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Abstract. We give an introduction to the area of “randomness extrac-
tion” and survey the main concepts of this area: deterministic extractors,
seeded extractors and multiple sources extractors. For each one we briefly
discuss background, definitions, explicit constructions and applications.

1 Introduction

Randomized algorithms and protocols play an important role in many areas of
computer science. It is often the case that such algorithms and protocols are
more efficient than deterministic ones. Moreover, having access to randomness
is essential for Cryptography.

Randomized algorithms and protocols are designed under the assumption
that computers have access to a sequence of truly random bits (that is a se-
quence of independent and unbiased coin tosses). In actual implementations this
sequence is generated by taking a sample from some “source of randomness”.
Examples are:

– Generating and measuring electromagnetic or radioactive noise.
– Measuring timing of past events (e.g., how much time did the last disk op-

eration take?).
– Measuring user dependent behavior (e.g., timing of the key strokes of users).

While these sources seem to “contain randomness” in the sense that they have
entropy, a sample from such sources is not of the form of truly random bits.
Randomness extractors are algorithms that when given one sample from a weak
random source, produce a sequence of truly random bits.

The motivation described above led to a wide body of research concentrating on
three main concepts:

– Deterministic extractors, which we discuss in Section 2.
– Seeded extractors, which we discuss in Section 3.
– Multiple source extractors, which we discuss in Section 4.

It turns out that extractors have many applications beyond the original mo-
tivation presented in Section 1. We present few of these applications as we go
along (and stress that there are many other applications in the literature).

Our aim is to provide a brief introduction to the area. This article does not at-
tempt to be comprehensive and the reader is referred to [NTS99,Sha02,Vad07,AB09]
for some other survey articles.

⋆ The author is supported by ISF grant 686/07.



2 Deterministic extractors

In this section we discuss “deterministic extractors”. The term “deterministic”
is used to distinguish these extractors from “seeded extractors” that we discuss
in Section 3. We begin with some notation. Throughout this manuscript we use
the terms “source” and “distribution” interchangeably.

Definition 1 (Statistical distance). Two distributions X,Y over the same
domain are ϵ-close if for every event A, |Pr[X ∈ A]− Pr[Y ∈ A]| ≤ ϵ. The sup-
port of a distribution X is Supp(X) = {x : Pr[X = x] > 0}. The uniform distri-
bution over {0, 1}m is denoted by Um and we say that X is ϵ-close to uniform if
it is ϵ-close to Um.

Two distributions that are ϵ-close assign essentially the same probability
to all events. In particular, randomized algorithms and protocols retain their
useful properties when run with distributions that are close to uniform (rather
than uniform). The motivation given in Section 1 leads to the following formal
definition of an extractor (we also define a weaker object called a “disperser”).

Definition 2 (deterministic extractors and dispersers). Let m ≤ n be
integers and let ϵ ≥ 0 be a parameter. Let E : {0, 1}n → {0, 1}m be a function
and X be a distribution over {0, 1}n.
– E is an ϵ-extractor for X if the distribution E(X) is ϵ-close to Um.
– E is an ϵ-disperser for X if |Supp(E(X))| ≥ (1− ϵ) · 2m.

Let C be a class of probability distributions over {0, 1}n.
– E is an ϵ-extractor for C if E is an ϵ-extractor for every X in C.
– E is an ϵ-disperser for C if E is an ϵ-disperser for every X in C.

Note that every ϵ-extractor is in particular an ϵ-disperser. We plan to extract
randomness from weak random sources and use this randomness in randomized
algorithms and protocols. In the scenario described in Section 1 the “computer
designer” can choose an implementation of the weak random source. Neverthe-
less, note that in the examples given there, this does not necessarily determines
the distribution of the source (as the environment in which the computer oper-
ates may change). This leads to the following goal.

Goal: Design extractors for “large” families of “interesting” sources.

2.1 Min-entropy: measuring the number of random bits in a source

Let us start with a simple observation. If E : {0, 1}n → {0, 1}m is a 0-extractor
for X then for every x ∈ Supp(X), Pr[X = x] ≤ 2−m. (As otherwise, for an x′

with Pr[X = x′] > 2−m, we have that Pr[E(X) = E(x′)] > 2−m contradicting
the correctness of the extractor as Pr[Um = E(x′)] = 2−m and the two dis-
tributions E(X) and Um assign different probabilities to some event). Thus, a
necessary condition for extracting m random bits from a distribution X is that
for every x ∈ Supp(X), Pr[X = x] ≤ 2−m. This leads to the following concept
of entropy.



Definition 3 (min-entropy). Let X be a distribution. The min-entropy of X
(denoted by H∞(X)) is H∞(X) = minx∈Supp(X) log

1
Pr[X=x] .

We use min-entropy to measure the amount of random bits that can
be extracted from a source.1 Note that a distribution with min-entropy at

least m has that for every x ∈ Supp(X), Pr[X = x] ≤ 2−m. By the previous
discussion having min-entropy at least m is a necessary condition for extracting
m bits of randomness.2 We could hope that it is a sufficient condition and that
there exists an extractor E : {0, 1}n → {0, 1}m for all distributions with min-
entropy at least m. However, this does not hold. In fact, for every function E :
{0, 1}n → {0, 1} there exists a distribution X over {0, 1}n such that H∞(X) ≥
n − 1 and yet E(X) is completely fixed. (For this, take X to be the uniform
distribution over S = {x : E(x) = b} for b ∈ {0, 1} which gives |S| ≥ 2n/2).

Summing up, we cannot have an extractor that extracts even a single bit
from all distributions with very large min-entropy. Furthermore, if we plan to
use function E as an extractor for C, we cannot allow distributions that are
uniform on {x : E(x) = b} to be in the family C.

2.2 Explicitness

By the previous discussion, deterministic extractors and dispersers E : {0, 1}n →
{0, 1}m only exist for classes C of sources with some “special structure” where
each X in C has H∞(X) ≥ m. By the probabilistic method it is easy to show
existence of extractors for such classes C which contain “few sources”.

