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Interactive Proofs
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NP as a Non-interactive Proofs

Definition 1 (VP)

L € NP iff 3 and poly-time algorithm V such that:
@ Vx € L there exists w € {0,1}* s.t. V(x,w) =1
@ V(x,w)=0forevery x ¢ £Land w € {0,1}*

Only | x| counts for the running time of V.
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Definition 1 (VP)
L € NP iff 3 and poly-time algorithm V such that:

@ Vx € L there exists w € {0,1}* s.t. V(x,w) =1
@ V(x,w) =0 forevery x ¢ Land w € {0,1}*

Only | x| counts for the running time of V.

A proof system

@ Efficient verifier, efficient prover (given the witness)

@ Soundness holds unconditionally
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Interactive proofs

Protocols between efficient verifier and unbounded provers.
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Interactive proofs

Protocols between efficient verifier and unbounded provers.
Definition 2 (Interactive proof)

A protocol (P, V) is an interactive proof for £, if V is PPT and:
Completeness Vx € L, Pr[((P,V)(x))y, = 1] > 2/3.2
Soundness Vx ¢ £, and any algorithm P*

Pr((P*,V)(x))y = 1] < 1/3.
IP is the class of languages that have interactive proofs.

#((A(a),B(b))(c))g denote B’s view in random execution of (A(a), B(b))(c).
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Interactive proofs
Protocols between efficient verifier and unbounded provers.
Definition 2 (Interactive proof)
A protocol (P, V) is an interactive proof for £, if V is PPT and:
Completeness Vx € L, Pr[((P,V)(x))y, = 1] > 2/3.2
Soundness Vx ¢ £, and any algorithm P*
Pr((P*,V)(x))y = 1] < 1/3.

IP is the class of languages that have interactive proofs.

#((A(a),B(b))(c))g denote B’s view in random execution of (A(a), B(b))(c).

@ |IP = PSPACE!

@ We typically consider (and achieve) perfect completeness.
@ Negligible “soundness error" achieved via repetition.

@ Sometime we have efficient provers via “auxiliary input”.

@ Relaxation: Computationally sound proofs [also known as, interactive
arguments]: soundness only guaranteed against efficient (PPT) provers.
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Section 1

Interactive Proof for Graph Non-lsomorphism
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Graph isomorphism
My, — the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

Graphs Gg = ([m], Eo) and Gy = ([m], E1) are isomorphic, denoted Gy = Gy,
if 37 € My, such that
(U, V) € Eo iff (7T(U),7T(V)) € E;.
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Graph isomorphism
M, — the set of all permutations from [m] to [mM]

Definition 3 (graph isomorphism)

Graphs Gg = ([m], Eo) and Gy = ([m], E1) are isomorphic, denoted Gy = Gy,
if 37 € My, such that
(U, V) € Eo iff (7T(U),7T(V)) € E;.

@ g7 = {(G07G1): Gp = G1} eNP
@ Does GNT = {(G07G1)2 Go ;7é G1} e NP?
@ We will show a simple interactive proof for GN'Z
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Graph isomorphism
My, — the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

Graphs Gg = ([m], Eo) and Gy = ([m], E1) are isomorphic, denoted Gy = Gy,
if 37 € My, such that
(U, V) € Eo iff (7T(U),7T(V)) € E;.

@ g7 = {(G07G1): GoEG1} eNP
@ Does QNI:{(GO,G1): Go 7‘éG1} e NP?

@ We will show a simple interactive proof for GN'Z
Idea: Beer tasting...
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Interactive proof for GN'Z

Protocol 4 ((P, V))
Common input: Gy = ([m], Ey), Gy = ([m], E1).
@ V chooses b < {0,1} and 7 < M, and sends 7(Ep) to P.2
@ Psend b/ toV (tries to set b’ = b).
© V accepts iff b’ = b.

ar(E) = {(n(u), 7(v): (u,v) € E}.
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Interactive proof for GN'Z

Protocol 4 ((P, V))
Common input: Gy = ([m], Ey), Gy = ([m], E1).
@ V chooses b < {0,1} and 7 < M, and sends 7(Ep) to P.2
@ Psend b/ toV (tries to set b’ = b).
© V accepts iff b’ = b.

ar(E) = {(n(u), 7(v): (u,v) € E}.

