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One-Way Functions
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Informal discussion

f easy

Range

A one-way function (OWF) is:
» Easy to compute, everywhere
» Hard to invert, on the average
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Informal discussion

f easy
“// m :
| Domain | | Range \,
f71 hard

A one-way function (OWF) is:
» Easy to compute, everywhere
» Hard to invert, on the average

» Why should we care about OWFs?

» Hidden in (almost) any cryptographic primitive: necessary for
“cryptography”
» Sufficient for many cryptographic primitives
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“Application”: Authentication where server doesn’t store the user’s password.

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography



Formal definition

Definition 1 (one-way functions (OWFs))
A polynomial-time computable function f: {0,1}* — {0, 1}* is one-way, if

P TR 100) € £ ()] = neg(n)

for any PPT A.
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Formal definition

Definition 1 (one-way functions (OWFs))
A polynomial-time computable function f: {0,1}* — {0, 1}* is one-way, if
Pr[A(1",f(x)) € £~ (f(x))]] = neg(n)
x+{0,1}"

for any PPT A.

» polynomial-time computable: there exists polynomial-time algorithm F,
such that F(x) = f(x) for every x € {0,1}*.

» neg: a function n: N — [0, 1] is a negligible function of n, denoted
u(n) = neg(n), if for any p € poly there exists n’ € N such that
wu(n) < 1/p(n) foralln>n'

» x < {0,1}": x is uniformly drawn from {0, 1}"
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Formal definition

Definition 1 (one-way functions (OWFs))
A polynomial-time computable function f: {0,1}* — {0, 1}* is one-way, if
Pr[A(1",f(x)) € £~ (f(x))]] = neg(n)
x+{0,1}"

for any PPT A.

» polynomial-time computable: there exists polynomial-time algorithm F,
such that F(x) = f(x) for every x € {0,1}*.

» neg: a function x: N — [0, 1] is a negligible function of n, denoted
u(n) = neg(n), if for any p € poly there exists n’ € N such that
wu(n) < 1/p(n) foralln>n'

> x + {0,1}": x is uniformly drawn from {0, 1}"

» PPT: probabilistic polynomial-time algorithm.

We typically omit 17 from the input list of A
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Formal definition cont.

1. Is this the right definition?
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Formal definition cont.

1. Is this the right definition?
Asymptotic

Efficiently computable
On the average

Only against PPT’s
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Formal definition cont.
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Formal definition cont.

1. Is this the right definition?
Asymptotic
Efficiently computable
» On the average
» Only against PPT’s
2. OWF = P #NP
3. Does P £ NP = OWF?

4. (most) Crypto implies OWFs

v

v
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Formal definition cont.

1. Is this the right definition?
Asymptotic

Efficiently computable
» On the average

» Only against PPT’s

. OWF —= P #NP

. Does P #NP — OWF?
(most) Crypto implies OWFs
. Do OWFs imply Crypto?
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Formal definition cont.

1. Is this the right definition?
Asymptotic

Efficiently computable
» On the average

» Only against PPT’s

OWF — P #NP

Does P # NP — OWF?
(most) Crypto implies OWFs
Do OWFs imply Crypto?
Where do we find them?

vy

o0 R 0N
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Formal definition cont.

1. Is this the right definition?
Asymptotic

Efficiently computable
» On the average

» Only against PPT’s

OWF — P #NP
Does P # NP — OWF?
(most) Crypto implies OWFs
Do OWFs imply Crypto?
Where do we find them?
7. Non uniform OWFs
Definition 2 (Non-uniform OWF))
A polynomial-time computable function f : {0,1}* — {0, 1}* is non-uniformly

one-way, if v P11 [Calf(3)) € 71 (F(x))] = neg(n)

vy

o0 R 0N

for any polynomial-size family of circuits {Cp} nen.
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Length-preserving functions

Definition 3 (length preserving functions)

A function f: {0,1}* — f: {0,1}* is length preserving, if |f(x)| = |x| for every
x € {0,1}*
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Length-preserving functions

Definition 3 (length preserving functions)

A function f: {0,1}* — f: {0,1}* is length preserving, if |f(x)| = |x| for every
x € {0,1}*

Theorem 4

Assume that OWFs exit, then there exist length-preserving OWFs.
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Length-preserving functions

Definition 3 (length preserving functions)

A function f: {0,1}* — f: {0,1}* is length preserving, if |f(x)| = |x| for every
x € {0,1}*

Theorem 4

Assume that OWFs exit, then there exist length-preserving OWFs.

Proof idea: use the assumed OWF to create a length preserving one.
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Partial domain functions

Definition 5 (Partial domain functions)

Let m,¢: N — N be polynomials. Let f: {0,1}“(" i {0,1}7(") denote a

function defined over input lengths in {m(n)},cn, and maps strings of length
¢(n) to strings of length m(n).
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Partial domain functions

Definition 5 (Partial domain functions)

Let m,¢: N — N be polynomials. Let f: {0,1}“(" i {0,1}7(") denote a

function defined over input lengths in {m(n)},cn, and maps strings of length
¢(n) to strings of length m(n).