Existence of deterministic extractors: Let m ≤ n be integers, let ϵ > 0

and let C be a class with at most 2poly(n/ϵ) distributions over {0, 1}n. There
exist k = m+O(log n+ log(1/ϵ)) such that if every X in C has H∞(X) ≥ k
then there exists E : {0, 1}n → {0, 1}m that is an ϵ-extractor for C.

However, for our intended application (as well as other applications that we
will consider) we require extractors that can be efficiently computed. In this
article we identify efficient computation with polynomial-time and this leads to
the following definition of explicitness.

1 It is natural to compare min-entropy with the more standard Shannon entropy given
by H(X) =

∑
x∈Supp(X) Pr[X = x] · log 1

Pr[X=x]
. Note that H∞(X) ≤ H(X) and

equality holds for “flat distributions” (that are uniform over their support). Loosely
speaking, min-entropy measures the amount of information in a distribution on the
“worst case” when taking a single sample, while Shannon entropy measures the
amount of information that a distribution has “on average” when taking many in-
dependent samples. Following this intuition, min-entropy is the right choice for our
setup as we are interested in the behavior of extractors on a single sample from the
source distribution.

2 The previous discussion only considered 0-extractors. However, it is easy to check
that if E : {0, 1}n → {0, 1}m is an ϵ-extractor for X then X is ϵ-close to some
distribution Y with H∞(Y ) ≥ m. Thus, a necessary condition for extracting m
random bits from a distribution X is that X is ϵ-close to some distribution with
min-entropy at least m.



Definition 4 (Explicit extractors and dispersers). Let m(·), ϵ(·) be func-
tions over integers. A function E from strings to strings is an explicit ϵ(·)-
extractor (resp. disperser) if it can be computed in polynomial time, and for ev-
ery sufficiently large n, when restricted to inputs of length n, E outputs strings
of length m(n) and is an ϵ(n)-extractor (resp. disperser).

In the remainder of this section we survey some of the families of sources
that are considered in the literature on deterministic extractors and dispersers.

2.3 Deterministic extractors for von-Neumann sources

The notion of deterministic extractors can be traced back to von-Neumann
[vN51] who considered sequences of independent tosses of a biassed coin with
unknown bias.

Definition 5. A distribution X over {0, 1}n is a vN-source with probability
threshold p0 > 0 if X1, . . . , Xn are independent, and there exists p0 ≤ p ≤ 1− p0
such that for every 1 ≤ i ≤ n, Pr[Xi = 1] = p.

In order to extract one bit from such sources, von-Neumann [vN51] divided
the n input bits into pairs. The extractor scans the pairs one by one and if it finds
a pair of bits that are different, it stops and outputs the first bit in the pair.3 The
correctness of this scheme follows from the observation that for two independent
coin tosses X1, X2 of a coin with bias p, Pr[X1 = 0∧X2 = 1] = Pr[X1 = 1∧X2 =
0] = p · (1 − p). Moreover, the probability that n/2 independent pairs do not

produce an output bit is bounded by (p20 + (1 − p0)
2)n/2 ≤ ϵ if p0 ≥ log(1/ϵ)

n .
It is easy to extend this approach to extract many bits. There is also work
on extracting a number of bits that approaches the information theoretic limit
[Eli72,Per92].

2.4 Impossibility of extraction from Santha-Vazirani sources

It is natural to try and relax the assumption of independence between bits in
a vN-source. Santha and Vazirani [SV86] considered a generalization of a vN-
source in which for every 1 ≤ i ≤ n, and every “prefix” x1, . . . , xi−1 ∈ {0, 1},

p0 ≤ Pr[Xi = 1|X1 = x1, . . . , Xi−1 = xi−1] ≤ 1− p0.

A discouraging result of [SV86] is that there does not exist a deterministic extrac-
tor that extract a single bit from such sources. In other words, there are families
of sources that are very structured and still do not allow deterministic extrac-
tion. This is bad news for the approach of simulating randomized algorithms

3 The model considered by [vN51] is slightly different in that it places no bound on
p. Instead, it allows the extractor to access an unbounded “stream” of independent
coin tosses and requires that the extractor will stop and output completely uniform
bits in expected time that depends on p. Nevertheless, the same algorithm applies
in both cases.



and protocols with weak sources by deterministic extraction. Historically, this
led to the notion of seeded extractors that we describe in Section 3. Nevertheless,
as we discuss below, deterministic extraction has many applications beyond the
original motivation of Section 1.

2.5 Bit-fixing sources and privacy amplification

We now consider the family of bit-fixing sources. In such a source some bits are
independent unbiased coin tosses, while others are constants.

Definition 6 (bit-fixing sources). A distribution X over {0, 1}n is a k-bit-
fixing source if there exist k distinct indices i1, . . . , ik such that the distribution
(Xi1 , . . . , Xik) is distributed like Uk and for i ̸∈ {i1, . . . , ik}, Xi is a fixed con-
stant.4

Bit-fixing sources do not seem to arise naturally in the scenario considered in
Section 1. Nevertheless, as we observe now, they arise naturally in Cryptography
[CGH+85]. Consider for example the following scenario. Assume that two parties
Alice and Bob share a uniformly chosen random key K ∈ {0, 1}n. The key K is
private in the sense that eavesdropper Eve has no information about it. Alice and
Bob can securely encrypt communication between them using a shared private
key. Suppose that at some stage, the privacy of K is somehow compromised and
Eve learns f(K) where f(x) = xj1 , . . . , jn/2 for some indices j1, . . . , jn/2 that are
unknown to Alice and Bob. Alice and Bob would like to recover their privacy
and come up with a new shared private key K ′.

This can be achieved as follows: Let E : {0, 1}n → {0, 1}m be an ϵ-extractor
for (n/2)-bit-fixing sources. Each party can compute K ′ = E(K). We claim
that K ′ is private in the sense that the distribution (K ′, f(K)) is ϵ-close to the
distribution (Z, f(K)) where Z is uniformly distributed and independent of K.
In order to see the meaning of thus claim, note that if ϵ = 0 then the claim says
that K ′ is independent of f(K). For general ϵ > 0 the claim implies that even
an all-powerful Eve cannot distinguish K ′ from uniform with advantage greater
than ϵ, given her view.