Claim 5

The above protocol is IP for GN'Z, with perfect completeness and soundness
1

error 5.
2
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Proving Claim 5

@ Graph isomorphism is an equivalence relation (separates the set of all
graph pairs into separate subsets)
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Proving Claim 5

@ Graph isomorphism is an equivalence relation (separates the set of all
graph pairs into separate subsets)

@ ([m],n(E;)) is a random element in [G;] — the equivalence class of G;
Hence,

GO = G1: Pr[b’ = b] < %
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Proving Claim 5

@ Graph isomorphism is an equivalence relation (separates the set of all
graph pairs into separate subsets)

@ ([m],n(E;)) is a random element in [G;] — the equivalence class of G;
Hence,
GO = G1: Pr[b’ = b] < %

Go £ Gq: Pr[b’ = b] =1 (i.e., P can, possibly inefficiently, extracted from
m(Ej))
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Part Il

Zero knowledge Proofs
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Where is Waldo?

Question 6
Can you prove you know where Waldo is without revealing his location?
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The concept of zero knowledge

@ Proving w/o revealing any addition information.
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The concept of zero knowledge

@ Proving w/o revealing any addition information.

@ What does it mean?
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The concept of zero knowledge

@ Proving w/o revealing any addition information.
@ What does it mean?

Simulation paradigm.
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Zero-knowledge proofs

Definition 7 (zero-knowledge proofs)

An interactive proof (P, V) is computational zero-knowledge proof (CZK) for
L e NP, ifVPPT V* 3 PPT S (i.e., simulator) such that

{{(P(w(x)), V) (X))v- }xe £ =e {S(X) }xec- (1)

for any poly-bounded function w with w(x) € R.(x).
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Zero-knowledge proofs

Definition 7 (zero-knowledge proofs)

An interactive proof (P, V) is computational zero-knowledge proof (CZK) for
L e NP, ifVPPT V* 3 PPT S (i.e., simulator) such that

{{(P(w(x)), V) (X))v- }xe £ =e {S(X) }xec- (1)
for any poly-bounded function w with w(x) € R.(x).

Perfect ZKC (PZK)/statistical ZK (SZK) — the above distributions are
identicallly/statistically close.

@ 2K is a property of the prover.

©@ 22K only required to hold wrt. true statements.

© Trivial to achieve for £ € BPP.

© The NP proof system is typically not zero knowledge.
© Meaningful also for languages outside N'P.

© Auxiliary input (will give formal def later)
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Zero-knowledge proofs, cont.

@ ZK for honest verifiers: (1) only holds for V* = V.
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Zero-knowledge proofs, cont.

@ ZK for honest verifiers: (1) only holds for V* = V.

@ We sometimes assume for notational convenient, and wlg, that a
cheating V* outputs its view.
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Zero-knowledge proofs, cont.

@ ZK for honest verifiers: (1) only holds for V* = V.

@ We sometimes assume for notational convenient, and wlg, that a
cheating V* outputs its view.

© Statistical ZK proofs are believed to to exists only for a restricted
subclass of NP, so to go beyond that we settle for computational ZK (as
in this course). or for arguments.
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Section 2

Zero-Knowledge Proof for Graph Isomorphism
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Zero-knowledge proof for GZ

Idea: route finding
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Zero-knowledge proof for GZ
Idea: route finding
Protocol 8 ((P, V))
Common input: x = (Go = ([m], Eo), Gt = ([m], Ey))
P’s input: a permutation = over [m] such that 7(E;) = Eo.
@ P chooses 7’ + My, and sends E = 7/(Ey) to V.
© Vsends b+ {0,1} to P.
© Ifb=0,Psets 7’ = 7', otherwise, it sends 7"/ = 7’ o 7 to V.
© V accepts iff 7’ (Ep) = E.
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Zero-knowledge proof for GZ
Idea: route finding
Protocol 8 ((P, V))
Common input: x = (Go = ([m], Eo), Gt = ([m], Ey))
P’s input: a permutation = over [m] such that 7(E;) = Eo.
@ P chooses 7’ + My, and sends E = 7/(Ey) to V.
© Vsends b+ {0,1} to P.
© Ifb=0,Psets 7’ = 7', otherwise, it sends 7"/ = 7’ o 7 to V.
© V accepts iff 7’ (Ep) = E.

