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Informal discussion
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Informal discussion

fis one-way = predicting x from f(x) is hard.

But predicting parts of x might be easy.

e.g., let f be a OWF then g(x, w) = (f(x), w) is one-way

Can we find a function of x that is totally unpredictable — looks uniform —
given f(x)?

Such functions have many cryptographic applications

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography November 17, 2016 2/28



Formal definition

Definition 1 (hardcore predicates)

A poly-time computable b: {0,1}" — {0, 1} is an hardcore predicate of
f:{0,1}"—{0,1}", if

AP = BET) = +neg( n)

for any PPT P.
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A poly-time computable b: {0,1}" — {0, 1} is an hardcore predicate of
f:{0,1}"— {0,1}", if

P IP() = BOX)] < 5 + neg(n)

for any PPT P.

» Does any OWF has such a predicate?
» s there a generic hardcore predicate for all one-way functions?

Let f be a OWF and let b be a predicate, then g(x) = (f(x), b(x)) is
one-way.
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Formal definition

Definition 1 (hardcore predicates)

A poly-time computable b: {0,1}" — {0, 1} is an hardcore predicate of
f:{0,1}"— {0,1}", if

(Pr P((x)) = b(x)] < 5 + neg(n)

for any PPT P.

» Does any OWF has such a predicate?
» s there a generic hardcore predicate for all one-way functions?

Let f be a OWF and let b be a predicate, then g(x) = (f(x), b(x)) is
one-way.

» Does the existence of hardcore predicate for f implies that f is one-way?

Consider f(x, y) = x, then b(x, y) = y is a hardcore predicate for f
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Formal definition

Definition 1 (hardcore predicates)

A poly-time computable b: {0,1}" — {0, 1} is an hardcore predicate of
f:{0,1}"— {0,1}", if

(Pr P((x)) = b(x)] < 5 + neg(n)

for any PPT P.

» Does any OWF has such a predicate?
» s there a generic hardcore predicate for all one-way functions?

Let f be a OWF and let b be a predicate, then g(x) = (f(x), b(x)) is
one-way.

» Does the existence of hardcore predicate for f implies that f is one-way?

Consider f(x, y) = x, then b(x, y) = y is a hardcore predicate for f
Answer to above is positive, in case f is one-to-one
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Weak hardcore predicates
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Weak hardcore predicates

For x € {0,1}" and i € [n], let x; be the /’'th bit of x.

Theorem 2

Forf: {0,1}"— {0,1}", define g: {0,1}" x [n] — {0,1}" x [n] by
g(x, i) = f(x), i

Assuming f is one way, then

[A(f(x),i) =xi] <1-1/2n

x+{0,1 }r",i<—[n]

for any PPT A.
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Weak hardcore predicates

For x € {0,1}"and i € [n], let x; be the i'th bit of x.

Theorem 2

Forf: {0,1}"— {0,1}", define g: {0,1}" x [n] — {0,1}" x [n] by
g(x, i) = f(x),i

Assuming f is one way, then

[A(f(x), i) =x] <1-1/2n

x<—{0,1}r",i<—[n]

for any PPT A.

Proof: ?
We can now construct an hardcore predicate “for" f:
1. Construct a weak hardcore predicate for g (i.e., b(x, i) := x;).
2. Amplify it into a (strong) hardcore predicate for g! via parallel repetition

The resulting predicate is not for f but for (the one-way function) g* ...
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The Goldreich-Levin Hardcore predicate
For x,r € {0,1}", let (x,r)s := (314 Xi - ;) mod 2 = @ _{ X; - Ii.
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The Goldreich-Levin Hardcore predicate
For x,r € {0,1}", let (x,r)s := (314 Xi - ;) mod 2 = @ _{ X; - Ii.
Theorem 3 (Goldreich-Levin)

Forf: {0,1}" — {0,1}", define g: {0,1}" x {0,1}" — {0,1}" x {0,1}" as
g(x;r) = (f(x), ).
If f is one-way, then b(x, r) := (x, r)» is an hardcore predicate of g.
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The Goldreich-Levin Hardcore predicate
For x,r € {0,1}", let (x,r)s := (314 Xi - ;) mod 2 = @ _{ X; - Ii.
Theorem 3 (Goldreich-Levin)

Forf: {0,1}" — {0,1}", define g: {0,1}" x {0,1}" — {0,1}" x {0,1}" as
g(x;r) = (f(x), ).
If f is one-way, then b(x, r) := (x, r)» is an hardcore predicate of g.

» Note that if f is one-to-one, then so is g.
> A slight cheat, b is defined for g and not for the original OWF f

Proof by reduction: a PPT A for predicting b(x, r) “too well" from (f(x), r),
implies an inverter for f
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Section 1

Proving GL — The information theoretic case
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Min entropy

Definition 4 (min-entropy)
The min entropy of a random variable (or distribution) X, is defined as

1
Hoo(X) = i log ———.
(X) yesum(0) ° Prx[y]
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Min entropy

Definition 4 (min-entropy)

The min entropy of a random variable (or distribution) X, is defined as

1
Hoo(X) = i log ———.
(X) yesum(0) ° Prx[y]

Examples:

» Zis uniform over a set of size 2.

> Z =X |fx)—y, Where f: {0,1}"+— {0,1}"is2"to 1,
y € f({0,1}") := {f(x): x € {0,1}"} and X is uniform over {0, 1}".