In order to prove the claim we note that for any value v ∈ Supp(f(K)), the
distribution X = (K|f(K) = v)) is an (n/2)-bit-fixing source. X captures the
view that Eve has on K conditioned on the event {f(K) = v}. It follows that
E(X) = (E(K)|f(K) = v) is ϵ-close to uniform (and this holds for every v ∈
Supp(f(K)). If ϵ = 0 then this implies that K ′ = E(K) is uniformly distributed
and independent of f(K). For general ϵ > 0, this implies the statement in the
claim above. (We remark that this argument can be generalized for other choices
of “allowed functions” f as explained in Section 2.6.

Note that this application requires E to be explicit. Furthermore, Alice and
Bob would like the new key to be as long as possible and this motivates extractors

4 We remark that in the literature on extractors these sources are sometimes referred
to as “oblivious bit-fixing sources” to distinguish them from “non-oblivious bit-fixing
sources” in which for i ̸∈ {i1, . . . , ik}, Xi is some arbitrary function of Xi1 , . . . , Xik .



that extract as many bits as possible from the k random bits that are “present”
in a k-bit-fixing source.

It is trivial that the function E(x) = (
∑

1≤i≤n xi) mod 2 is a 0-extractor for
k-bit-fixing sources for every k ≥ 1. This simple idea does not easily extend to
extract many bits for general k, as it was shown in [CGH+85] that there are no
0-extractors with m > 1 for k < n/3. The problem of extracting many bits was
considered in [CGH+85,KZ07,GRS06,Rao09b] and the current state of the art
is that there are explicit extractors that extract m = (1 − o(1))k random bits
from k-bit-fixing sources for every k ≥ polylog(n).

2.6 Families of sources in the literature on deterministic extraction

The literature on deterministic extractors and dispersers considers many families
of sources. We briefly survey some of these families below. Our emphasis in the
discussion below is on the min-entropy threshold parameter k. This is partly be-
cause there are general techniques to increase the output length of deterministic
extractors [Sha08] and dispersers [GS08]. Using these techniques, it is often the
case that extractors and dispersers that extract Ω(log n) bits can be transformed
into ones that extract (1− o(1)) · k bits.

Multiple independent sources: Let n = ℓ·n′ and identify {0, 1}n with ({0, 1}n′
)ℓ.

A distribution X = (X1, . . . , Xℓ) is an ℓ-independent source if X1, . . . , Xℓ

are independent. There exist extractors for 2-independent sources assuming
H∞(X1),H∞(X2) ≥ Ω(log n). Most of the literature on deterministic ex-
tractors and dispersers focuses on multiple independent sources. We focus
on this setup in Section 4.

Affine sources: Let Fq be the finite field with q elements. Affine sources are dis-
tributions that are uniform over some affine subspace of the vector space Fn

q .
The min-entropy of such sources coincides with the dimension of the affine
space. Most of the research on explicit constructions focuses on the case q = 2
[BKS+10,Bou07,Rao09b,BSK09,Yeh10,Li11b,Sha11]. Explicit constructions
of extractors and dispersers for affine sources are far from approaching the
existential bounds proven using the probabilistic method. The latter show ex-
istence of extractors for affine sources with min-entropy at least k = O(log n).
The best known explicit extractor is due to Bourgain [Bou07] and works for
affine sources with min-entropy at least k = o(n) (slight improvements to
k = n/

√
log log n were given in [Yeh10,Li11b]). It is possible to do better

for dispersers and Shaltiel [Sha11] constructs an explicit disperser for affine
sources with min-entropy at least k = no(1). Explicit constructions do much
better for “large fields” in which q = nΘ(1) [GR08,GS08,DG10] and are able
to extract from affine sources with min-entropy O(log n).

Feasibly generated sources: This approach considers families of sources that
are specified by placing limitations on the process that generates the source.
It was initiated by Blum [Blu86] that considered sources generated by finite
Markov chains (see also [Vaz87]). A computational perspective was suggested
by Trevisan and Vadhan [TV00] (see also [KM05,KRVZ11]) who consider



sources X = C(Ur) where C : {0, 1}r → {0, 1}n is a “computational de-
vice”. Different families of sources are obtained by placing limitations on
the complexity of C. Note that affine sources are captured if C is a degree
one polynomial. It is also natural to consider polynomials with larger degree
[DGW09].

Feasibly recognizable sources: This approach (explicitly suggested in [Sha09])
considers sources that are uniform over sets of the form {x : f(x) = v} for
functions f coming from some specified class. Note that bit-fixing sources
are captured by considering functions that are projections and affine sources
are captured (once again) by considering degree one polynomials. It is also
natural to consider polynomials with larger degrees [Dvi09]. Other families of
sources can also be captured thus way: Sources recognizable by decision trees
are convex combinations of bit-fixing sources and sources recognizable by 2-
party communication protocols are convex combinations of 2-independent
sources. (This is useful as an extractor for some family C is also an extractor
for convex combinations of sources from the family). We also remark that
the argument of Section 2.5 showing that Alice and Bob can recover their
privacy when the function f is a projection, immediately extends to any class
of functions f if one can explicitly construct an extractor for distributions
recognizable by the class. Other applications of such extractors are given in
[Sha09,KvMS09].

3 Seeded extractors

These are extractors that in addition to one sample from the source distribu-
tion X also receive a second input Y (called “seed”) which consists of (few)
independent truly random bits.

Definition 7 (seeded extractors). [NZ96] A function E : {0, 1}n×{0, 1}d →
{0, 1}m is a (k, ϵ)-extractor if for every distribution X over {0, 1}n with H∞(X) ≥
k, E(X,Y ) is ϵ-close to uniform (where Y is distributed like Ud and is indepen-
dent of X). E is a (k, ϵ)-disperser if |Supp(E(X,Y ))| ≥ (1 − ϵ) · 2m. E is a
strong extractor if E′(x, y) = (E(x, y), y) is an extractor.

The definition above does not consider specific families C of sources. This is
because seeded extractors are able to use a logarithmic length seed to extract
from the “maximal family” of all distributions with “large” min-entropy.