Such function is efficient, if it is poly-time computable.

The definition of one-wayness naturally extends to such (efficient) functions.
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OWFs imply length-preserving OWFs cont.

Let f: {0,1}* — {0,1}* be a OWF, let p € poly be a bound on its
computing-time, and assume wlg. that p is monotony increasing (can we?).
Note that |f(x)| < p(|x|).
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Let f: {0,1}* — {0,1}* be a OWF, let p € poly be a bound on its
computing-time, and assume wlg. that p is monotony increasing (can we?).
Note that |f(x)| < p(|x|).

Construction 6 (the length preserving function)
Define g: {0, 1}P(MW+1 5 {0, 1}P(N+1 a5

a(x) = f(xh__’n),1’0P(n)f\f(X1 ,,,,, )l

Note that g is well defined, length preserving and efficient.

Claim 7
g is one-way.

How can we prove that g is one-way?
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OWFs imply length-preserving OWFs cont.

Let f: {0,1}* — {0,1}* be a OWF, let p € poly be a bound on its
computing-time, and assume wlg. that p is monotony increasing (can we?).
Note that |f(x)| < p(|x|).

Construction 6 (the length preserving function)
Define g: {0, 1}P(MW+1 5 {0, 1}P(N+1 a5

g(x) = f(x1,...n), 1, oPM—If(x,...n)l

Note that g is well defined, length preserving and efficient.

Claim 7
g is one-way.

How can we prove that g is one-way?

Answer: using reduction.
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Proving that g is one-way

Proof: Assume that g is not one-way. Namely, there exists PPT A, g € poly and
infinite set Z C {p(n) + 1: n € N}, with

Pr[A(1",y) € g (gx)] > 1/a(m) (1)
x<—{0,1}"

forevery n’ € T.
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Proving that g is one-way

Proof: Assume that g is not one-way. Namely, there exists PPT A, g € poly and
infinite set Z C {p(n) + 1: n € N}, with

P [A(1".y) € g (gx)] > 1/a(m) (1)
x<—{0,1}"

forevery n’ € T.

We show how to use A for inverting f.

Claim 8
weg 'y, 1,000y — wy__,ef(y) J

Proof: Since g(w) = f(wy.__n),1,0PM=1Wn)l — y 1 oP(M -1yl
it follows that f(wq, ) =y (7).
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Algorithm 9 (Inverter B for f)
Input: 1" and y € {0,1}*
1. Letx = A(1P(N+1 y 1 oP(M=Iyl)

2. Returnxq .
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Algorithm 9 (Inverter B for f)
Input: 17 and y € {0,1}*
1. Letx = A(1P(N+1 y 1 oP(M=Iyl)

2. Returnxq .

Claim 10
LetZ' := {n € N: p(n) + 1 € Z}. Then
1. 7’ is infinite

2. Pryqo0,137[B(1", f(x)) € f=1(f(x))] > 1/q(p(n) + 1) for every n € 7'
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Algorithm 9 (Inverter B for f)
Input: 17 and y € {0,1}*
1. Letx = A(1P(N+1 1y 1 oP(M—I¥l)

2. Returnxq .

Claim 10
LetZ' := {n € N: p(n) + 1 € Z}. Then
1. 7/ is infinite

2. Pryq0,130[B(17, f(x)) € f=1(f(x))] > 1/q(p(n) + 1) for every n € 7'

This contradicts the assumed one-wayness of f. [
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Algorithm 9 (Inverter B for f)
Input: 17 and y € {0,1}*
1. Letx = A(1P(N+1 1y 1 oP(M—I¥l)

2. Returnxq .

Claim 10
LetZ' := {n € N: p(n) + 1 € Z}. Then
1. 7' is infinite
2. Pryq0,130[B(17, f(x)) € f=1(f(x))] > 1/q(p(n) + 1) for every n € 7'

This contradicts the assumed one-wayness of f. [
Proof: (1) is clear, (2)
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n —1
x<—FOr,1}n [8(1 ’f(X)) ef (f(X))]
= p(n)+1 o(n)— |£(x)] 1
R [AGP (), 1,0 Moo € 17 (100))]
= p(n)+1 / 1 ,
= X,H{Olir}p(nm [A(1 LI, € U n))]
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Cweqoaypmen L TR e

> P [APDH g(x) € g7 (g(X)]
x'+{0,1}P(M+1
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From partial-domain length-preserving OWFs to length-preserving
OWFs

Construction 11
Given a function f: {0,1}4" s {0,1}4"), define fy: {0,1}" +— {0,1}" as
fan(x) = f(x1,...,

where n = |x| and k := max{{(n') < n: n" € [n]}.
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From partial-domain length-preserving OWFs to length-preserving
OWFs
Construction 11
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fis.
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Assume f is efficient, f is one-way, and / satisfies 1 < e%;;) < p(n) for some
p € poly, then fy is one-way function.
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Proof: ?