Claim 9

Protocol 8 is a SZK for GZ, with perfect completeness and soundness %
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Proving Claim 9

@ Completeness: Clear
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Proving Claim 9
@ Completeness: Clear

@ Soundness: If exist j € {0, 1} for which 7’ € Ny, with 7' (E;) = E, then V
rejects w.p. at least 3.
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Proving Claim 9

@ Completeness: Clear

@ Soundness: If exist j € {0, 1} for which 7’ € Ny, with 7' (E;) = E, then V
rejects w.p. at least 3.

Assuming V rejects w.p. less than } and let rp and 7 be the values
guaranteed by the above observation (i.e., mapping Ey and E; to E
respectively).
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Proving Claim 9

@ Completeness: Clear

@ Soundness: If exist j € {0, 1} for which 7’ € Ny, with 7' (E;) = E, then V
rejects w.p. at least 3.

Assuming V rejects w.p. less than } and let rp and 7 be the values
guaranteed by the above observation (i.e., mapping Ey and E; to E
respectively).

Then 7T0_1(7T1(E1)) =7y — (Go,G1) e gT.

@ ZK: Idea —for (Go,G1) € GZ, it is easy to generate a random transcript
for Steps 1—2, and to be able to open it with prob %
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The simulator

For a start, consider a deterministic cheating verifier V* that never aborts.
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The simulator
For a start, consider a deterministic cheating verifier V* that never aborts.
Algorithm 10 (S)
Input: x = (Go = ([m], Eo), G1 = ([m], E1))
Do |x| times:
@ Choose b’ + {0,1} and 7 « My, and “send" 7 (Ep ) to V*(x).

© Let bbe V*'s answer. If b = b/, send 7 to V*, output V*’s view and halt.
Otherwise, rewind V* to its initial step, and go to step 1.

Abort.
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The simulator
For a start, consider a deterministic cheating verifier V* that never aborts.
Algorithm 10 (S)
Input: x = (Go = ([m], Eo), G1 = ([m], E1))
Do |x| times:
@ Choose b’ + {0,1} and 7 « My, and “send" 7 (Ep ) to V*(x).

© Let bbe V*'s answer. If b = b/, send 7 to V*, output V*’s view and halt.
Otherwise, rewind V* to its initial step, and go to step 1.

Abort.

Claim 11
P, V) (X))y- txegz = {S(X) txegz
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The simulator
For a start, consider a deterministic cheating verifier V* that never aborts.
Algorithm 10 (S)
Input: x = (Go = ([m], Eo), Gy = ([m], E1))
Do |x| times:
@ Choose b’ + {0,1} and 7 « My, and “send" 7 (Ep ) to V*(x).

© Let bbe V*'s answer. If b = b/, send 7 to V*, output V*’s view and halt.
Otherwise, rewind V* to its initial step, and go to step 1.

Abort.

Claim 11
P, V) (X))y- txegz = {S(X) txegz

Claim 11 implies that Protocol 8 is zero knowledge.
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Proving Claim 11

Consider the following inefficient simulator:

Algorithm 12 (S')

Input: x = (Go = ([m], Eo), Gy = ([m], E1)).

Do |x| times:

@ Choose 7 < MMy and send E = 7(Ep) to V*(x).

© Let bbe V*’s answer.

W.p. 3,

@ Find ' such that E = 7/(Ep), and send it to V*.
@ Output V*’s view and halt.

Otherwise, rewind V* to its initial step, and go to step 1.
Abort.
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Proving Claim 11

Consider the following inefficient simulator:

Algorithm 12 (S')

Input: x = (Go = ([m], Eo), Gt = ([m], E4)).

Do |x| times:

@ Choose 7 < MMy and send E = 7(Ep) to V*(x).

© Let bbe V*’s answer.

W.p. 3,

@ Find ' such that E = 7/(Ep), and send it to V*.
@ Output V*’s view and halt.

Otherwise, rewind V* to its initial step, and go to step 1.
Abort.

Claim 13
S(x) = S/(x) for any x € GZ.

v

Benny Applebaum  Iftach Haitner (TAU)

Foundation of Cryptography December 22, 2016 18/38



Proving Claim 11 cont.

Consider a second inefficient simulator:
Algorithm 14 (S”)
Input: x = (Go = ([m], Eo), G1 = ([m], Ev))

@ Choose 7 « My and send E = 7(Ep) to V*(x).
© Find 7’ such that E = 7/(E,) and send it to V*
© Output V*’s view and halt.
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Consider a second inefficient simulator:
Algorithm 14 (S”)
Input: x = (Go = ([m], Eo), G1 = ([m], Ev))

@ Choose 7 « My and send E = 7(Ep) to V*(x).
© Find 7’ such that E = 7/(E,) and send it to V*
© Output V*’s view and halt.