In this section we survey some of the research on seeded extractors. In Section
3.1 we discuss explicit constructions and lower bounds. In Section 3.2 we explain
how seeded extractors can be used to efficiently simulate randomized algorithms
with access to a weak source. It turns out that seeded extractors have many other
applications beyond the original motivation discussed in Section 1. We discuss
some of these applications below. In Section 3.3 we point out a useful connection
between seeded extractors and list-deocdable error-correcting codes. In Section
3.4 we interpret seeded extractors as graphs with large “relative expansion”. In
Section 3.5 we show that seeded extractors can be used to construct graphs with



expansion beating eigenvalue bounds. In Section 3.6 we point out that seeded
extractors yield optimal averaging samplers.

3.1 Explicit constructions and lower bounds

By the probabilistic method it is not hard to show that for every n, k, ϵ there exist
(k, ϵ)-extractors that use a seed of length d = log(n − k) + 2 log(1/ϵ) + O(1),
and output m = k + d − 2 log(1/ϵ) − O(1) bits. There are lower bounds of
Radhakrishnan and Ta-Shma [RTS00] showing that this is optimal (except for
the constants hidden in the O(1)).

The quantity k + d−m is referred to as the “entropy loss” of the extractor
(as the input distribution (X,Y ) has min-entropy k + d). It is obvious that the
entropy loss is always non-negative. The lower bounds of [RTS00] stated above
show that the entropy loss is at least 2 log(1/ϵ) − O(1). This means that as ϵ
decreases, some randomness must be lost in the extraction process.

A long line of research attempts to match the parameters of the existen-
tial bounds with explicit constructions.5 There are explicit constructions that
achieve:

Extractors optimal up to constant factors: For every constant α > 0 there
exists a constant c such that for every n, k, ϵ there are explicit extractors with
seed length d = c · (log n+ log(1/ϵ)), output length m = (1− α)k. This was
achieved by Lu et al. [LRVW03] for constant error ϵ and by Guruswami,
Umans and Vadhan and [GUV09] for general error.

Extractors with sublinear entropy loss for large error: For every constant
e there is a constant c such that for every n, k there are explicit extractors
with seed length d = c · log n and output length m = (1− 1

loge n ) ·k and error

ϵ = 1/ log n. This was achieved by Dvir et al. [DKSS09].

We remark that it is sometimes possible to do better for specific values of k, and
that there are constructions that can push the leading constant c to 1 + o(1)
while paying a little bit in some of the other parameters. The reader is referred
to a survey article on explicit constructions of seeded extractors [Sha02].

3.2 Simulating BPP with access to a weak random source

Unlike deterministic extractors, seeded extractors expect to receive a short seed
of truly random bits. Such a seed is not available in the scenario described in
Section 1. Nevertheless, we now explain how to simulate any polynomial time
randomized algorithm in polynomial time when given access to a general weak
random source with sufficient min-entropy.

5 Explicit seeded extractors are defined in a similar fashion to deterministic extractors:
Let d(·), k(·),m(·) and ϵ(·) be functions over integers. A function E that takes two
strings and returns a string is an explicit (k(·), ϵ(·))-extractor if for every sufficiently
large n, when the first input x is of length n, E uses seed length d(n), has output
length m(n) and is a (k(n), ϵ(n))-extractor.



Let A be a randomized algorithm that runs in polynomial time and solves
some decision problem with error ≤ 1/3 (meaning that for every input, the
probability that A answers incorrectly is at most 1/3 where the probability is
over choosing random coins for A). Assume that on an input x′ of length n′, A
requires m = poly(n′) truly random bits. Assume that we can sample from some
unknown distribution X over {0, 1}n where n = poly(n′) with the guarantee
that H∞(X) ≥ k for k ≥ 2m. Let E : {0, 1}n × {0, 1}O(logn) → {0, 1}m be an
explicit (k, 1

10 )-extractor (that exists by the discussion in Section 3.1).

We simulate A as follows: When given input x′ ∈ {0, 1}n′
and a sample x

from the source X, for every seed y of E, we compute a bit vy by applying A
on input x′ using E(x, y) as a sequence of “random coins”. The final output
is the value v such that vy = v for most seeds y. It is not hard to see that
for every input x′ this process solves the decision problem with error less than
1/3 + 1/10 < 1/2 where the probability is over the choice of x from X.6

Note that for this application it is crucial that E is explicit. Moreover, the
simulation described above goes over all 2d seeds of the extractor E. Conse-
quently, it is crucial that d = c log n for some constant c to obtain a polynomial
time simulation. Furthermore, the constant c determines the exponent of the
polynomial (which gives motivation for constructing extractors with a small
leading constant c) [TSZS06,SU05].

Inapplicability of this approach in cryptographic or distributed settings. It is
important to stress that while this approach works for simulating randomized
algorithms, it is not applicable when simulating randomized protocols in cryp-
tographic or distributed settings. This is because the approach sketched above
requires running the original protocol 2d = nO(1) times with many sequences of
random coins. In cryptographic settings this means that adversaries get to par-
ticipate in interactions in which the key is not necessarily random (which com-
promises the security of the protocol). In distributed settings, the total overhead
incurred in running the initial protocol nO(1) times, leads to protocols that are
inefficient and uninteresting. In Section 4.1 we suggest an alternative approach
to simulate randomized protocols given access to multiple independent sources.

3.3 Seeded extractors and list-decodable error-correcting codes

List-decodable error-correcting codes have many applications in computer sci-
ence and are extensively studied. The reader is referred to [Gur07] for a survey
articles on this notion and its applications. The definition below uses a nonstan-
dard choice of letters preparing for the application below.

Definition 8 (List-decodable code). For x, y ∈ {0, 1}n, let δ(x, y) denote the
relative Hamming distance of x and y, that is δ(x, y) = |{i:xi ̸=yi}|

n . A function

6 In fact, the analysis can be improved and show that the error probability is bounded
by 2−Ω(k) if we set the extractor to extract from distributions with min-entropy k′

for m ≤ k′ ≤ αk for a constant α < 1. This is because of the connection between
extractors and averaging samplers that we explain later on in Section 3.6.