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography 2018 12/27



From partial-domain length-preserving OWFs to length-preserving
OWFs

Construction 11
Given a function f: {0, 114" s {0,1}4", define fy: {0,1}" — {0,1}" as
fan(x) = f(x1,..),0"F

where n = |x| and k := max{{(n') < n: n" € [n]}.

Clearly, fy is length preserving, defined for every input length, and efficient if
fis.

Claim 12

Assume f is efficient, f is one-way, and / satisfies 1 < 4%;)1) < p(n) for some
p € poly, then £ is one-way function.

Proof: ?

We conclude that the existence of OWF implies the existence of
length-preserving OWF that is defined over all input lengths.
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Few remarks

More “security-preserving” reductions exits.
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Few remarks

More “security-preserving” reductions exits.

Convention for rest of the talk
Let f: {0,1}" — {0,1}" be a one-way function. J
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Weak one-way functions
Definition 13 (weak one-way functions)
A poly-time computable function f: {0,1}* — f: {0,1}* is a-one-way, if

Pr [A(1" f(x)) € f1(f(x))] < a(n)

x+{0,1}"

for any PPT A and large enough n € N.
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Definition 13 (weak one-way functions)
A poly-time computable function f: {0,1}* — f: {0,1}* is a-one-way, if

Pr [A(1" f(x)) € f1(f(x))] < a(n)

x+{0,1}"

for any PPT A and large enough n € N.

1. For example consider «(n) = 0.1, or a(n) = 0.99 or maybe even
a(n=1-1/n.

2. (strong) OWF according to Definition 1, are neg-one-way according to
the above definition
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Weak one-way functions

Definition 13 (weak one-way functions)
A poly-time computable function f: {0,1}* — f: {0,1}* is a-one-way, if

Pr [A(1" f(x)) € f1(f(x))] < a(n)

x+{0,1}"

for any PPT A and large enough n € N.

1. For example consider «(n) = 0.1, or a(n) = 0.99 or maybe even
a(n=1-1/n.

2. (strong) OWF according to Definition 1, are neg-one-way according to
the above definition

3. Can we “amplify" weak OWF to strong ones?

Benny Applebaum Iftach Haitner (TAU) Foundation of Cryptography 2018 14/27



Strong to weak OWFs

Claim 14

Assume there exists OWFs, then there exist functions that are 5-one-way, but
not (strong) one-way
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Strong to weak OWFs
Claim 14

Assume there exists OWFs, then there exist functions that are 5-one-way, but
not (strong) one-way

Proof:
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Strong to weak OWFs
Claim 14

Assume there exists OWFs, then there exist functions that are 5-one-way, but
not (strong) one-way

Proof: For a OWF f, let

(1, (%), b=1,;
9(x,b) = { (0, x), otherwise (b = 0).
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Weak to strong OWFs

Theorem 15 (weak to strong OWFs (Yao))

Assume there exist (1 — §)-weak OWFs with 6(n) > 1/q(n) for some g € poly,
then there exist (strong) one-way functions.
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Weak to strong OWFs

Theorem 15 (weak to strong OWFs (Yao))

Assume there exist (1 — §)-weak OWFs with 6(n) > 1/q(n) for some g € poly,
then there exist (strong) one-way functions.

> |dea: parallel repetition (i.e., direct product): Consider
9(x1,....x:) = f(x1),...,f(x;) for large enough t
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» Motivation: if something is somewhat hard, than doing it many times is
(very) hard
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(very) hard

> But, is it really so?

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography 2018 16/27



Weak to strong OWFs

Theorem 15 (weak to strong OWFs (Yao))

Assume there exist (1 — 9)-weak OWFs with (n) > 1/q(n) for some q € poly,
then there exist (strong) one-way functions.

» Idea: parallel repetition (i.e., direct product): Consider
g(x1,...,x) = f(x1),...,f(x) for large enough t

» Motivation: if something is somewhat hard, than doing it many times is
(very) hard

» But, is it really so?

Consider matrix multiplication: Let A € R™ " and x € R”

Computing Ax takes ©(n?) times, but computing A (xy, Xz, . . ., X,) takes
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» Idea: parallel repetition (i.e., direct product): Consider
g(x1,...,x) = f(x1),...,f(x) for large enough t

» Motivation: if something is somewhat hard, than doing it many times is
(very) hard

» But, is it really so?