Equivalently, X <+ f~'(y).

In both cases, H.(Z) = k.
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Pairwise independent hashing

Definition 5 (pairwise independent function family)

A function family H = {h: {0,1}" — {0, 1}"} is pairwise independent, if ¥
x#x"€{0,1}"and y,y’ € {0,1}™, it holds that
Praca[h(x) =y Ah(x') = y')] = 272™.
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Pairwise independent hashing

Definition 5 (pairwise independent function family)

A function family H = {h: {0,1}" — {0, 1}"} is pairwise independent, if ¥
x#x"€{0,1}"and y,y’ € {0,1}™, it holds that
Praca[h(x) =y Ah(x') = y')] = 272™.

Lemma 6 (leftover hash lemma)

Let X be a rv over {0,1}" with H.(X) > k and let
H = {h: {0,1}" — {0,1}™} be pairwise independent, then
SD((H, H(X)), (H, Un)) < 2(m=k=2))/2,
where H is uniformly distributed over H and U, is uniformly distributed over
{0,1}™.

See proof here, page 13.

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography November 17, 2016 8/28


 http://www.cs.tau.ac.il/~iftachh/Courses/Info/Fall15/Printouts/Lesson8_h.pdf

Efficient function families

Definition 7 (efficient function families)

An ensemble of function families 7 = {F,}nen is efficient, if

Samplable. Exists PPT that given 1”, outputs (the description of) a uniform
element in F,.

Efficient. Exists poly-time algorithm that given x € {0,1}"” and (a
description of) f € F),, outputs f(x).
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Proving GL for compressing functions

Definition 8

Function f: {0,1}" — {0,1}" is d(n) regular, if |f='(y)| = d(n) for every
y € f({0,1}").
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Proving GL for compressing functions

Definition 8

Function f: {0,1}" — {0,1}" is d(n) regular, if |f='(y)| = d(n) for every
y € f({0,1}").

Lemma9

Letf: {0,1}"+ {0,1}" be a d(n) € 2~(°¢" regular function, and let
H = {Hn} be an efficient family of Boolean pairwise independent functions
over{0,1}". Define g: {0,1}" x H, — {0,1}" x H, as

9(x, h) = (f(x), h),
then b(x, h) = h(x) is an hardcore predicate of g.
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Proving GL for compressing functions

Definition 8
Function f: {0,1}" — {0,1}" is d(n) regular, if |f='(y)| = d(n) for every
y € f({0,1}").

Lemma9

Letf: {0,1}"+ {0,1}" be a d(n) € 2~(°¢" regular function, and let
H = {Hn} be an efficient family of Boolean pairwise independent functions
over {0,1}". Define g: {0,1}" x H,+— {0,1}" x H, as

9(x, h) = (f(x), h),
then b(x, h) = h(x) is an hardcore predicate of g.

How does it relate to Goldreich-Levin?
{Hn={b(-) = b(r,")}reqo,13} is (almost) pairwise independent.
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Proving Lemma 9

The lemma follows by the next claim (?)
Claim 10

SD ((f(Un), H, H(Uy)), (f(Un), H, Uz)) = neg(n), where H = H,, is uniformly
distributed over H.
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Proving Lemma 9
The lemma follows by the next claim (?)
Claim 10

SD ((f(Un), H, H(Uy)), (f(Un), H, Uz)) = neg(n), where H = H,, is uniformly
distributed over H.

Proving the claim. For y € f({0,1}"), let X,, be uniformly distributed over
1 (y) == {x € {0, 1}": f(x) = y}.
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Proving Lemma 9
The lemma follows by the next claim (?)

Claim 10

SD ((f(Un), H, H(Uy)), (f(Un), H, Uz)) = neg(n), where H = H,, is uniformly
distributed over H.

Proving the claim. For y € f({0,1}"), let X,, be uniformly distributed over
~(y) := {x € {0,1}": f(x) = y}. Compute

SD((f(Un), H, H(Up)), (f(Un), H, Un))
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Proving Lemma 9
The lemma follows by the next claim (?)

Claim 10

SD ((f(Un), H, H(Uy)), (f(Un), H, Uz)) = neg(n), where H = H,, is uniformly
distributed over H.

Proving the claim. For y € f({0,1}"), let X,, be uniformly distributed over
~(y) := {x € {0,1}": f(x) = y}. Compute

SD((f(Un), H, H(Up)), (f(Un), H, Un))

- y<—IfE(U ) [SD((f(U”)7 Ha H(Un)|f(Un):y7 (f(UI'l)7 Ha U1)‘f(Un):}’)]

= by, SPW H HX), (v, H, Uh))]

< SD H, H(X, H, U
_yefr(?g,):}”) ((ya ) (y))7(y’ ’ 1))

- D((H, H( X, H
yefr&gﬁ}n)s ((H,H(Xy)), (H, Uy))
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Proving Lemma 9, cont.
Since H (X)) = log(d(n)) for any y € f({0,1}"),
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Proving Lemma 9, cont.