C : {0, 1}n → {0, 1}2d is an (ℓ, ϵ)-list-decodable code if for every z ∈ {0, 1}2d ,∣∣{x : δ(C(x), z) ≤ 1
2 − ϵ

}∣∣ ≤ ℓ.

The definition above says that if one encodes a string x ∈ {0, 1}n by C(x)
and then transmits C(x) on a “noisy channel” that is allowed to adversarially
choose 1/2 − ϵ of the indices of C(x) and flip them to obtain a string z, then
the receiver (who only sees z) knows a list of at most ℓ messages, such that
one of them is the original message x. (The more standard notion of uniquely
decodable codes is captured by the special case where ℓ = 1 and it is known that
such codes can only exist for ϵ > 1/4.)

It turns out that strong seeded extractors that extract a single bit are es-
sentially equivalent to list-decodable error correcting codes using the translation
E(x, y) = C(x)y with k ≈ log ℓ. This was first observed by Trevisan [Tre01]. A
precise statement is given below:

– If C : {0, 1}n → {0, 1}2d is an (ℓ, ϵ)-error correcting code then E(x, y) =
C(x)y is a strong (k, 2ϵ)-extractor for k = log ℓ+ log(1/ϵ) + 1.

– If E : {0, 1}n×{0, 1}d → {0, 1} is a strong (k, ϵ)-extractor then C(x) defined
by C(x)y = E(x, y) is a (2k − 1, 2ϵ)-list decodable code.

Proof. (sketch) For the second item, we note that if C is not a list-deocdable
code, then there exists z which violates Definition 8 and has a list of size at
least 2k. The extractor E can be shown to fail on the distribution X that is
uniform on this set. This is because for every x ∈ Supp(X), the “predictor
function” p(y) = zy has Pr[p(Y ) = E(x, Y )] ≥ 1/2+2ϵ > 1/2+ ϵ. It follows that
Pr[p(Y ) = E(X,Y )] > 1/2 + ϵ which is a contradiction to the correctness of the
extractor.

For the first item we note that if E is not a strong extractor, then there exist
a source X and an event A such that Pr[(E(X,Y ), Y ) ∈ A] and Pr[Ud+1 ∈ A]
differ by more than 2ϵ. By standard arguments, such an event gives rise to
a “predictor function” p : {0, 1}d → {0, 1} that has Pr[p(Y ) = E(X,Y )] >
1/2 + 2ϵ. (Intuitively, this follows because Y is uniformly distributed and so A
does not gain from trying to distinguish Y from uniform, and has to be able to
predict E(X,Y ) when given Y ). By an averaging argument, there exist a set S
consisting of an ϵ fraction of x ∈ Supp(X) such that for every x ∈ S we have

Pr[p(Y ) = E(x, Y )] > 1/2 + ϵ. Function p gives rise to a string z ∈ {0, 1}2d by
z = p(y)(y∈{0,1}d) which contradicts Definition 8 as any message in S belongs to
the list of z. ⊓⊔

The translation above can be used to present a unified theory of extractors,
error-correcting codes (as well as other objects such as hash functions and ex-
pander graphs). The reader is referred to [Vad07] for such a treatment.

Exploiting this connection in explicit constructions. The connection above imme-
diately gives excellent explicit constructions of strong extractors that extract one
bit (by using known list-decodable codes). In order to extract many bits it is nat-
ural to have E(x, y) = C(x)y1 , . . . , C(x)ym for some mapping y → y1, . . . , ym.



This approach is used by many constructions starting with Trevisan’s break-
through construction [Tre01] (see also [RRV02]) in which the mapping used is
the Nisan-Wigderson pseudorandom generator [NW94]. A different mapping is
used by Shaltiel and Umans [SU05] which also relies on a specific choice of the
code. The aforementioned recent construction of Guruswami, Umans and Vad-
han [GUV09] exploits this connection by using recent advances in coding theory
(more specifically the Parvaresh-Vardy code [PV05]). The Parvaresh-Vardy code
is not a code with Boolean alphabet, and so the translation above does not work
directly. Nevertheless, a similar argument to the one given above can be used to
construct “unbalanced expander graphs” which in turn yield seeded extractors.

A coding theoretic interpretation of extracting many bits. It was observed by
Ta-Shma and Zuckerman [TSZ04] that strong extractors (k, ϵ)-extractors that
extract m > 1 bits can be viewed (by the translation above) as codes over
alphabet {0, 1}m that allow list-decoding against channels that are extremely
noisy in the following sense: When an encoding C(x) of a message x passes
through the channel, for every symbol C(x)y = E(x, y) of the encoding, the
receiver gets a set Sy ⊆ {0, 1}m of size say 2m/2 with the guarantee that C(x)y ∈
Sy for every y. “Extractor codes” allow recovery against such channels in the
sense that the receiver knows a list of size 2k of messages such that one of
them is the original message x. In fact, extractor codes are resilient even against
stronger channels that also “add errors” and are allowed adversarially choose
1/2− ϵ indices y in which Sy does not satisfy C(x)y ∈ Sy.

3.4 Seeded dispersers as graphs with expansion properties

Given a function E : {0, 1}n × {0, 1}d → {0, 1}m we set N = 2n, M = 2m,
D = 2d and define a bipartite graph GE where the left hand set of vertices is
{0, 1}n, the right hand side set of vertices is {0, 1}m, and each vertex x ∈ {0, 1}n
is connected to E(x, y) for every y ∈ {0, 1}d. Thus, the degree of vertices on the
left hand side is D (and note that we allow multiple edges).

For a set S ⊆ {0, 1}n on the left hand side, we define Γ (S) to be the set of
neighbors of S. It follows that if E is a (k, ϵ)-disperser (which follows in case E is
a (k, ϵ)-extractor) then every set S of size at leastK = 2k has |Γ (S)| ≥ (1−ϵ)·2m.
This notion resembles “vertex expansion” in so called “expander graphs”. The
reader is referred to [HLW06] for a manuscript on expander graphs and their
many applications. We give a definition of vertex expansion below.

Definition 9 (Bipartite expander graphs). A bipartite graph G is a (K, e)-
expander if any set S on the left hand side of size at most K has |Γ (S)| ≥ e · |S|.