Consider matrix multiplication: Let A € R™ " and x € R”

Computing Ax takes ©(n?) times, but computing A (xy, Xz, . . ., X,) takes
...only O(n?3+) < ©(n?)
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Weak to strong OWFs

Theorem 15 (weak to strong OWFs (Yao))

Assume there exist (1 — 9)-weak OWFs with (n) > 1/q(n) for some q € poly,
then there exist (strong) one-way functions.

2

Idea: parallel repetition (i.e., direct product): Consider
g(x1,...,x) = f(x1),...,f(x) for large enough t

Motivation: if something is somewhat hard, than doing it many times is
(very) hard
But, is it really so?

Consider matrix multiplication: Let A € R™ " and x € R”

Computing Ax takes ©(n?) times, but computing A (xy, Xz, . . ., X,) takes
...only O(n?3+) < ©(n?)

Fortunately, parallel repetition does amplify weak OWFs :-)
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Amplification via parallel repetition

Theorem 16

Letf: {0,1}" — {0,1}" be a (1 — §)-weak OWF for §(n) = 1/q(n) for some

(positive) g < poly, and let t(n) = [%W Then g: ({0,1}M)1M — ({0,1}m)in
defined by g(x1, . .

s Xe(my) = f(x1), ..., f(Xe(ny), is @ one-way function.
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Amplification via parallel repetition
Theorem 16

Letf: {0,1}" — {0,1}" be a (1 — §)-weak OWF for §(n) = 1/q(n) for some
(positive) g < poly, and let t(n) = [%W Then g: ({0,1}M)1M — ({0,1}m)in
defined by g(xi, ..., Xn)) = f(X1), ..., f(Xyn)), is @ one-way function.

Clearly g is efficient.
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Amplification via parallel repetition
Theorem 16

Letf: {0,1}" — {0,1}" be a (1 — §)-weak OWF for §(n) = 1/q(n) for some

(positive) g < poly, and let t(n) = [%W Then g: ({0,1}M)1M — ({0,1}m)in
defined by g(xi, ..., Xn)) = f(X1), ..., f(Xyn)), is @ one-way function.

Clearly g is efficient. Is it one-way? Proof via reduction:
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Amplification via parallel repetition

Theorem 16

Letf: {0,1}" — {0,1}" be a (1 — §)-weak OWF for §(n) = 1/q(n) for some
(positive) g < poly, and let t(n) = [%W Then g: ({0,1}"){" s ({0, 1}7){(")
defined by g(xi, ..., Xn)) = f(X1), ..., f(Xyn)), is @ one-way function.

Clearly g is efficient. Is it one-way? Proof via reduction: Assume 3 PPT A
violating the one-wayness of g, we show there exists a PPT B violating the
weak hardness of f.
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Amplification via parallel repetition

Theorem 16

Letf: {0,1}" — {0,1}" be a (1 — §)-weak OWF for §(n) = 1/q(n) for some
(positive) q € poly, and let t(n) = Pg%:ﬂ' Then g: ({0,1}"){" s ({0, 1}7){(")
defined by g(x1, ..., Xyn)) = f(x1), ..., f(Xyn)), is @ one-way function.

Clearly g is efficient. Is it one-way? Proof via reduction: Assume 3 PPT A
violating the one-wayness of g, we show there exists a PPT B violating the
weak hardness of f.

Difficultly: We need to use an inverter for g with low success probability, e.g.,
1, to get an inverter for f with high success probability, e.g., 3 or even 1 — 1
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Amplification via parallel repetition

Theorem 16

Letf: {0,1}"+— {0,1}" be a (1 — §)-weak OWF for 6(n) = 1/q(n) for some
(positive) q € poly, and let t(n) = Pg%:ﬂ' Then g: ({0,1}"){" s ({0, 1}7){(")
defined by g(x1, ..., Xyn)) = f(x1), ..., f(Xyn)), is @ one-way function.

Clearly g is efficient. Is it one-way? Proof via reduction: Assume 3 PPT A
violating the one-wayness of g, we show there exists a PPT B violating the
weak hardness of f.

Difficultly: We need to use an inverter for g with low success probability, e.g.,
1, to get an inverter for f with high success probability, e.g., 3 or even 1 — 1

In the following we fix (an assumed) PPT A, p € poly and infinite set Z C N s.t.
Pr [A(g(w)) € g~ (g(w)] = 1/p(n)

w+—{0,1}t"

for every n € 7.
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Amplification via parallel repetition

Theorem 16

Letf: {0,1}"+— {0,1}" be a (1 — §)-weak OWF for 6(n) = 1/q(n) for some
(positive) q € poly, and let t(n) = Pg%:ﬂ' Then g: ({0,1}"){" s ({0, 1}7){(")
defined by g(x1, ..., Xyn)) = f(x1), ..., f(Xyn)), is @ one-way function.