Since H (X)) = log(d(n)) for any y € f({0,1}"), the leftover hash lemma
(Lemma 6) yields that

SD((H, H(Xy)), (H, Uy)) < 2(1-Hx(Xy)~2))/2
— o(1—log(d(m))/2 _ neg(n). O
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Section 2

Proving GL — The Computational Case
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Proving Goldreich-Levin Theorem

Theorem 11 (Goldreich-Levin)

Forf: {0,1}" — {0,1}", define g: {0,1}" x {0,1}" — {0,1}" x {0,1}" as
g(x, r) = (f(x),r)-

If f is one-way, then b(x, r) := (x, r)» is an hardcore predicate of g.
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Proving Goldreich-Levin Theorem

Theorem 11 (Goldreich-Levin)

Forf: {0,1}" — {0,1}", define g: {0,1}" x {0,1}" — {0,1}" x {0,1}" as
g(x, r) = (f(x),r)-

If f is one-way, then b(x, r) := (x, r)» is an hardcore predicate of g.

Proof: Assume 3 PPT A, p € poly and infinite set Z C N with

1 1
Pr[A(g(Un, Rn)) = b(Un, Rn)] > > + ma

for any n € Z, where U, and R, are uniformly (and independently) distributed
over {0, 1}".

(1)
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Proving Goldreich-Levin Theorem

Theorem 11 (Goldreich-Levin)

Forf: {0,1}" — {0,1}", define g: {0,1}" x {0,1}" — {0,1}" x {0,1}" as
g(x, r) = (f(x),r)-

If f is one-way, then b(x, r) := (x, r)» is an hardcore predicate of g.

Proof: Assume 3 PPT A, p € poly and infinite set Z C N with

1 1
Pr[A(g(Un, Rn)) = b(Un, Rn)] > > + ma

for any n € Z, where U, and R, are uniformly (and independently) distributed
over {0, 1}".

(1)

We show 3 PPT B and g € poly with
-1 >
, F;(rUn)[B(y) ef~(y)] >

a(n)’ @

for every ne 7.
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Proving Goldreich-Levin Theorem

Theorem 11 (Goldreich-Levin)

Forf: {0,1}" — {0,1}", define g: {0,1}" x {0,1}" — {0,1}" x {0,1}" as
g(x, r) = (f(x),r)-

If f is one-way, then b(x, r) := (x, r)» is an hardcore predicate of g.

Proof: Assume 3 PPT A, p € poly and infinite set Z C N with

1 1
Pr[A(g(Un, Rn)) = b(Un, Rn)] > > + ma

for any n € Z, where U, and R, are uniformly (and independently) distributed
over {0,1}".

(1)

We show 3 PPT B and g € poly with
-1 >
P B e ()] 2

a(n)’ @

for every n € Z. In the following fix n € Z.
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Focusing on a good set

Claim 12
There exists a set S C {0, 1}” with

1. B> and

2p(n)’
2. Pr[A(f(x), Rn) = b(x, Rn)]] > % + %(n), vx € S.
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Focusing on a good set

Claim 12
There exists a set S C {0, 1}” with

ISI
1. > zp(n), and

2. Pr{A(f(x), Rn) = b(x, Ro)l] = § + gy VX € S

Proof:
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Focusing on a good set

Claim 12
There exists a set S C {0, 1}" with

s
1. B> 2p(n),and

2. Pr[A(f(x), Rn) = b(x, Rn)l] > 3 + g5, VX € S.

Proof: Let § == {x € {0,1}": Pr[A(f(x), Rn) = b(X, Rn)] > § + 550 }-
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Focusing on a good set

Claim 12
There exists a set S C {0, 1}" with

ISI
1. > 2p(n)’ and

2. Pr[A(f(x), Rn) = b(x, Rn)l] > 3 + g5, VX € S.

Proof: Let S := {x € {0,1}": Pr[A(f(x), Bn) = b(x, Rn)] > & +

PHAG(Un, Rn)) = b(Un, Ra)] < Pr{Un ¢ 5] -(1 2o )) LU, € 8]

1
2p(n) }-
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1. B>

2p(n)’ and

2. Pr[A(f(x), Rn) = b(x, Rn)l] > 3 + g5, VX € S.

Proof: Let S := {x € {0,1}": Pr[A(f(x), Bn) = b(x, Rn)] > & +

PHAG(Un, Rn)) = b(Un, Ra)] < Pr{Un ¢ 5] -(1 2o )) LU, € 8]

< (; + 2p1(n)> + Pr[U, € S|O

1
2p(n) }-

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography November 17, 2016 15/28



Focusing on a good set

Claim 12
There exists a set S C {0, 1}" with

ISI
1. > 2p(n)’ and

2. Pr[A(f(x), Rn) = b(x, Rn)l] > 3 + g5, VX € S.

Proof: Let S := {x € {0,1}": Pr[A(f(x), Rn) = b(x, Rp)] > % + 5o }-

2p(n)
Pr{A(9(Un, Rn)) = b(Un, Ry)] < Pr[U, ¢ S] <; + 2p1( )> + Pr{U, € S]
< (; + 1(n)> + Pr[U, € S|O

We conclude the theorem’s proof showing exist g € poly and PPT B:
1
Pr[B(f(x)) € F~1(f(x)) > ——, 3
[B(f(x)) (())_q(n) (©)
forevery x € S.
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Focusing on a good set