Claim 15
Vx € GZ7 it holds that

Q ((P,V*(x))y. =8"(x).
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Proving Claim 11 cont.

Consider a second inefficient simulator:
Algorithm 14 (S”)
Input: x = (Go = ([m], Eo), G1 = ([m], Ev))

@ Choose 7 « My and send E = 7(Ep) to V*(x).
© Find 7’ such that E = 7/(E,) and send it to V*
© Output V*’s view and halt.

Claim 15
Vx € GZ7 it holds that

Q ((P,V*(x)y. =8"(x).
@ SD(S"(x),S/(x)) < 2.

Proof: ?
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Proving Claim 11 cont.

Consider a second inefficient simulator:
Algorithm 14 (S”)
Input: x = (Go = ([m], Eo), G1 = ([m], Ev))

@ Choose 7 « My and send E = 7(Ep) to V*(x).
© Find 7’ such that E = 7/(E,) and send it to V*
© Output V*’s view and halt.

Claim 15
Vx € GZ7 it holds that

Q ((P,V*(x)y. =8"(x).
@ SD(S"(x),S/(x)) < 2.

Proof: ? (1) is clear.
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Proving Claim 15(2)
Fix t € {0,1}* and let v = Prgu[t].
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Proving Claim 15(2)
Fix t € {0,1}* and let v = Prgu[t].

It holds that
A TP
fri=a 2 (0-5""3
=(1-2"M).q
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Proving Claim 15(2)
Fix t € {0,1}* and let v = Prgu[t].

It holds that
A TP
fri=a 2 (0-5""3
=(1-2"M).q

Hence, SD(S"(x),S/(x)) < 2~
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Remarks

@ Perfect ZK for “expected polynomial-time" simulators.
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Remarks

@ Perfect ZK for “expected polynomial-time" simulators.
@ Aborting verifiers.
© Randomized verifiers.

@ The simulator first fixes the coins of V* at random.
@ Same proof goes through.

© Negligible soundness error?

@ Amplify by repetition
@ But what about the ZK?
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“Transcript simulation” might not suffice!
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“Transcript simulation” might not suffice!

Let (G, E, D) be a public-key encryption scheme and let £ € N'P.
Protocol 16 ((P, V))
Common input: x € {0,1}*
P’s input: w € Rz (x)

@ V chooses (d, e) « G(1¥!) and sends e to P

©Q Psendsc=Eq(w)toV

© V accepts iff Dy(c) € Re(X)
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“Transcript simulation” might not suffice!
Let (G, E, D) be a public-key encryption scheme and let £ € N'P.
Protocol 16 ((P, V))
Common input: x € {0,1}*
P’s input: w € Rz (x)
@ V chooses (d, e) « G(1¥!) and sends e to P
©Q Psendsc=Eq(w)toV
© V accepts iff Dy(c) € Re(x)

@ The above protocol has perfect completeness and soundness.
@ Is it zero-knowledge?

@ It has “transcript simulator” (at least for honest verifiers): exits PPT S
such that {((P(w € R(x)), V)(X))irans fxe£ e {S(X) }xers

where trans stands for the transcript of the protocol (i.e., the messages
exchange through the execution).
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Section 3

Composition of Zero-Knowledge Proofs
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Is zero-knowledge maintained under composition?

@ Sequential repetition?
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Is zero-knowledge maintained under composition?

@ Sequential repetition?

@ Parallel repetition?
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Zero-knowledge proof, auxiliary input variant
Definition 17 (zero-knowledge proofs, auxiliary input)

An interactive proof (P, V) is auxiliary-input computational zero-knowledge
proof (CZK) for £L € NP, if V deterministic poly-time V*, 3 PPT S s.t.

{{(P(w(x)), V*(2(x))(X))v- Ixer ~e {S(X, 2(X)) }xec-

for any poly-bounded functions w with w(x) € Rz(x) and z: £ — {0, 1}*.

Perfect ZIC (P ZK)/statistical auxiliary-input ZK (SZK) — the above
distributions are identically/statistically close.
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An interactive proof (P, V) is auxiliary-input computational zero-knowledge
proof (CZK) for £L € NP, if V deterministic poly-time V*, 3 PPT S s.t.