Clearly g is efficient. Is it one-way? Proof via reduction: Assume 3 PPT A
violating the one-wayness of g, we show there exists a PPT B violating the
weak hardness of f.

Difficultly: We need to use an inverter for g with low success probability, e.g.,
1, to get an inverter for f with high success probability, e.g., 3 or even 1 — 1

In the following we fix (an assumed) PPT A, p € poly and infinite set Z C N s.t.
Pr [A(g(w)) € g~ (g(w)] = 1/p(n)

w+—{0,1}t"

for every n € Z. We also “fix" n € Z and omit it from the notation.
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Proving that g is One-Way — the Naive approach

Assume A attacks each of the t outputs of g independently: 3 PPT A’ such
that A(z1,...,z:) =A(z1) ..., A (z)
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Proving that g is One-Way — the Naive approach

Assume A attacks each of the t outputs of g independently: 3 PPT A’ such
that A(z1,...,z:) =A(z1) ..., A (z)

It follows that A’ inverts f with probability greater than (1 — 9).
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Proving that g is One-Way — the Naive approach

Assume A attacks each of the t outputs of g independently: 3 PPT A’ such
that A(z1,...,z:) =A(z1) ..., A (z)

It follows that A’ inverts f with probability greater than (1 — 9).
Otherwise

t

yokr L AGG(w) € g (g(w))] = ,1} P R GG) € F1(F(x))]

<(1-0) < el < ploen
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Proving that g is One-Way — the Naive approach

Assume A attacks each of the t outputs of g independently: 3 PPT A’ such
that A(z1,...,z:) =A(z1) ..., A (z)

It follows that A’ inverts f with probability greater than (1 — 9).
Otherwise

t

yokr L AGG(w) € g (g(w))] = EKE{POrA}n [A(f(x)) € F1(f(x))]

< (1 _5)1‘ < eflogzn < nflogn

Hence A’ violates the weak hardness of f

A less naive approach would be to assume that A goes over the inputs
sequentially.
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Proving that g is One-Way — the Naive approach

Assume A attacks each of the t outputs of g independently: 3 PPT A’ such
that A(z1,...,z:) =A(z1) ..., A (z)

It follows that A’ inverts f with probability greater than (1 — 4).
Otherwise

t

[Algw)) € g (gw)l =[] Pr [A(f(x) € f(f(x))]

r
w<{0,1}:n x{0,1}"

i=1
<(1-0) < el < ploen
Hence A’ violates the weak hardness of f

A less naive approach would be to assume that A goes over the inputs
sequentially.

Unfortunately, we can assume none of the above.
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Proving that g is One-Way — the Naive approach

Assume A attacks each of the t outputs of g independently: 3 PPT A’ such
that A(z1,...,z:) =A(z1) ..., A (z)

It follows that A’ inverts f with probability greater than (1 — 4).
Otherwise

t

[Algw)) € g (gw)l =[] Pr [A(f(x) € f(f(x))]

r
w<{0,1}:n x{0,1}"

i=1
<(1-0) < el < ploen
Hence A’ violates the weak hardness of f

A less naive approach would be to assume that A goes over the inputs
sequentially.

Unfortunately, we can assume none of the above.

Any idea?
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Hardcore sets

Assume f is of the form ;
easy

eies M
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Hardcore sets

Assume f is of the form

[ easy

Density &

@/‘/

Domain

Definition 17 (hardcore sets)
S ={S, € {0,1}"} is a 6-hardcore set for f: {0,1}" — {0,1}", if:
1. Pry—qo,137 [f(x) € S] > é(n) for large enough n, and

2. Forany PPTAand g € poly for large enough n, it holds that
Pr{A(y) e f-(y)] < q(n for every y € Sp.
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Definition 17 (hardcore sets)
S ={S, € {0,1}"} is a 6-hardcore set for f: {0,1}" — {0,1}", if:
1. Pry—qo,137 [f(x) € S] > é(n) for large enough n, and

2. Forany PPTAand g € poly for large enough n, it holds that
Pr{A(y) e f-(y)] < q(n for every y € Sp.

Assuming f has such a §-HC set seems like a good starting point :-)
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Hardcore sets

Assume f is of the form

f easy

Ve M\

‘ Domain ] ‘:' R :‘ Density &
f_l hard

Definition 17 (hardcore sets)
S ={S, € {0,1}"} is a 6-hardcore set for f: {0,1}" — {0,1}", if:
1. Pryc 0,130 [f(x) € 8] > 6(n) for large enough n, and

2. Forany PPTAand g € poly for large enough n, it holds that
Pr{A(y) e f-(y)] < q(n for every y € Sp.

Assuming f has such a §-HC set seems like a good starting point :-)
Unfortunately, we do not know how to prove that f has hardcore set :-<
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Failing sets