Claim 12
There exists a set S C {0, 1}" with

ISI
1. > 2p(n)’ and

2. Pr[A(f(x), Rn) = b(x, Ra)l] > 3 + g5 VX € S.

Proof: Let S := {x € {0, 1}": Pr[A(f(x), Rn) = b(X, Rn)] = § + 35 }-

Pr[A(g(UD,Hn»:b(un,Rn)]spr[un¢81-<; L )+Pr[une81

2p(n)

1 1

< (2 + (n)> + Pr[U, € S|O

We conclude the theorem’s proof showing exist g € poly and PPT B:
1

Pr[B(f(x)) € F~1(f(x)) > ——,

[B(f(x)) (())_q(n)

for every x € S. In the following we fix x € S.
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The Perfect Case

Pr[A(f(x), Bn) = b(x, Rp)] =1 J

@ A(fF@).7) =b(x1)
[ ) A(f(x),r) # b(x,1)
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The Perfect Case

Pr[A(f(x), Bn) = b(x, Rp)] =1 J

@ A(fF@).7) =b(x1)
[ ) A(f(x),r) # b(x,1)

In particular, A(f(x), &') = b(x, ) for every i € [n], where
e =(0,...,0,1,0,...,0).
—— =

i—1 n—i
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The Perfect Case

Pr[A(f(x), Bn) = b(x, Rp)] =1 J

@ A(fF@).7) =b(x1)
[ ) A(f(x),r) # b(x,1)

In particular, A(f(x), &') = b(x, ) for every i € [n], where
e =(0,...,0,1,0,...,0).
—— =

i—1 n—i

Hence, x; = (x,€')2
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The Perfect Case

Pr[A(f(x), Bn) = b(x, Rp)] =1 J

@ A(fF@).7) =b(x1)
[ ) A(f(x),r) # b(x,1)

In particular, A(f(x), &') = b(x, ) for every i € [n], where
e =(0,...,0,1,0,...,0).
—— =

i—1 n—i

Hence, x; = (x, €'} = b(x, €') = A(f(x), &)
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The Perfect Case

PriA(f(x), Rn) = b(x, Rp)] =1 |

@ A(fF@).7) =b(x1)
[ ) A(f(x),r) # b(x,1)

In particular, A(f(x), &') = b(x, ) for every i € [n], where
¢ =(0,...,0,1,0,...,0).
—— =

i—1 n—i

Hence, x; = (x, €'} = b(x, €') = A(f(x), &)

Algorithm 13 (Inverter B on input y)
Return (A(y,e"),...,A(y,e"). J
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Easy case

@ AFf@).r)=bxT)
Pr{A(f(x), Rn) = b(x, Rn)] > 1 — neg(n) J @ A0 #bxr)
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Easy case

@ AFf@).r)=bxT)
Pr{A(f(x), Rn) = b(x, Rn)] > 1 — neg(n) J @ A0 #bxr)
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Easy case

@ AFf@).r)=bxT)
Pr{A(f(x), Rn) = b(x, Rn)] > 1 — neg(n) J @ A0 #bxr)
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Easy case

@ AFf@).r)=bxT)
Pr{A(f(x), Rn) = b(x, Rn)] > 1 — neg(n) J @ A0 #bxr)
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Easy case

@ AFf@).r)=bxT)
Pr{A(f(x), Rn) = b(x, Rn)] > 1 — neg(n) J @ A0 #bxr)
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Easy case

@ AFf@).r)=bxT)
Pr{A(f(x), Rn) = b(x, Rn)] > 1 — neg(n) J @ A0 #bxr)

Fact 14

1. b(x,w) @ b(x,y) = b(x,w & y) forevery w,w,y € {0,1}".
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Easy case

@ AFf@).r)=bxT)
Pr [A(f(X), Rn) B b(X, Rn)] 2 1— neg(n) J [ ] A(f(x),r) # b(x,1)

Fact 14

1. b(x,w) @ b(x,y) = b(x,w & y) forevery w,w,y € {0,1}".
2. Vr € {0,1}", the rv (R, & r) is uniformly distributed over {0,1}".
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Easy case

@ AFf@).r)=bxT)
Pr{A(f(x), Rn) = b(x, Rn)] > 1 — neg(n) J @ A0 #bxr)

Fact 14

1. b(x,w) @ b(x,y) =b(x,wa y) forevery w,w,y € {0,1}".
2. Vr € {0,1}", the rv (R, & r) is uniformly distributed over {0,1}".

Hence, Vi € [n]:
1. x; = b(x,€) = b(x,r) @ b(x,r @ &) for every r € {0,1}"
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Easy case

@ AFf@).r)=bxT)
Pr{A(f(x), Rn) = b(x, Rn)] > 1 — neg(n) J @ A0 #bxr)

Fact 14

1. b(x,w) @ b(x,y) = b(x,w @ y) forevery w,w,y € {0,1}".
2. Vr € {0,1}", the rv (R, & r) is uniformly distributed over {0,1}".

Hence, Vi € [n]:
1. x; = b(x,€) = b(x,r) @ b(x,r @ &) for every r € {0,1}"
2. Pr[A(f(x), Rn) = b(x, Ry) NA(f(X), Rn @ €') = b(x, R, ® €)] > 1 — neg(n)
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Easy case

@ AFf@).r)=bxT)
Pr{A(f(x), Rn) = b(x, Rn)] > 1 — neg(n) J @ A0 #bxr)

Fact 14

1. b(x,w) @ b(x,y) = b(x,w @ y) forevery w,w,y € {0,1}".
2. Vr € {0,1}", the rv (R, & r) is uniformly distributed over {0,1}".