{{(P(w(x)), V*(2(x))(X))v- Ixer ~e {S(X, 2(X)) }xec-

for any poly-bounded functions w with w(x) € Rz(x) and z: £ — {0,1}*.

Perfect ZIC (P ZK)/statistical auxiliary-input Z/C (SZK) — the above
distributions are identically/statistically close.

@ Strengthening of the standard definition.

@ The protocol for GZ we just saw, is also auxiliary-input SZK

@ What about randomized verifiers?

@ Necessary for proving that zero-knowledge proof compose sequentially.
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Zero-knowledge proof, auxiliary input variant
Definition 17 (zero-knowledge proofs, auxiliary input)

An interactive proof (P, V) is auxiliary-input computational zero-knowledge
proof (CZK) for £L € NP, if V deterministic poly-time V*, 3 PPT S s.t.

{((P(w(x)), V*(2(x))(X))y- txer e {S(X; 2(X)) }xec-
for any poly-bounded functions w with w(x) € R.(x) and z: £+ {0, 1}*.

Perfect ZIC (P ZK)/statistical auxiliary-input Z/C (SZK) — the above
distributions are identically/statistically close.

@ Strengthening of the standard definition.
@ The protocol for GZ we just saw, is also auxiliary-input SZK

@ What about randomized verifiers?

@ Necessary for proving that zero-knowledge proof compose sequentially.
@ To keep things simple, we will typically prove the non-auxiliary
zero-knowledge, but all proofs we present can easily modified to achieve
the stronger auxiliary input variant.
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Is zero-knowledge maintained under composition?, cont.

@ Auxiliary-input zero-knowledge is maintained under sequential repetition.
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@ Auxiliary-input zero-knowledge is maintained under sequential repetition.
@ Zero-knowledge might not maintained under parallel repetition.
Examples:
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Is zero-knowledge maintained under composition?, cont.

@ Auxiliary-input zero-knowledge is maintained under sequential repetition.
@ Zero-knowledge might not maintained under parallel repetition.
Examples:

» Chess game
» Signature game
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Section 4

Black-box Zero Knowledge
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Black-box simulators

Definition 18 (Black-box simulator)

(P, V) is CZK with black-box simulation for £ € NP, if 3 oracle-aided PPT S
S.t.

{{(P(wW(x)), V*(2(x)))(X))y- bxez ~e {8V © 2N (x) }er

for any deterministic polynomial-time V*, any w with w(x) € R.(x) and any
z: L {0,1}*.

Prefect and statistical variants are defined analogously.
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Black-box simulators

Definition 18 (Black-box simulator)

(P, V) is CZK with black-box simulation for £ € NP, if 3 oracle-aided PPT S
S.t.

{{(P(wW(x)), V*(2(x)))(X))y- bxez ~e {8V © 2N (x) }er

for any deterministic polynomial-time V*, any w with w(x) € R.(x) and any
z: L {0,1}*.

Prefect and statistical variants are defined analogously.

@ “Most simulators" are black box

@ Strictly weaker then general simulation!

Benny Applebaum  lftach Haitner (TAU) Foundation of Cryptography December 22, 2016 28/38




Section 5

Zero-knowledge proofs for all NP
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CZK for 3COL

@ Assuming OWFs exists, we give a (black-box) CZK for 3COL .
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CZK for 3COL

@ Assuming OWFs exists, we give a (black-box) CZK for 3COL .
@ We show how to transform it for any £ € A"P (using that 3COL € N'PC).
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CZK for 3COL

@ Assuming OWFs exists, we give a (black-box) CZK for 3COL .
@ We show how to transform it for any £ € A"P (using that 3COL € N'PC).

Definition 19 (3COL)
G=(M,E)€3COL,if3¢p: M— [3] s.t. p(u) # ¢(v) for every (u,v) € E. J
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CZK for 3COL

@ Assuming OWFs exists, we give a (black-box) CZK for 3COL .
@ We show how to transform it for any £ € A"P (using that 3COL € N'PC).

Definition 19 (3COL)
G=(M,E)€3COL,if3¢p: M— [3] s.t. p(u) # ¢(v) for every (u,v) € E. J

We use commitment schemes.
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The protocol

Let 73 be the set of all permutations over [3].
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The protocol

Let 73 be the set of all permutations over [3]. We use perfectly binding
commitment Com = (Snd, Rcv).
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The protocol

Let w3 be the set of all permutations over [3]. We use perfectly binding
commitment Com = (Snd, Rcv).

