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Administration
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Important Details

1. There will be a final exam.

2. Course website: Can be reached from Ronen’s homepage.
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Course Prerequisites

1. Computational Models
2. Probability theory.
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Course Material

1. Books:
1.1 Oded Goldreich. Foundations of Cryptography.
1.2 Jonathan Katz and Yehuda Lindell. An Introduction to Modern

Cryptography.
2. Lecture notes

2.1 Ran Canetti www.cs.tau.ac.il/~canetti/f08.html
2.2 Yehuda Lindell

u.cs.biu.ac.il/~lindell/89-856/main-89-856.html
2.3 Luca Trevisan www.cs.berkeley.edu/~daw/cs276/
2.4 Salil Vadhan people.seas.harvard.edu/~salil/cs120/
2.5 Benny Applebaum and Iftach Haitner http://moodle.tau.ac.

il/2016/course/view.php?id=368416201
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Course Topics

Basic primitives in cryptography (i.e., one-way functions,
pseudorandom generators and zero-knowledge proofs).

I Focus on formal definitions and rigorous proofs.
I The goal is not studying some list, but to understand cryptography.
I Start with “what is security?”
I Only then do we ask how to achieve it.
I Start from the bottom and work our way up.
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Part II

Foundation of Cryptography
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Some stories and motivation

I Encryption (symmetric and public-key).
I Coin tossing over the phone (impossible information theoretically,

but possible against poly-time adversaries).
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Section 3

Cryptography and Computational Hardness
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Cryptography and Computational Hardness

1. What is Cryptography?

2. Hardness assumptions, why do we need them?
3. Does P 6= NP suffice?

NP: all (languages) L ⊂ {0,1}∗ for which there exists a
polynomial-time algorithm V and (a polynomial)
p ∈ poly such that the following hold:

3.1 V (x ,w) = 0 for any x /∈ L and w ∈ {0,1}∗
3.2 for any x ∈ L, ∃w ∈ {0,1}∗ with |w | ≤ p(|x |) and

V (x ,w) = 1

P 6= NP: i.e., ∃L ∈ NP, such that for any polynomial-time
algorithm A, ∃x ∈ {0,1}∗ with A(x) 6= 1L(x)

polynomial-time algorithms: an algorithm A runs in
polynomial-time, if ∃p ∈ poly such that the running
time of A(x) is bounded by p(|x |) for any x ∈ {0,1}∗

4. Problems: hard on the average. No known solution
5. One-way functions: an efficiently computable function that no

efficient algorithm can invert.
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Part III

Notation
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Notation I

I For t ∈ N, let [t ] := {1, . . . , t}.
I Given a string x ∈ {0,1}∗ and 0 ≤ i < j ≤ |x |, let xi,...,j stands for

the substring induced by taking the i , . . . , j bit of x (i.e.,
x [i] . . . , x [j]).

I Given a function f defined over a set U , and a set S ⊆ U , let
f (S) := {f (x) : x ∈ S}, and for y ∈ f (U) let
f−1(y) := {x ∈ U : f (x) = y}.

I poly stands for the set of all polynomials.
I The worst-case running-time of a polynomial-time algorithm on

input x , is bounded by p(|x |) for some p ∈ poly.
I A function is polynomial-time computable, if there exists a

polynomial-time algorithm to compute it.
I PPT stands for probabilistic polynomial-time algorithms.
I A function µ : N 7→ [0,1] is negligible, denoted µ(n) = neg(n), if for

any p ∈ poly there exists n′ ∈ N with µ(n) ≤ 1/p(n) for any n > n′.
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Distribution and random variables I

I The support of a distribution P over a finite set U , denoted
Supp(P), is defined as {u ∈ U : P(u) > 0}.

I Given a distribution P and en event E with PrP [E ] > 0, we let
(P | E) denote the conditional distribution P given E (i.e.,
(P | E)(x) = P(x)∧E

PrP [E ] ).
I For t ∈ N, let let Ut denote a random variable uniformly distributed

over {0,1}t .
I Given a random variable X , we let x ← X denote that x is

distributed according to X (e.g., Prx←X [x = 7]).
I Given a final set S, we let x ← S denote that x is uniformly

distributed in S.
I We use the convention that when a random variable appears

twice in the same expression, it refers to a single instance of this
random variable. For instance, Pr[X = X ] = 1 (regardless of the
definition of X ).
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Distribution and random variables II
I Given distribution P over U and t ∈ N, we let P t over U t be defined

by Dt (x1, . . . , xt ) = Πi∈[t]D(xi).
I Similarly, given a random variable X , we let X t denote the random

variable induced by t independent samples from X .
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