Hence, Vi € [n]:
1. x; = b(x,€') = b(x,r) ® b(x,r & €') for every r € {0,1}"
2. Pr{A(f(X), Rn) = b(X, Rn) AA(f(X), R @ €') = b(X, Ry @ &')] > 1 — neg(n)

Algorithm 15 (Inverter B on input y)
Return (A(y, Rn) @ A(y, Rn@ €e')),...,A(y, Ry) @ A(y, R, @ e")). J
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Proving Fact 14

1. Forw,w,y € {0,1}":

b(x,y) ® b(x, w) = <@XI YI> 2] <@XIVVI>

i=1n i=1n

=P x-(viow)
i=tn

=b(x,y & w)
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Proving Fact 14

1. Forw,w,y € {0,1}":

b(x,y) ® b(x, w) = <@XI YI> 2] <®X/W/>

i=1n i=1n
=P x-(viow)
i=1n
=b(x,y & w)
2. Forr,y € {0,1}":

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography



Intermediate Case

Pr{A(f(x), Rn) = b(x, Rp)] > ?—1 WL J

@ AF@).T) =bx7)
@ A(FX),7) #b(x,T)
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Intermediate Case

Pr [A(f(x), Ra) = b(X, Ra)] > 3 + o )

Forany i € [n] | @ 1)) = b
Pr[A(f(x), Rn) ® A(f(x), Ry ® €') = xi] @ AF().1) #bxr)
> Pr[A(f(x), Rn) = b(x, Rn) A A(f(x), R @ €') = b(x, R, @ €')]
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Intermediate Case

PriA(f(x), Bn) = b(x. Rn)] = § + 505 J

Forany i € [n] | @ 1)) = b
Pr[A(f(x), Rn) ® A(f(x), Ry ® €') = xi] @ AF().1) #bxr)
> Pr[A(f(x), Rn) = b(x, Rn) A A(f(x), R @ €') = b(x, R, @ €')]

s () ()
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Intermediate Case

PriA(f(x), Bn) = b(x. Rn)] = § + 505 J

Forany i € [n] | @ 1)) = b
Pr[A(f(x), Rn) ® A(f(x), Ry ® €') = xi] @ AF().1) #bxr)
> Pr[A(f(x), Rn) = b(x, Rn) A A(f(x), R @ €') = b(x, R, @ €')]

c () ()
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Intermediate Case

PrlA(f(x), Rn) = b(x, Rn)] > & + 2 )

For any i € [n]
Pr{A(f(x), Rn) & A(f(X), Rn @ €) = X,
> PrIA(f(x), Rn) = b(x, Ra) A A(f(x), By @ €) = b(X, Ry & €)]

3 1 3 1 1 2
> [ Gg) (G ) 2t e
Algorithm 16 (Inverter B on input y € {0,1}")

@ 4¢@),M =b1)
i] @ A(FX),7) #b(x,T)

1. Forevery i€ [n]

1.1 Sample r',....r" € {0, 1} uniformly at random
1.2 Let m;j = majic, {(A(y, F) @ Aly,r @ €')}

2. Output (my, ..., mp)
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B’s Success Provability

The following claim holds for “large enough” v = v(n) € poly(n).
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B’s Success Provability

The following claim holds for “large enough” v = v(n) € poly(n).
Claim 17

For every i € [n], it holds that Pr[m; = x;] > 1 — neg(n). J
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B’s Success Provability

The following claim holds for “large enough" v = v(n) € poly(n).
Claim 17

For every i € [n], it holds that Pr[m; = x;] > 1 — neg(n).

Proof: For j € [v], let the indicator rv W/ be 1, iff
A(f(x),r) & A(f(x),r & €') = x;.
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B’s Success Provability

The following claim holds for “large enough" v = v(n) € poly(n).
Claim 17

For every i € [n], it holds that Pr[m; = x;] > 1 — neg(n).

Proof: For j € [v], let the indicator rv W/ be 1, iff
A(f(x),r) @ A(f(x),r & €') = x;.
We want to lowerbound Pr [Zj‘.’:1 =
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B’s Success Provability

The following claim holds for “large enough" v = v(n) € poly(n).
Claim 17
For every i € [n], it holds that Pr[m; = Xx;] > 1 — neg(n).

Proof: For j € [v], let the indicator rv W/ be 1, iff
A(f(x),r) @ A(f(x),r & €') = x;.
We want to lowerbound Pr [Z}; wi> ¥

> The W/ areiids and E[W/] > 1 + q(n for every j € [v]
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B’s Success Provability
The following claim holds for “large enough" v = v(n) € poly(n).

Claim 17
For every i € [n], it holds that Pr[m; = x;] > 1 — neg(n).

Proof: For j € [v], let the indicator rv W/ be 1, iff
A(f(x),r) @ A(f(x),r & €') = x;.
We want to lowerbound Pr [Z}; wi> ¥

> The W/ areiids and E[W/] > 1 + q(n for every j € [v]
Lemma 18 (Hoeffding’s inequality)

Let X',..., X" be iids over [0, 1] with expectation ;.. Then,
Pr]| Z’ = — p| > e]< 2 exp(—2e2V) for every e > 0.
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B’s Success Provability
The following claim holds for “large enough" v = v(n) € poly(n).