Protocol 20 ((P, V))
Common input: Graph G = (M, E) with n = |G|
P’s input: a (valid) coloring ¢ of G

@ P chooses 7« M3 and sets ) = mo ¢

@ Vv € M: P commits to v(v) using Com (with security parameter 17).
Let ¢, and d, be the resulting commitment and decommitment.

© Vsendse=(u,v)« EtoP
© P sends (dy, ¥(u)),(dy,,¥(v)) to V
© V verifies that

@ Both decommitments are valid,
@ (u),v(v) € [3],and
Q Y(u) # Y(v).
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Claim 21

The above protocol is a CZK for 3COL, with perfect completeness and
soundness 1/ |E]|.
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The above protocol is a CZK for 3COL, with perfect completeness and
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Claim 21

The above protocol is a CZK for 3COL, with perfect completeness and
soundness 1/ |E]|.

@ Completeness: Clear

@ Soundness: Let {c, },em be the commitments resulting from an
interaction of V with an arbitrary P*.

Define ¢: M — [3] as follows:

Yv € M: let ¢(v) be the (single) value that it is possible to decommit ¢,
into (if not in [3], set ¢(v) = 1).
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Claim 21

The above protocol is a CZK for 3COL, with perfect completeness and
soundness 1/ |E]|.

@ Completeness: Clear

@ Soundness: Let {c, },em be the commitments resulting from an
interaction of V with an arbitrary P*.

Define ¢: M — [3] as follows:

Yv € M: let ¢(v) be the (single) value that it is possible to decommit ¢,
into (if not in [3], set ¢(v) = 1).

If G ¢ 3COL, then 3(u,v) € E s.t. (u) =(v).
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Claim 21

The above protocol is a CZK for 3COL, with perfect completeness and
soundness 1/ |E]|.

@ Completeness: Clear

@ Soundness: Let {c, },em be the commitments resulting from an
interaction of V with an arbitrary P*.

Define ¢: M — [3] as follows:

Yv € M: let ¢(v) be the (single) value that it is possible to decommit ¢,
into (if not in [3], set ¢(v) = 1).

If G ¢ 3COL, then 3(u,v) € E s.t. (u) =(v).

Hence, V rejects such x w.p. at least 1/ |E|.
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Proving ZK

Fix a deterministic, non-aborting V* that gets no auxiliary input.
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Proving ZK

Fix a deterministic, non-aborting V* that gets no auxiliary input.
Algorithm 22 (S)
Input: A graph G = (M, E) with n = |G|
Do n-|E| times:
@ Choose ¢ = (u,v) + E.
Q@ Sety(u) « [3],

@ Sety(v) « [3]\ {¢(u)}, and
@ Sety(w)=1forwe M\ {u,v}.

©Q Vv € M: commit to ¢(v) to V* (resulting in ¢, and d)
© Let e be the edge sent by V*.
If e= €, send (dy,¥(u)), (dy,(v)) to V*, output V*’s view and halt.

Otherwise, rewind V* to its initial step, and go to step 1.
Abort.
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Proving ZKX cont.

Algorithm 23 (S)

Input: G = (V, E) with n = |G|, and a (valid) coloring ¢ of G.
Do for n- |E| times:

@ Choose ¢ « E.

@ Act like the honest prover does given private input ¢.

© Let ebe the edge sentby V*. If e = &

@ Send (¢¥(u),dy), (¥(v),d,) to V*,
@ Output V*’s view and halt.

Otherwise, rewind V* to its initial step, and go to step 1.
Abort.
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Proving ZKX cont.

Algorithm 23 (S)

Input: G = (V, E) with n = |G|, and a (valid) coloring ¢ of G.
Do for n- |E| times:
@ Choose ¢ « E.

@ Act like the honest prover does given private input ¢.
© Let ebe the edge sentby V*. If e = &

@ Send (¢¥(u),dy), (¥(v),d,) to V*,
@ Output V*’s view and halt.

Otherwise, rewind V* to its initial step, and go to step 1.
Abort.

Claim 24

{{P(W(x)), V¥)(X))y- }reaco SV ) (x, w(X))} xeacoL,
for any w with w(x) € R(x).
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Proving ZKX cont.