In the definition above we consider bipartite graphs. This requirement is
made to easily compare expander graphs with “disperser graphs”. Note that
standard expander graphs easily translate into bipartite ones. (Given a standard
non-bipartite graph G in which every not too large set S ⊆ V expands, we can
create two copies of the vertices and imagine that edges go from the left-hand
copy to the right-hand copy).



size vs. volume: In bipartite expander graphs sets expand in size in the sense
that |Γ (S)| ≥ e·|S|. Disperser graphs may not expand in size and that all sets
S have |Γ (S)| < |S|. Nevertheless, in disperser graphs, the set S expands in
“volume” (the ratio of the size of the set and the size of the universe it lives

in). More precisely, the volume of S ⊆ {0, 1}n is |S|
N (that may be very small

and tend to zero), while the volume of Γ (S) ⊆ {0, 1}m is |Γ (S)|
M ≥ (1− ϵ).

Balanced vs. Unbalanced graphs: In many settings (and in particular in
the setting of the application considered in Section 3.2) disperser graphs
are “unbalanced”, meaning that right had side which is of size M is much
smaller than the left hand side which is of size N . Bipartite expander graphs
are typically balanced in and the left hand side is of the same size as the right
hand side. Nevertheless, it is interesting and useful to consider unbalanced
bipartite expander graphs [TSUZ07,CRVW02,GUV09].

Constant degree vs. logarithmic degree: A useful property of expander graphs
is that it is possible to have such graphs with constant degree. In contrast,
the aforementioned lower bounds of [RTS00] imply that extractor graphs and
disperser graphs must have degree at least D ≥ Ω(log(NK )) which is constant
for K = Ω(N) and non-constant if K = o(N). This means that disperser
graphs cannot have constant degree if K = o(N) (and the graph is unbal-
anced). Nevertheless, even bipartite expanders cannot have constant degree
when the graph is sufficiently unbalanced. We perceive this observation as
saying that the issue here is balanced vs. unbalanced rather than expander
vs. disperser.

Sets smaller than K vs. sets larger than K: In expander graphs every set
smaller than K expands, while in disperser graphs every set of size larger
than K expands. This difference is a consequence of the difference between
the notions of size and volume. In expander graphs, sets which are too large
do not have “room” to expand in size, while in disperser graphs, sets which
are too small cannot possibly expand to volume that is almost one unless
the degree is huge.

There are many applications of extractor and disperser graphs in the lit-
erature. In some cases, extractors and dispersers give better performance than
expander graphs. We present such examples in the next two sections.

3.5 Graphs with expansion beating the eigenvalue bound

We now present a result of Wigderson and Zuckerman [WZ99] showing that
dispersers can be used to construct expanders with very strong expansion (for a
particular parameter regime). We consider the following problem: Let A ≤ N/10
be a parameter. Design a graph with small degree on N vertices such that
every two sets of N/A vertices have an edge between them. (This is indeed a
form of vertex expansion as it means that every set of size N/A sees more than
N −N/A ≥ 9N

10 vertices).
Obviously, it is impossible to achieve this property with degree o(A). The

probabilistic method shows existence of such graphs with degree ≈ A · log(A). If



one achieves vertex expansion by analyzing the “spectral gap” of the graph, then
the best possible degree is ≈ A2 in the sense that analysis of the spectral gap
gives degree ≈ A2, and there exist graphs with optimal spectral gap in which
the degree is ≈ A2 [Kah06].

Using optimal dispersers it is possible to almost match the probabilistic
method and obtain degree A·polylog(A) (and such bounds can be approached us-
ing explicit constructions of dispersers for various choices ofA [RVW00,SSZ98,TS02]).

The construction of [WZ99] works as follows: Let E : {0, 1}n × {0, 1}d →
{0, 1}m be a (k, 1/4)-disperser for k = log(N/A) and m = k. (Furthermore, we
need to assume that all nodes on the right hand side of the disperser graph
have degree not much larger than the average degree given by ND/M). Let
S1, S2 be two sets of size N/A = 2k. By the disperser property each of the
two sets sees more than half the vertices on the right hand side. Therefore, S1

and S2 both see a common neighbor on the right hand side. Define a graph G
on {0, 1}n in which every two vertices are connected if they share a common
neighbor in the disperser graph. By the previous argument every sets S1, S2 of
size N/A have an edge between them. Moreover, the degree of the graph is given

by D · ND
M = D2N

M which is indeed A ·polylog(A) if we use a disperser graph with
small degree D = polylog(N/K) (or equivalently short seed d = O(log(n− k))).

Another example of graphs with expansion beating the eigenvalue bound is
given by Capalbo et al. [CRVW02].

3.6 Seeded extractors and averaging samplers

Let Z1, . . . , ZD be independent random variables over {0, 1}m, let A ⊆ {0, 1}m
and define indicator random variables R1, . . . , Rd by Ri = 1 if Zi ∈ A and Ri = 0
otherwise. Let Z = 2−D ·

∑
1≤i≤D Zi. The Chernoff bound gives that

Pr[

∣∣∣∣Z − |A|
2m

∣∣∣∣ ≥ ϵ] ≤ δ

for δ = 2−Ω(ϵ2D). We say that random variables Z1, . . . , ZD (that are not nec-
essarily independent) form an averaging sampler with estimation error ϵ and
sampling error δ if they satisfy the inequality above for the parameters ϵ, δ.

Consider graphs over the vertex set {0, 1}m. A useful property of such graphs
with “large spectral gap” is that if we choose a vertex Z1 at random and take a
random walk of length D on the graph to generate random variables Z1, . . . , ZD

then we obtain random variables which form an averaging sampler (with quality
that depends on the spectral gap) [AKS87,Gil98]. The advantage of this approach
is that if the graph has constant degree then it is possible to generate the random
walk variables Z1, . . . , ZD using only m + O(D) random bits (compared to the
m ·D bits required to generate D independent random variables). This property
has many applications in “derandomization theory” as it allows to approximate
|A| /2m with small additive error using few random bits.