Claim 17
For every i € [n], it holds that Pr[m; = Xx;] > 1 — neg(n). J

Proof: For j € [v], let the indicator rv W/ be 1, iff
A(f(x),r) @ A(f(x),r & €') = x;.
We want to lowerbound Pr [Z‘-’ﬂ wi> ¥

> The W are iids and E[W/] > 1 + q(n for every j € [v]
Lemma 18 (Hoeffding’s inequality)

Let X',..., X" be iids over [0, 1] with expectation ;.. Then,
Pr]| Z’ = — p| > e]< 2 exp(—2e2V) for every e > 0.

We complete the proof taking X/ = W/, e = 1/4q(n) and v € w(log(n) - q(n)?).
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The actual (hard) case

Pr[A(f(x), Rn) = b(X, Ra)] > } + ol ]

@ Af@),r) =bxT)
@ A7) # blxT)
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The actual (hard) case

Pr[A(f(x), Rn) = b(X, Ra)] > } + ol )

@ Af@),r) =bxT)
@ A7) # blxT)

» What goes wrong?

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography



The actual (hard) case

Pr[A(f(x), Rn) = b(x, Rn)] > § + o J

@ Af@),r) =bxT)
@ A7) # blxT)

» What goes wrong?
PrIA(f(x), Rn) & A(f(x), R & €') = x] > 225
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The actual (hard) case

Pr[A(f(x), Rn) = b(x, Rn)] > § + o J

@ Af@),r) =bxT)
@ A7) # blxT)

» What goes wrong?
PHA(H(x), Rn) @ A(f(X), Ra @ &) = X] > 225
» Hence, using a random guess does better than using A :-<
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The actual (hard) case

Pr[A(f(x), Rn) = b(x, Rn)] > § + o J

@ Af@),r) =bxT)
@ A7) # blxT)

» What goes wrong?
PHA(H(x), Rn) @ A(f(X), Ra @ &) = X] > 225
» Hence, using a random guess does better than using A :-<

> Idea: guess the values of {b(x,r"),...,b(x,r")}
(instead of calling {A(f(x),r"),...,A(f(x),r")})
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The actual (hard) case

Pr[A(f(x), Rn) = b(x, Rn)] > § + o J

@ Af@),r) =bxT)
@ A7) # blxT)

» What goes wrong?
PrA(f(x), Bn) @ A(f(x), Rp © €') = xi] > 55
» Hence, using a random guess does better than using A :-<

> Idea: guess the values of {b(x,r"),...,b(x,r")}
(instead of calling {A(f(x),r"),...,A(f(x),r")})
Problem: negligible success probability
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The actual (hard) case

Pr[A(f(x), Rn) = b(x, Rn)] > § + o J

@ Af@),r) =bxT)
@ A7) # blxT)

» What goes wrong?

PrA(f(x), Bn) @ A(f(x), Rp © €') = xi] > 55
» Hence, using a random guess does better than using A :-<
> Idea: guess the values of {b(x,r"),...,b(x,r")}

(instead of calling {A(f(x),r"),...,A(f(x),r")})

Problem: negligible success probability

Solution: choose the samples in a correlated manner

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography November 17, 2016
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Algorithm B

» Fix ¢ = ¢(n) (will be O(log n)) and set v = 2¢ — 1.
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» Fix ¢ = ¢(n) (will be O(log n)) and set v = 2¢ — 1.
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Algorithm B

» Fix ¢ = ¢(n) (will be O(log n)) and set v = 2¢ — 1.
» In the following £ C [¢] stands for a non empty choice
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Algorithm B

» Fix ¢ = ¢(n) (will be O(log n)) and set v = 2¢ — 1.
» In the following £ C [¢] stands for a non empty choice
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Algorithm B

» Fix ¢ = ¢(n) (will be O(log n)) and set v = 2¢ — 1.
» In the following £ C [¢] stands for a non empty choice
Algorithm 19 (Inverter B on y = f(x) € {0,1}")
1. Sample uniformly (and independently) t',...,t € {0,1}"
2. Guess the value of {b(x, t')}icg
3. Forall £ C [(]: set r* = @, t' and compute b(x, r“) = @, b(x, t').
4. Forall i € [n], let m; = maj.cq{A(f(x), r* ® €') @ b(x, r*)}
5. Output (my, ..., mp)
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Algorithm B

» Fix ¢ = ¢(n) (will be O(log n)) and set v = 2¢ — 1.
» In the following £ C [¢] stands for a non empty choice
Algorithm 19 (Inverter B on y = f(x) € {0,1}")
1. Sample uniformly (and independently) t',...,t € {0,1}"
2. Guess the value of {b(x, t')}icg
3. Forall £ C [(]: set r* = @, t' and compute b(x, r“) = @, b(x, t').
4. Forall i € [n], let m; = maj.cq{A(f(x), r* ® €') @ b(x, r*)}
5. Output (my, ..., mp)

> Fix i € [n], and let W* be 1 iff A(f(x), r* @ &) @ b(x, r*) = x;.
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Algorithm B

» Fix ¢ = ¢(n) (will be O(log n)) and set v = 2¢ — 1.
» In the following £ C [¢] stands for a non empty choice
Algorithm 19 (Inverter B on y = f(x) € {0,1}")
1. Sample uniformly (and independently) t',...,t € {0,1}"
. Guess the value of {b(x, t') }ic[g
. Forall £ C [(]: set r* = @, t' and compute b(x, r“) = @, b(x, t').