Definition 18 (failing sets)
f:{0,1}"— {0,1}" has a o¢-failing set for a pair (A, q) of algorithm and
polynomial, if exists S = {S, C {0, 1}"}, such that the following holds for large
enough n:

1. Pryqo,137 [f(X) € Sp] > d(n), and

2. Pr[A(y) € f-'(y)] <1/q(n), forevery y € S,
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Failing sets

Definition 18 (failing sets)

f:{0,1}"— {0,1}" has a o¢-failing set for a pair (A, q) of algorithm and
polynomial, if exists S = {S, C {0, 1}"}, such that the following holds for large
enough n:

1. Pryqo,137 [f(X) € Sp] > d(n), and
2. Pr[A(y) € f-'(y)] <1/q(n), forevery y € S,

Claim 19

Let f be a (1 — 0)-OWF, then f has a ¢/2-failing set, for any pair of PPT A and
q € poly.
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f:{0,1}"— {0,1}" has a o¢-failing set for a pair (A, q) of algorithm and
polynomial, if exists S = {S, C {0, 1}"}, such that the following holds for large
enough n:

1. Pryq0,130 [f(X) € Sp] > d(n), and
2. Pr[A(y) € f-'(y)] <1/q(n), forevery y € S,

Claim 19

Let f be a (1 — 0)-OWF, then f has a ¢/2-failing set, for any pair of PPT A and
q € poly.

High level idea: Define S, := {y € {0,1}": Pr[A(y) € f'(y)]] <1/q(n)}.
1. If this set is small, show that A inverts f very well.

2. If this set is large, then it is by definition a fooling set.

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography 2018 20/27



Failing sets

Definition 18 (failing sets)

f:{0,1}"— {0,1}" has a o¢-failing set for a pair (A, q) of algorithm and
polynomial, if exists S = {S, C {0, 1}"}, such that the following holds for large
enough n:

1. Pryq0,130 [f(X) € Sp] > d(n), and
2. Pr[A(y) € f-'(y)] <1/q(n), forevery y € S,

Claim 19

Let f be a (1 — 0)-OWF, then f has a ¢/2-failing set, for any pair of PPT A and
q € poly.

High level idea: Define S, := {y € {0,1}": Pr[A(y) € f'(y)]] <1/q(n)}.
1. If this set is small, show that A inverts f very well.

2. If this set is large, then it is by definition a fooling set.

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography 2018 20/27



Proof:

Benny Applebaum  Iftach Haitner (T

Foundation of Cryptography



Proof: Assume 3 PPT A and q € poly, such that for any S = {S, € {0,1}"} at
least one of the following holds:

1. Pryqo,130 [f(x) € Sp] < d(n)/2 for infinitely many n's, or
2. For infinitely many n's: 3y € S, with Pr [A(y) € f='(y)]] > 1/q(n).
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Proof: Assume 3 PPT A and q € poly, such that for any S = {S, € {0,1}"} at
least one of the following holds:

1. Pryqo,130 [f(x) € Sp] < d(n)/2 for infinitely many n's, or
2. For infinitely many n's: 3y € S, with Pr [A(y) € f='(y)]] > 1/q(n).

We'll use A to contradict the hardness of f.
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Using A to invert f
Forne N, letS, :={y € {0,1}": Pr[A(y) € f~'(y)]] < 1/q(n)}.
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Using A to invert f

Forne N, letS, :={y € {0,1}": Pr[A(y) € f~'(y)]] < 1/q(n)}.
The second item cannot hold, therefore the first item must hold, meaning that:

Claim 20

Jinfinite Z C N with Pry_0.13» [f(X) € Sp] < d(n)/2 for every n € . J
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Using A to invert f

Forne N, letS, :={y € {0,1}": Pr[A(y) € f~'(y)]] < 1/q(n)}.
The second item cannot hold, therefore the first item must hold, meaning that:
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Hence, for large enough n € Z:  Pry._(o 11 [B(f(x)) € f~(f(x))] > 1 —d(n).
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Proof: ?
Hence, for large enough n € Z:  Pry._(o 11 [B(f(x)) € f~(f(x))] > 1 —d(n).
Namely, f is not (1 — 4)-one-way [
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g is not one-way — f has no §/2 failing set
We show: g is not one way —> f has no §,/2 failing-set for some PPT B and
g € poly.
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g is not one-way — f has no §/2 failing set

We show: g is not one way —> f has no §,/2 failing-set for some PPT B and
g € poly.