Algorithm 23 (S)
Input: G = (V, E) with n = |G|, and a (valid) coloring ¢ of G.
Do for n- |E| times:
@ Choose ¢ « E.
@ Act like the honest prover does given private input ¢.
© Let ebe the edge sentby V*. If e = &

@ Send (¢¥(u),dy), (¥(v),d,) to V*,
@ Output V*’s view and halt.

Otherwise, rewind V* to its initial step, and go to step 1.
Abort.

Claim 24

{{P(W(x)), V¥)(X))y- }reaco SV ) (x, w(X))} xeacoL,
for any w with w(x) € R(x).

Proof: ?
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Proving ZKX cont..

Claim 25
{SV ) (x) hxeacoL~e{SY @ (x, w(x))}xeacoL, for any w with w(x) € Rz (x). J
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Proving ZKX cont..

Claim 25

{SV ) (x) hxeacoL~e{SY @ (x, w(x))}xeacoL, for any w with w(x) € Rz (x). J
Proof:
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Proving ZKX cont..
Claim 25

{8V (X)) xescor ~e {8 W (x, W(x)) }eacoL, for any w with w(x) € Re(x). J

Proof: Assume 3 PPT D, p € poly, w(x) € R.(x) and an infinite set Z C 3COL
S.t.

Pr [D(8Y"¥(x)) = 1] = Pr [D(§¥ ¥ (x, w(x))) = 1] > p(|1X|)
forall x € 7.
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Proving ZKX cont..
Claim 25

{8V (X)) xescor ~e {8 W (x, W(x)) }eacoL, for any w with w(x) € Re(x). J

Proof: Assume 3 PPT D, p € poly, w(x) € R.(x) and an infinite set Z C 3COL
S.t.

Pr [D(8Y"¥(x)) = 1] = Pr [D(§¥ ¥ (x, w(x))) = 1] > p(|1X|)
forall x € 7.

Hence, 3 PPT R* and b € [3] \ {1} such that

Pr [<(Snd(1), R* (x, w(x))) (1 |X|)>R:* 1}—Pr [<(Snd(b)7 R*(x, w(x))) (1 \XI)> - ]
1
~IxP p(Ix])
forall x € 7.
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Proving ZKX cont..
Claim 25

{8V (X)) xescor ~e {8 W (x, W(x)) }eacoL, for any w with w(x) € Re(x). J

Proof: Assume 3 PPT D, p € poly, w(x) € R.(x) and an infinite set Z C 3COL
S.t.

Pr [D(8Y"¥(x)) = 1] = Pr [D(§¥ ¥ (x, w(x))) = 1] > p(|1X|)
forall x € 7.

Hence, 3 PPT R* and b € [3] \ {1} such that

Pr [<(Snd(1), R* (x, w(x))) (1 |X|)>R:* 1}—Pr [<(Snd(b), R*(x, w(x))) (1 \XI)> - ]
1

~IxP p(Ix])
forall x € 7.

In contradiction to the (non-uniform) security of Com.
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Remarks

@ Aborting verifiers
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Remarks

@ Aborting verifiers

@ Auxiliary inputs
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Remarks

@ Aborting verifiers
@ Auxiliary inputs

@ Soundness amplification
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Extending to all NP
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Extending to all NP
For £ € NP, let Mapy and Map, be two poly-time computable functions s.t.
@ x € L < Mapy(x) € 3COL,

@ (x,w) € Ry < Mapy/(x,w) € RscoL(Mapy(x)).
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Extending to all NP

For £ € NP, let Mapy and Map, be two poly-time computable functions s.t.
@ x € L < Mapy(x) € 3COL,
@ (x,w) € Ry < Mapy/(x,w) € RscoL(Mapy(x)).

We assume for simplicity that Map is injective.
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Extending to all NP

For £ € NP, let Mapy and Map, be two poly-time computable functions s.t.
@ x € L < Mapy(x) € 3COL,
@ (x,w) € Ry < Mapy/(x,w) € RscoL(Mapy(x)).

We assume for simplicity that Map is injective.

Let (P,V) be a CZK for 3COL.
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Extending to all NP

For £ € NP, let Mapy and Map, be two poly-time computable functions s.t.

@ x € L < Mapy(x) € 3COL,
@ (x,w) € Ry < Mapy/(x,w) € RscoL(Mapy(x)).

We assume for simplicity that Map is injective.