2
3
4. Foralli € [n], let mj = maj g {A(f(x), r* & €) & b(x, r*)}
5. Output (my, ..., mp)

v

Fix i € [n], and let W* be 1 iff A(f(x), r* @ &) @ b(x, r*) = x;.

v

We want to lowerbound Pr [Zﬁgm W~ > %}
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Algorithm B

» Fix ¢ = ¢(n) (will be O(log n)) and set v = 2¢ — 1.
» In the following £ C [¢] stands for a non empty choice
Algorithm 19 (Inverter B on y = f(x) € {0,1}")
1. Sample uniformly (and independently) t',...,t € {0,1}"
2. Guess the value of {b(x, t')}icg
3. Forall £ C [(]: set r* = @, t' and compute b(x, r“) = @, b(x, t').
4. Forall i € [n], let m; = maj.cq{A(f(x), r* ® €') @ b(x, r*)}
5. Output (my, ..., mp)

v

Fix i € [n], and let W* be 1 iff A(f(x), r* @ &) @ b(x, r*) = x;.
> We want to lowerbound Pr [Zﬁgm W~ > %}

» Problem: the W*’s are dependent!
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Analyzing B’s success probability

1. Let T',..., T* be iid and uniform over {0,1}".
2. ForcC [l letRE =@, T .
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Analyzing B’s success probability

1. Let T',..., T* be iid and uniform over {0, 1}".
2. ForcC [l letRE =@, T .

Claim 20

1. VL C [/], R* is uniformly distributed over {0, 1}".

2. Vw,w' € {0,1}"and £ # L' C [{], it holds tha}t
Pr[Rf = wA RY = w/] = Pr[RX = w] - Pr[RE = w/] = 272",
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Analyzing B’s success probability

1. Let T',..., T* be iid and uniform over {0, 1}".
2. ForcC [l letRE =@, T .

Claim 20

1. VL C [/], R* is uniformly distributed over {0, 1}".

2. Vw,w' € {0,1}"and £ # L' C [{], it holds tha}t
Pr[Rf = wA RY = w/] = Pr[RX = w] - Pr[RE = w/] = 272",

Proof:
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Analyzing B’s success probability

1. Let T',..., T* beiid and uniform over {0, 1}".
2. ForcC [l letRE =@, T .

Claim 20

1. VL C [/], R* is uniformly distributed over {0, 1}".

2. Vw,w' € {0,1}"and £ # L' C [{], it holds tha}t
Pr[Rf = wA RY = w/] = Pr[RX = w] - Pr[RE = w/] = 272",

Proof: (1) is clear,
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Analyzing B’s success probability

1. Let T',..., T* beiid and uniform over {0, 1}".
2. ForcC [l letRE =@, T .

Claim 20

1. VL C [/], R* is uniformly distributed over {0, 1}".

2. Vw,w' € {0,1}"and £ # L' C [{], it holds tha}t
Pr[Rf = wA RY = w/] = Pr[RX = w] - Pr[RE = w/] = 272",

Proof: (1) is clear, we prove (2) in the next slide.
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Proving Fact 20(2)
Assume wlg. that 1 € (L' \ £).
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Proving Fact 20(2)
Assume wilg. that 1 € (£ \ £).
Pr[R* = wA R = w/]

= E PrlRE =wA RS =w' | (T?,..., T =(£,...,t
(tz,.‘.,t‘)e{0,1}(l—1)"|: g | ( )=( )l
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Pairwise independence variables

Definition 21 (pairwise independent random variables)

A sequence of random variables X', ..
Vi # j € [v] and Va, b, it holds that

PriX' = aA X = b] = Pr[X' = a] - Pr[X/ = b]

., X" is pairwise independent, if
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Pairwise independence variables

Definition 21 (pairwise independent random variables)

A sequence of random variables X', ..., X" is pairwise independent, if
Vi # j € [v] and Va, b, it holds that

PriX' = an X = b] = Pr[X' = a] - Pr[X/ = b]

» By Claim 20, r£ and r=’ (chosen by B) are pairwise independent for
every L # L' C [/].
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(Recall, W~ is 1 iff A(f(x), r* @ €') @ b(x, r*) = x;)
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Pairwise independence variables

Definition 21 (pairwise independent random variables)

A sequence of random variables X', ..., X" is pairwise independent, if
Vi # j € [v] and Va, b, it holds that

PriX' = an X = b] = Pr[X' = a] - Pr[X/ = b]

» By Claim 20, r and r’ (chosen by B) are pairwise independent for
every L # L' C [/].

» Hence, also W< and W~ are.
(Recall, W~ is 1 iff A(f(x), r* @ €') @ b(x, r*) = x;)

Lemma 22 (Chebyshev’s inequality)

Let X',..., X" be pairwise-independent random variables with expectation
and variance o2. Then, for every « > 0,

S X o2
Prl’——u‘zs ng—

"4 "4
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B’s success provability, cont.

