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Section 1

One-Way Functions
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Informal discussion

A one-way function (OWF) is:
I Easy to compute, everywhere
I Hard to invert, on the average

I Why should we care about OWFs?
I Hidden in (almost) any cryptographic primitive: necessary for

“cryptography"
I Sufficient for many cryptographic primitives
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“Application”: Authentication where server doesn’t store the user’s password.
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Formal definition

Definition 1 (one-way functions (OWFs))
A polynomial-time computable function f : {0,1}∗ 7→ {0,1}∗ is one-way, if

Pr
x←{0,1}n

[
A(1n, f (x)) ∈ f−1(f (x))]

]
= neg(n)

for any PPT A.

I polynomial-time computable: there exists polynomial-time algorithm F ,
such that F (x) = f (x) for every x ∈ {0,1}∗.

I neg: a function µ : N 7→ [0,1] is a negligible function of n, denoted
µ(n) = neg(n), if for any p ∈ poly there exists n′ ∈ N such that
µ(n) < 1/p(n) for all n > n′

I x ← {0,1}n: x is uniformly drawn from {0,1}n

I PPT: probabilistic polynomial-time algorithm.

We typically omit 1n from the input list of A
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Formal definition cont.

1. Is this the right definition?
I Asymptotic
I Efficiently computable
I On the average
I Only against PPT’s

2. OWF =⇒ P 6= NP
3. Does P 6= NP =⇒ OWF?

4. (most) Crypto implies OWFs

5. Do OWFs imply Crypto?

6. Where do we find them?

7. Non uniform OWFs

Definition 2 (Non-uniform OWF))
A polynomial-time computable function f : {0,1}∗ 7→ {0,1}∗ is non-uniformly
one-way, if Pr

x←{0,1}n

[
Cn(f (x)) ∈ f−1(f (x))

]
= neg(n)

for any polynomial-size family of circuits {Cn}n∈N.
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Length-preserving functions

Definition 3 (length preserving functions)

A function f : {0,1}∗ 7→ f : {0,1}∗ is length preserving, if |f (x)| = |x | for every
x ∈ {0,1}∗

Theorem 4

Assume that OWFs exit, then there exist length-preserving OWFs.

Proof idea: use the assumed OWF to create a length preserving one.
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Partial domain functions

Definition 5 (Partial domain functions)

Let m, ` : N 7→ N be polynomials. Let f : {0,1}`(n) 7→ {0,1}m(n) denote a
function defined over input lengths in {m(n)}n∈N, and maps strings of length
`(n) to strings of length m(n).

Such function is efficient, if it is poly-time computable.

The definition of one-wayness naturally extends to such (efficient) functions.
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OWFs imply length-preserving OWFs cont.

Let f : {0,1}∗ 7→ {0,1}∗ be a OWF, let p ∈ poly be a bound on its
computing-time, and assume wlg. that p is monotony increasing (can we?).
Note that |f (x)| ≤ p(|x |).

Construction 6 (the length preserving function)

Define g : {0,1}p(n)+1 7→ {0,1}p(n)+1 as

g(x) = f (x1,...,n),1,0p(n)−|f (x1,...,n)|

Note that g is well defined, length preserving and efficient.

Claim 7
g is one-way.

How can we prove that g is one-way?

Answer: using reduction.
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Proving that g is one-way

Proof: Assume that g is not one-way. Namely, there exists PPT A, q ∈ poly and
infinite set I ⊆ {p(n) + 1 : n ∈ N}, with

Pr
x←{0,1}n′

[
A(1n′ , y) ∈ g−1(g(x))

]
> 1/q(n′) (1)

for every n′ ∈ I.

We show how to use A for inverting f .

Claim 8

w ∈ g−1(y ,1,0p(n)−|y|) =⇒ w1,...,n ∈ f−1(y)

Proof: Since g(w) = f (w1,...,n),1,0p(n)−|f (w1,...,n)| = y ,1,0p(n)−|y|,

it follows that f (w1,...,n) = y (?).
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Algorithm 9 (Inverter B for f )

Input: 1n and y ∈ {0, 1}∗

1. Let x = A(1p(n)+1, y , 1, 0p(n)−|y|)

2. Return x1,...,n

Claim 10

Let I′ := {n ∈ N : p(n) + 1 ∈ I}. Then

1. I′ is infinite

2. Prx←{0,1}n [B(1n, f (x)) ∈ f−1(f (x))] > 1/q(p(n) + 1) for every n ∈ I′

This contradicts the assumed one-wayness of f .