Claim 23

Assume 3 PPT A, p € poly and an infinite set Z C N such that

Pr [A(g() € g7 (9W))] = 55

w<{0,1}t):n

for every n € 7.
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for every n € Z. Then 3 PPT B such that
- —logn
x<—{0,1}’!:|);=f(x)68n [B(y) < f (y)] = t(n pmy 1

for every n € 7 and every S, C {0, 1}" with Pry_¢q 130 [f(X) € Sp] > 6(n)/2.
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Claim 23
Assume 3 PPT A, p € poly and an infinite set Z C N such that

et T AO)) € 07 (0(W))] = 55
for every n € Z. Then 3 PPT B such that
[BW) € ' ()] = ms — P

Pr —logn
x+{0,1}"|y=F(x)€Sn

for every n € 7 and every S, C {0,1}" with Pr,_ (0 13» [f(X) € Sp] > 6(n)/2.

w

Thm follows: Fix S = {S, € {0,1}"}.
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g is not one-way — f has no §/2 failing set

Claim 23
Assume 3 PPT A, p € poly and an infinite set Z C N such that

Pr [A(9(x)) € (Q(W))] = p(N)

w<—{0,1}tn)-n
for every n € Z. Then 3 PPT B such that
f~
Xe{0,1}'!:|);:f(x)e8,, [B(y) € (y)] = #(n)p(n) P(n) -n

for every n € 7 and every S, C {0,1}" with Pr,_ (0 13» [f(X) € Sp] > 6(n)/2.

—logn

w

Thm follows: Fix S = {S, C {0,1}"}. By Claim 23, for every n € Z, either
> Pry o1y [f(x) € Sp] < d(n)/2, or
> Pre(011)y—f(x)es, [BY) € F1(y)] = p(n) _ p-logn
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for every n € Z. Then 3 PPT B such that
Xe{0,1}'!:|);:f(x)e8,, [B(y) ef (y)] = #(n)p(n) P(n) -n
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—logn
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> Pre(011)y—f(x)es, [BY) € F1(y)] = p(n) _ p-logn

(for large enough n)
> 1

2t(mp(n)
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g is not one-way — f has no §/2 failing set

Claim 23
Assume 3 PPT A, p € poly and an infinite set Z C N such that

P [A(G(X) € g ()] = 5

w+<—{0,1}t(n-n
for every n € Z. Then 3 PPT B such that
[B(y) € f_ (y)] = [(n p(n) —n

Pr —logn
x<+—{0,1}7|y=Ff(x)ES,
for every n € 7 and every S, C {0,1}" with Pr,_ (0 13» [f(X) € Sp] > 6(n)/2.

Thm follows: Fix S = {S, C {0,1}"}. By Claim 23, for every n € Z, either
> Pry 0,137 [f(x) € Sp] < d(n)/2, or
> Pryc(o.130)y=fes, [B(Y) € f1(y)] > p(n) _ p-logn

(for large enough n)
> 1

2t(n)p(n)
(for large enough n) i _
— Jy € Sp: Pr[B(y) e f'(y)] > 72,(,,;,3(,,)-
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Claim 23
Assume 3 PPT A, p € poly and an infinite set Z C N such that

Pr [A(9(x)) € (Q(W))] = p(N)

w<—{0,1}tn)-n
for every n € Z. Then 3 PPT B such that
P B f- — log n
Xe{0,1}"|;:f(x)e3n[ (y) e (Y)] = t(n)p(n) p(n) -n

for every n € 7 and every S, C {0,1}" with Pr,_ (0 13» [f(X) € Sp] > 6(n)/2.

Thm follows: Fix S = {S, C {0,1}"}. By Claim 23, for every n € Z, either
> Pry 0,137 [f(x) € Sp] < d(n)/2, or
> Pryc(o.130)y=fes, [B(Y) € f1(y)] > p(n) _ p-logn

(for large enough n)
> 1

2t(n)p(n)
(for Iarggough n) 3y € Sp: Pr [B(y) c f_1(y)] > W
Namely, f has no ¢/2 failing set for (B, g = 2t(n)p(n))
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The no failing-set algorithm: Proof of main claim

Algorithm 24 (Inverter B on input y € {0,1}")
1. Choose w + ({0,1}M){", z = (z,...,z) = g(w) and i + [{]
2. SetZ =(z1,.-,Zi 1, Y, ZivAy- -5 2t)
3. Return A(Z');
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Algorithm 24 (Inverter B on input y € {0,1}")
1. Choose w + ({0,1}M){", z = (z,...,z) = g(w) and i + [{]
2. SetZ =(z1,.-,Zi 1, Y, ZivAy- -5 2t)
3. Return A(Z');

Fix n€ 7 and a set S, C {0,1}" with Pry_0.1}» [f(X) € S] > d(n)/2.
Claim 25

Prx{o1}nly=f(x)es, [B(y) € f(y)] > W _ —logn
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P —1 1 p—logn
Provmg Prx<—{0,1}"|y:f(x)e$n [B(y) ef (}/)] 2 t(n)-p(n) n
Algorithm 26 (Inverter B on input y € {0,1}")