Assuming that B always guesses {b(x, t')} correctly, then for every
L C ]
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B’s success provability, cont.

Assuming that B always guesses {b(x, t')} correctly, then for every
L C ]

> E[Wﬁ]Z%—i—ﬁ
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B’s success provability, cont.

Assuming that B always guesses {b(x, t')} correctly, then for every
L[

> E[WE] > 15 + ﬁ

» Var(W¥) := E[W*]?2 — E[(W*)?] <1

Benny Applebaum  lftach Haitner (TAU) Foundation of Cryptography November 17, 2016 26/28



B’s success provability, cont.

Assuming that B always guesses {b(x, t')} correctly, then for every
L[

> E[WE] > 15 + ﬁ

» Var(W¥) := E[W*]?2 — E[(W*)?] <1

Benny Applebaum  lftach Haitner (TAU) Foundation of Cryptography November 17, 2016 26/28



B’s success provability, cont.

Assuming that B always guesses {b(x, t')} correctly, then for every
Lcl]

> E[WL]Z%—&-ﬁ

» Var(W¥) := E[W*]?2 — E[(W*)?] <1
Taking ¢ = 1/2q(n) and v = 2n/? (i.e., £ = [log(2n/<?)|), Lemma 22
yields that

2 >1- (4)

zcc[e] we o 1
P L— x| — P =
r[m; = x;] = Pr l ” > on
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B’s success provability, cont.

Assuming that B always guesses {b(x, t')} correctly, then for every
Lcl]

> EIWE] =5 + o

> Var(WE) = E[WE]2 — E[(WE)?] < 1

Taking ¢ = 1/2q(n) and v = 2n/? (i.e., £ = [log(2n/<?)|), Lemma 22
yields that

we 4 1
Pr[m; = xj] = Pr lch‘[f] > ]

>1—— 4
2—1 2n (4)

Hence, by a union bound, B outputs x with probability 5.
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B’s success provability, cont.

Assuming that B always guesses {b(x, t')} correctly, then for every
L[

» EIWE > 7+ 55

» Var(W¥) := E[W*]?2 — E[(W*)?] <1

Taking ¢ = 1/2q(n) and v = 2n/? (i.e., £ = [log(2n/<?)|), Lemma 22
yields that

we 4 1
Pr[m; = xj] = Pr lch‘[f] > ]

>1—— 4
2—1 2n (4)

Hence, by a union bound, B outputs x with probability 5.

Taking the guessing into account, yields that B outputs x with probability
at least 27¢/2 € Q(n/q(n)?).
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Reflections

» Hardcore functions:
Similar ideas allows to output log n “pseudorandom bits"
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Reflections

» Hardcore functions:
Similar ideas allows to output log n “pseudorandom bits"

» Alternative proof for the LHL:

Let X be a rv with over {0, 1}" with H,(X) > t, and assume
SD((Rn, (Rn, X)2), (Rn, Ur)) > a = 2= for some universal ¢ > 0.
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(Rn, (Rn, X)2) from (R,, Uy) with advantage «

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography November 17, 2016

27/28



Reflections

» Hardcore functions:
Similar ideas allows to output log n “pseudorandom bits"
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Let X be a rv with over {0, 1}" with H,(X) > t, and assume
SD((Rn, (Rn, X)2), (Rn, Ur)) > a = 2= for some universal ¢ > 0.

= Exists (a possibly inefficient) algorithm D that distinguishes
(Rn, (Rn, X)2) from (R,, Uy) with advantage «
= Exists algorithm A that predicts (R, X)> given R, with prob 1 + «
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Reflections

» Hardcore functions:
Similar ideas allows to output log n “pseudorandom bits"

» Alternative proof for the LHL:

Let X be a rv with over {0, 1}" with H,(X) > t, and assume
SD((Rn, (Rn, X)2), (Rn, Ur)) > a = 2= for some universal ¢ > 0.

= Exists (a possibly inefficient) algorithm D that distinguishes
(Rn, (Rn, X)2) from (R,, Uy) with advantage «
= Exists algorithm A that predicts (R, X)> given R, with prob 1 + «
— (by GL) Exists algorithm B that guesses X from nothing, with prob
a0 > ot
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Reflections cont.

» List decoding:
An encoder C: {0,1}" — {0,1}™ and a decoder D, such that the
following holds for any x € {0,1}" and c of hamming distance J — ¢ from
C(x):
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An encoder C: {0,1}" — {0,1}™ and a decoder D, such that the
following holds for any x € {0,1}" and c of hamming distance J — ¢ from
C(x):

D(c, ¢) outputs a list of size at most poly(1/4) that whp. contains x

The code we used here is known as the Hadamard code

» LPN - learning parity with noise:

Find x given polynomially many samples of (x, R,)> + N, where
PrIN=1] < 15 — 4.
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Reflections cont.

> List decoding:

An encoder C: {0,1}" — {0,1}™ and a decoder D, such that the
following holds for any x € {0,1}" and c of hamming distance J — ¢ from
C(x):

D(c, ¢) outputs a list of size at most poly(1/4) that whp. contains x
The code we used here is known as the Hadamard code

» LPN - learning parity with noise:

Find x given polynomially many samples of (x, R,)> + N, where
PrIN=1] < 15 — 4.

The difference comparing to Goldreich-Levin — no control over the R,’s.
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