1998.

[19] V. Kabanets. Easiness assumptions and hardness tests:
Trading time for zero error. In Proceedings of the 15th Annual
IEEE Conference on Computational Colmplexity
(COCO-00), pages 150–157, 2000.

[20] V. Kabanets and R. Impagliazzo. Derandomizing polynomial
identity tests means proving circuit lower bounds.
Computational Complexity, 13(1-2):1–46, 2004.

[21] A. R. Klivans and D. van Melkebeek. Graph nonisomorphism
has subexponential size proofs unless the polynomial-time
hierarchy collapses. SIAM Journal on Computing,
31(5):1501–1526, Oct. 2002.

[22] R. J. Lipton. Efficient checking of computations. In Choffrut
and Lengauer [8], pages 207–215.

[23] C.-J. Lu. Encryption against storage-bounded adversaries from
on-line strong extractors. J. Cryptology, 17(1):27–42, 2004.

[24] P. B. Miltersen and N. V. Vinodchandran. Derandomizing
Arthur-Merlin games using hitting sets. In 40th Annual
Symposium on Foundations of Computer Science, pages
71–80, 1999.

[25] N. Nisan and A. Wigderson. Hardness vs. randomness. Journal
of Computer and System Sciences, 49(2):149–167, Oct. 1994.

[26] R. Shaltiel and C. Umans. Simple extractors for all
min-entropies and a new pseudo-random generator. In
Proceedings of the 42nd Symposium on Foundations of
Computer Science, pages 648–657, 2001.

[27] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom
generators without the XOR lemma. Journal of Computer
and System Sciences, 62:236–266, 2001.

[28] A. Ta-Shma, D. Zuckerman, and S. Safra. Extractors from
Reed-Muller codes. In Proceedings of the 42nd Annual IEEE
Symposium on Foundations of Computer Science, 2001.

[29] L. Trevisan and S. Vadhan. Pseudorandomness and
average-case complexity via uniform reductions. In Proceedings
of the 17th Annual Conference on Computational
Complexity, 2002.

[30] C. Umans. Pseudo-random generators for all hardnesses.
Journal of Computer and System Sciences, 67:419–440, 2003.

[31] C. Umans. Reconstructive dispersers and hitting set
generators. In APPROX-RANDOM, pages 460–471, 2005.

[32] S. P. Vadhan. Constructing locally computable extractors and
cryptosystems in the bounded-storage model. J. Cryptology,
17(1):43–77, 2004.

[33] A. C. Yao. Theory and applications of trapdoor functions. In
Proceedings of the 23th Annual Symposium on Foundations
of Computer Science, pages 80–91, 1982.