Let (P,V) be a CZK for 3COL.
Protocol 26 ((P.,V.))
Common input: x € {0,1}*.
P.’s input: w € R (x).
@ The two parties interact in (P(Map,, (x, w)), V)(Mapy(x)),

where P, and V. taking the role of P and V respectively.

@ V. accepts iff V accepts in the above execution.
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Extending to all £ € AP cont.

Claim 27

(Pz,Ve)is a CZK for £ with the same completeness and soundness as
(P, V) as for 3COL.
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Extending to all £ € AP cont.

Claim 27

(Pz,Ve)is a CZK for £ with the same completeness and soundness as
(P, V) as for 3COL.

@ Completeness and soundness: Clear.
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Extending to all £ € AP cont.

Claim 27

(Pz,Ve)is a CZK for £ with the same completeness and soundness as
(P, V) as for 3COL.

@ Completeness and soundness: Clear.

@ Zero knowledge: Let S (an efficient) ZXC simulator for (P, V) (for 3COL).
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Extending to all £ € AP cont.

Claim 27

(Pz,Ve)is a CZK for £ with the same completeness and soundness as
(P, V) as for 3COL.

@ Completeness and soundness: Clear.

@ Zero knowledge: Let S (an efficient) ZXC simulator for (P, V) (for 3COL).
On input (x, z,) and verifier V*, let S output SV" %) (Map (x)).
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Extending to all £ € AP cont.

Claim 27

(Pz,Ve)is a CZK for £ with the same completeness and soundness as
(P, V) as for 3COL.

@ Completeness and soundness: Clear.

@ Zero knowledge: Let S (an efficient) ZXC simulator for (P, V) (for 3COL).

On input (x, z,) and verifier V*, let S output SV" %) (Map (x)).
Claim 28

{P(W(x)), VEZON)Xys bree me S (X)kxee ¥ PPTVE, W, 2. J
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Extending to all £ € AP cont.

Claim 27

(Pz,Ve)is a CZK for £ with the same completeness and soundness as
(P, V) as for 3COL.

@ Completeness and soundness: Clear.

@ Zero knowledge: Let S (an efficient) ZXC simulator for (P, V) (for 3COL).
On input (x, z,) and verifier V*, let S output SV" %) (Map (x)).
Claim 28
* VZ(x,2(x)) *
{{(Pe(w(x)), VE(2(x))(X))ys bxer ~c {S (X)}xec VPPTVE, w, 2z J
Proof:
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Extending to all £ € AP cont.

Claim 27

(Pz,Ve)is a CZK for £ with the same completeness and soundness as
(P, V) as for 3COL.

@ Completeness and soundness: Clear.

@ Zero knowledge: Let S (an efficient) ZXC simulator for (P, V) (for 3COL).

On input (x, z,) and verifier V*, let S output SV" %) (Map (x)).
Claim 28

{P(W(x)), VEZON)Xys bree me S (X)kxee ¥ PPTVE, W, 2. }

Proof: Assume {((P(w(x)), V2(2()(X))y. bxee #e (S (X hrec.
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Extending to all £ € AP cont.

(P2, V) is aCZK for £ with the same completeness and soundness as

Claim 27
(P, V) as for 3COL. J

@ Completeness and soundness: Clear.
@ Zero knowledge: Let S (an efficient) ZXC simulator for (P, V) (for 3COL).

On input (x, z,) and verifier V*, let S output SV" %) (Map (x)).

Claim 28
{P(W(x)), VEZON)Xys bree me S (X)kxee ¥ PPTVE, W, 2. }

Proof: Assume {((P(w(x)), V2(2())(X))y hrec %o {8 (X hrec.

Hence, {((P(x, W(x)), V*)(X))y+(z(x) }xeacoL #e {SY % D (x)}ceacoL,
where V*(x, z, = (zy,x ")) acts like Vi (x~', z¢), and 2/(x) = (z(x~1),x~ 1)
for x~1 = Mapy ' (x).

Benny Applebaum  lftach Haitner (TAU) Foundation of Cryptography December 22, 2016 38/38



	Interactive Proofs
	Interactive Proof for Graph Non-Isomorphism

	Zero knowledge Proofs
	Zero-Knowledge Proof for Graph Isomorphism
	Composition of Zero-Knowledge Proofs
	Black-box Zero Knowledge
	Zero-knowledge proofs for all NP
	Remarks
	Extending to NP