1. Choose w < ({0,1}"){("), z = (z,...,2) = g(w) and i + [{]
2. Setz' = (21,...,Z,‘_1,y,z,'+1,...,21)

3. Return A(Z’);
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Algorithm 26 (Inverter B on input y € {0,1}")

1. Choose w < ({0,1}"){("), z = (z,...,2) = g(w) and i + [{]
2. Setz' = (Z1$~",Zi—17yazi+17"-azl')

3. Return A(Z’);

> For Typ = {v € {0,1}!'": Ji € [t]: v; € Sp}, it holds Pr, [Typ] > 1 —n~—'een
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Proving Pry._ (o 11n)y=f(x)es, [B(Y) € f1(y)] > W — n~len
Algorithm 26 (Inverter B on input y € {0,1}")

1. Choose w < ({0,1}"){("), z = (z,...,2) = g(w) and i + [{]

2. Setz =(z1,...,2-1,Y,Zis1,-- -+ 2t)

3. Return A(Z’);

> For Typ = {v € {0,1}!'": Ji € [t]: v; € Sp}, it holds Pr, [Typ] > 1 —n~—'een
> VL C {0, 1} =]

I _ =
Pzr[ﬁ_ﬁﬂTyp] E Priz=1/] < E

LeL’ LeL’
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Proving Prx<—{0,1}"\y:f(x)€8n [B(y) € f_1(y)] > W — nlogn
Algorithm 26 (Inverter B on input y € {0,1}")
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Proving Pry. (0 11ny—f(x)es, [B(Y) € f1(y)] > W —n~logn
Algorithm 26 (Inverter B on input y € {0,1}")

1.
28
3.

Choose w + ({0, 13N, z = (z,...,z) = g(w) and i « [{]
Setz' = (21,4~-»Zi—1a,V7Zi+17~~,Zt)

Return A(Z’);

For Typ = {v € {0,1}'": 3j € [f]: v; € Sp}, it holds Pr, [Typ] > 1 — n—'o&"
v‘ﬁ g {05 1}t(n).n - / ’
Pr[ﬂl =1LN Typ] = Z Pr[z _ Z] < Z Pr[zt—é] _ Prz,t[ﬁ].

‘ el ter!

» Hence VL C {0, 1}t n-n . : Pry (L] > PrZ[Lﬁ)Typ] < Pral£]—n" Iogn.

- t(n)

> Assume A is deterministic and let L4 = {v € {0,1}'": A(v) € g~ '(v)}.
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—1 > ,
o es, B €] 2 Priz’ e L]
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- t(n)

> Assume A is deterministic and let L4 = {v € {0,1}'": A(v) € g~ '(v)}.

Priz € L4] — n~logn

t(n)

B(y) e f(y)] >Pr[z € L4] >

1
= {m-p(n)

Pr
x<{0,1}"|y=Ff(x)ESn

-n log n
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Proving Pry. (0 11n)y=f(x)es, [B(Y) € f1(y)] > W —n~'e"  cont.
In the case that A is randomized, let
» A, — A whose coins fixed to r

» a,(n) — the inversion probability of A,, for a uniform input for g
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» A, — A whose coins fixed to r

» a,(n) — the inversion probability of A,, for a uniform input for g
Note that E, [a-(n)] > 1/p(n).
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Proving Pry. (0 11n)y=f(x)es, [B(Y) € f1(y)] > W —n~'e"  cont.
In the case that A is randomized, let
» A, — A whose coins fixed to r
» a,(n) — the inversion probability of A,, for a uniform input for g
Note that E, [a-(n)] > 1/p(n).
It follows that

g5 ]

Pr
x+{0,1}"y=f(X)ESn
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L___ p-lgn cont.

Proving Pry. (o 11n)y—r(x)es, [B(Y) € ()] > Or0)
In the case that A is randomized, let
» A, — A whose coins fixed to r
» a,(n) — the inversion probability of A,, for a uniform input for g
Note that E, [a-(n)] > 1/p(n).
It follows that

B(y)ef'(y)] > E [Mn) . l]

Pr
x+{0,1}"y=f(X)ESn
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L___ p-lgn cont.

Proving Pry. (o 11n)y—r(x)es, [B(Y) € ()] > Or0)
In the case that A is randomized, let
» A, — A whose coins fixed to r
» a,(n) — the inversion probability of A,, for a uniform input for g
Note that E, [a-(n)] > 1/p(n).
It follows that

B(y)ef'(y)] > E [Mn) . l]

P
X {0.1}y=1()ES, t(n)
= E[a(n)] /t(n) — n~e"
1 — log n.
~ t(n) - p(n)
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Closing remarks

» Weak OWFs can be amplified into strong one

» Can we give a more security preserving amplification?

» Similar hardness amplification theorems for other cryptographic
primitives (e.g., Captchas, general protocols)?

» What properties of the weak OWFs have we used in the proof?
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