It was observed by Zuckerman [Zuc97] that seeded extractors yield averaging
samplers with parameters that can beat those given by graphs with large spectral
gap. The connection works as follows:



Extractors yield averaging samplers: Let E : {0, 1}n × {0, 1}d → {0, 1}m
be a (k, ϵ)-extractor. Sample x uniformly from {0, 1}n, and set Zy = E(x, y).
This gives random variables that are an averaging sampler with estimation
error ϵ and sampling error δ = 2k+1/2n. Moreover, sampling these variables
requires n random bits.

Proof. (sketch) For every set A ⊆ {0, 1}m we define

SA =

{
x :

∣∣∣∣Pr[E(x, Y ) ∈ A]− |A|
2m

∣∣∣∣ > ϵ

}
to be the set of strings with which the averaging sampler fails to estimate A
correctly. To bound the size of SA we note that w.l.o.g. at least half of its
elements have the property above without the absolute value. The distribution
X that is uniform over these elements is a source on which A distinguishes the
output of the extractor from uniform. It follows that X does not have large
min-entropy, which implies that SA is small. ⊓⊔

It turns out that the connection between extractors and averaging samplers
can also be reversed. Any procedure that uses n random bits to generate D
random variables that form an averaging sampler with estimation error ϵ and
sampling error δ, immediately translates into a (k, 2ϵ)-extractor with k = n −
(log(1/δ) − log(1/ϵ)) by setting E(x, y) = Zy. Summing up, seeded extractors
are essentially equivalent to averaging samplers under the translation k ≈ n −
log(1/δ).

A consequence of this connection is that graphs with large spectral gap yield
averaging samplers which in turn yield seeded extractors. This relationship is
useful to construct extractors for very large k (k ≥ (1 − α)n for some constant
α > 0) but breaks down for smaller values.

4 Extractors for multiple independent sources

Seeded extractors receive one source X (with the guarantee that H∞(X) ≥ k
for some parameter k), and an independent short seed Y (that is uniformly dis-
tributed). The assumption that Y is uniformly distributed seems very strong,
and we can try and relax it. A natural relaxation is to replace the requirement
that Y is uniformly distributed by the weaker requirement that Y has large
min-entropy. In this setup, it is no longer necessary to require that Y is short.
A more natural setting of parameters is to have Y have the same length and
min-entropy threshold as X. This leads to the notion of extractors for two inde-
pendent sources. In fact, once we consider two independent sources, we may as
well consider ℓ independent sources.

Definition 10 (Extractors and dispersers for multiple independent sources).
A function E : ({0, 1}n)ℓ → {0, 1}m is a (k, ϵ) ℓ-source extractor if for ev-
ery ℓ independent random variables X1, . . . , Xℓ such that for every 1 ≤ i ≤ ℓ,
H∞(Xi) ≥ k, it holds that E(X1, . . . , Xℓ) is ϵ-close to Um. E is a (k, ϵ) ℓ-source
disperser if |Supp(E(X1, . . . , Xℓ))| ≥ (1− ϵ) · 2m.



We remark that these extractors are often seen as a special case of deter-
ministic extraction (as explained in Section 2.6). We have seen in Section 2.1
that (n − 1, ϵ) 1-source extractors/dispersers do not exist for ϵ < 1. By the
probabilistic method, 2-source extractors exist even for k = O(log n+ log(1/ϵ)).

In this section we survey some of the research on extractors and dispersers
for multiple independent sources. In Section 4.1 we explain that multiple source
extractors can be used to generate keys for cryptographic protocols. In Section
4.2 we show that explicit 2-source dispersers can be used to construct Ramsey
graphs. In Section 4.3 we survey some of the explicit constructions extractors
and dispersers for multiple independent sources.

4.1 Generating keys for cryptographic protocols

In Section 3.2 we saw that it is possible to simulate randomized algorithms effi-
ciently given access to one source. However, as explained there, that simulation
is not applicable in cryptographic or distributed settings. Let us focus on crypto-
graphic protocols. The security of such protocols depends on the ability of honest
parties to generate uniformly distributed and private random keys. Moreover, in
such settings the computer of an honest party may be operating in a “hostile
environment” set up by an adversary that is trying to steal the secrets of the
honest party.

ℓ-source extractors enable an honest party to sample a string that is (close
to) uniform, assuming the party has access to ℓ independent sources. Each such
source may be implemented by one of the approaches explained in Section 1. The
requirement from each individual weak source is minimal: It should contain some
min-entropy. It is plausible to assume that samples taken from sources that are
“unrelated” or “remote” are independent. If we accept this assumption then we
can generate keys for cryptographic protocols. Moreover, by the aforementioned
discussion we can hope to have ℓ = 2 and we only require independence between
two random variables.

On a philosophical level the ability to generate independent random vari-
ables is a pre-requisite of cryptography. This is because a world in which this
is not possible is a world in which there are no secrets (as every secret that we
generate is correlated with other random variables that may become known to
the adversary when we interact with him).

4.2 2-source dispersers and Ramsey graphs

An (undirected) graph G on N vertices is K-Ramsey if there are no cliques or
independent sets of size K in G. In 1947 (in the paper that introduced the cel-
ebrated probabilistic method) Erdös showed the existence of K-Ramsey graphs
for K ≈ logN . It is a longstanding challenge to explicitly construct such graphs.
Until recently, the best results were achieved by the classical work of Frankl and
Wilson [FW81] and matched by several other researchers [Alo98,Gro00] giving

K-Ramsey graphs for K ≈ 2
√
logN . Moreover, Gopalan [Gop06] showed that



some of the techniques used to attack this problem cannot beat this bound.
We now observe that explicit errorless two-source dispersers that output one bit
yield explicit constructions of Ramsey graphs.

2-source dispersers yield Ramsey graphs: An explicit (k, 0) 2-source dis-
perser D : ({0, 1}n)2 → {0, 1} translates into an explicit construction of
2k+1-Ramsey graph on 2n vertices.

In fact, 2-source dispersers yield bipartite-Ramsey graphs (which are even
harder to construct than Ramsey graphs). We now explain this argument. Let
D : ({0, 1}n)2 → {0, 1} be a (k, 0) 2-source disperser. We can use D to define a
bipartite graph B = (L,R,E) by interpreting it as an adjacency matrix. More
formally, the left hand set of vertices is L = {0, 1}n, the right hand set is R =
{0, 1}n and two nodes v1 ∈ L, v2 ∈ R are connected iff D(v1, v2) = 1. Graph B
is a balanced bipartite graph where each of the two sides has N = 2n vertices.
Furthermore, G has the property that for every two sets A,B ⊆ {0, 1}n of size
K = 2k, D(A,B) = {0, 1} meaning that every K × K induced subgraph of
G cannot be empty nor complete. Such graphs are called “K-bipartite Ramsey
graphs”.

In particular, we have that for every set A ⊆ {0, 1}n of size K = 2k,
D(A,A) = {0, 1}. If D is symmetric (meaning that D(x, y) = D(y, x)) then
we can also interpret it as the adjacency matrix of a (non-bipartite) undirected
graph over vertex set {0, 1}n and the property above means that D is a K-
Ramsey graph (as every set A of size K is not a clique nor an independent set).
We can make D symmetric by ordering the elements in {0, 1}n in some arbitrary
way and modifying D(x, y) to D(y, x) for x > y. (We can also force D(x, x) = 0
if we want to avoid self loops). This modification does not spoil D by much. It is
easy to see that if D is a (k, 0) 2-source disperser than following the modification
it is still a (k+1, 0) 2-source disperser. Summing up, when given disperser D we
can symmetrize it and use it to define the adjacency matrix of a Ramsey graph.

4.3 Explicit constructions of ℓ-source extractors and dispersers

2-source extractors and dispersers. The discussion above explains some of the
difficulty in constructing explicit 2-source extractors and dispersers for small k.
We now survey the known constructions. Chor and Goldreich [CG88] showed
that E(x, y) = (

∑
1≤i≤n xi · yi) mod 2 is a 2-source extractor with very small

error if k is sufficiently larger than n/2. (Earlier work by Santha and Vazirani
[SV86] considered two independent Santha-Vazirani sources and analyzed the
same extractor function). Bourgain [Bou05] (see also [Rao07]) improved the en-
tropy threshold to k = (1/2−α)n for some small constant α > 0. (The seemingly
small difference between n/2 and (1/2− α)n plays a crucial role in some of the
recent developments in this area). This is the best known extractor construction
for two sources with the same min-entropy. Raz [Raz05] constructed 2-source
extractors where one source has min-entropy larger than n/2 and the other has



logarithmic entropy. Shaltiel [Sha08] used Raz’s extractor to give a 2-source ex-
tractor which for two sources with min-entropy k > n/2 extracts (2 − o(1)) · k
random bits out of the 2k bits of entropy that are available in the two sources.

Barak et al. [BKS+10] constructed 2-source dispersers that for every δ > 0
achieve k = δn. Barak et al. [BRSW06] extended the technique of [BKS+10]

and constructed 2-source dispersers for k = 2log
0.9 n = no(1). By the discus-

sion in Section 4.2 such dispersers translate into Ramsey graphs that beat the
Frankl-Wilson construction [FW81] and give the state of the art on this problem.
The constructions of [BKS+10,BRSW06] are quite involved and rely on many
components from the extractor literature.

ℓ-source extractors. Barak, Impagliazzo and Wigderson [BIW06] constructed ex-
tractors that for every δ > 0, use poly(1/δ) sources with min-entropy k = δn. The
key was exploiting recent developments in arithmetic combinatorics (in partic-
ular, the “sum-product theorem” of [BKT04,Kon03]) to analyze a construction
that was previously suggested by Zuckerman. The high level idea is to show that
if X,Y, Z are three independent sources with min-entropy δn, where each source
is over a finite field F that has no large subfields (which holds vacuously if F is a
prime field) then X ·Y +Z is a distribution that is (close to) having min-entropy
min((δ+α)n, n) for some constant α > 0. By iteratively increasing the entropy,
this gives an extractor.

Rao [Rao09a] used machinery from seeded extractors to construct extractors
that extract randomness from O( logn

log k ) independent sources with min-entropy

k. Note that this means that only O(1/δ) sources are needed for k = nδ. Rao
starts by observing that every source X over {0, 1}n with H∞(X) ≥ k can be
transformed into a “somewhere-random” source X ′ consisting of nO(1) blocks
of length Ω(k) where at least one of them is (close to) uniformly distributed.
(Each such block By is obtained by By = E(X, y) where E is a (k, ϵ)-seeded
extractor with seed length O(log n) so that there are nO(1) blocks). This reduces
the task of extracting from independent general sources to that of extracting
from independent somewhere random sources, and this turns out to be easier.

In recent years there is ongoing research that aims to improve the results above.

5 Some open problems

Below we state some open problems related to explicit constructions of extrac-
tors. We remark that there are many other open problems that are related to
applications of extractors.

Deterministic extractors.

– Construct affine extractors for the field F2 with min-entropy k <
√
n. The

best known construction achieves k = n/
√
log log n [Bou07,Yeh10,Li11b].

– Construct affine dispersers for the field F2 with min-entropy k = polylog(n).

The best known construction achieves k = 2log
0.9 n [Sha11].



– For every constant c, construct extractors for sources samplable by circuits of
size nc with min-entropy k < n/2. It is allowed to use any “plausible hardness
assumption”. A construction based on worst-case hardness against a strong
variant of nondeterministic circuits was given in [TV00]. This construction
requires k = (1− α)n for some constant α > 0.

Seeded extractors.

– Construct seeded extractors that match the lower bounds of [RTS00]. These
lower bounds and state of the art are described in Section 3.1 (see also
[Sha02]).

Multiple source extractors.

– Construct 2-source extractors for min-entropy k ≤ n/3. The best known
construction achieves k = (1/2− α)n for some constant α > 0 [Bou05].

– Construct 2-source dispersers for min-entropy k = polylog(n). The best

known construction achieves k = 2log
0.9 n [BRSW06].

– Construct ℓ-source extractors for ℓ = O(1) and min-entropy k = polylog(n).
The best known construction achieves ℓ = O( logn

log k ) which is constant only

for k = nΩ(1) [Rao09a].
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