Proof: (1) is clear, (2)

Pr
x←{0,1}n

[
B(1n, f (x)) ∈ f−1(f (x))

]
= Pr

x←{0,1}n

[
A(1p(n)+1, f (x), 1, 0p(n)−|f (x)|)1,...,n ∈ f−1(f (x))

]
= Pr

x′←{0,1}p(n)+1

[
A(1p(n)+1, g(x ′))1,...,n ∈ f−1(f (x ′1,...,n))

]
≥ Pr

x′←{0,1}p(n)+1

[
A(1p(n)+1, g(x ′)) ∈ g−1(g(x ′))

]
≥ 1/q(p(n) + 1)
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From partial-domain length-preserving OWFs to length-preserving
OWFs

Construction 11

Given a function f : {0,1}`(n) 7→ {0,1}`(n), define fall : {0,1}n 7→ {0,1}n as

fall(x) = f (x1,...,k ),0n−k

where n = |x | and k := max{`(n′) ≤ n : n′ ∈ [n]}.

Clearly, fall is length preserving, defined for every input length, and efficient if
f is.

Claim 12

Assume f is efficient, f is one-way, and ` satisfies 1 ≤ `(n+1)
`(n) ≤ p(n) for some

p ∈ poly, then fall is one-way function.

Proof: ?

We conclude that the existence of OWF implies the existence of
length-preserving OWF that is defined over all input lengths.
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Few remarks

More “security-preserving" reductions exits.

Convention for rest of the talk
Let f : {0,1}n 7→ {0,1}n be a one-way function.
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Weak one-way functions

Definition 13 (weak one-way functions)

A poly-time computable function f : {0,1}∗ 7→ f : {0,1}∗ is α-one-way, if

Pr
x←{0,1}n

[
A(1n, f (x)) ∈ f−1(f (x))

]
≤ α(n)

for any PPT A and large enough n ∈ N.

1. For example consider α(n) = 0.1, or α(n) = 0.99 or maybe even
α(n) = 1− 1/n.

2. (strong) OWF according to Definition 1, are neg-one-way according to
the above definition

3. Can we “amplify" weak OWF to strong ones?
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Strong to weak OWFs

Claim 14

Assume there exists OWFs, then there exist functions that are 2
3 -one-way, but

not (strong) one-way

Proof: For a OWF f , let

g(x ,b) =

{
(1, f (x)), b = 1;
(0, x), otherwise (b = 0).
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Weak to strong OWFs

Theorem 15 (weak to strong OWFs (Yao))

Assume there exist (1− δ)-weak OWFs with δ(n) ≥ 1/q(n) for some q ∈ poly,
then there exist (strong) one-way functions.

I Idea: parallel repetition (i.e., direct product): Consider
g(x1, . . . , xt ) = f (x1), . . . , f (xt ) for large enough t

I Motivation: if something is somewhat hard, than doing it many times is
(very) hard

I But, is it really so?

Consider matrix multiplication: Let A ∈ Rn×n and x ∈ Rn

Computing Ax takes Θ(n2) times, but computing A (x1, x2, . . . , xn) takes
. . . only O(n2.3...) < Θ(n3)

I Fortunately, parallel repetition does amplify weak OWFs :-)
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Amplification via parallel repetition

Theorem 16
Let f : {0,1}n 7→ {0,1}n be a (1− δ)-weak OWF for δ(n) = 1/q(n) for some
(positive) q ∈ poly, and let t(n) =

⌈
log2 n
δ(n)

⌉
. Then g : ({0,1}n)t(n) 7→ ({0,1}n)t(n)

defined by g(x1, . . . , xt(n)) = f (x1), . . . , f (xt(n)), is a one-way function.

Clearly g is efficient. Is it one-way? Proof via reduction: Assume ∃ PPT A
violating the one-wayness of g, we show there exists a PPT B violating the
weak hardness of f .

Difficultly: We need to use an inverter for g with low success probability, e.g.,
1
n , to get an inverter for f with high success probability, e.g., 1

2 or even 1− 1
n

In the following we fix (an assumed) PPT A, p ∈ poly and infinite set I ⊆ N s.t.
Pr

w←{0,1}t(n)·n
[A(g(w)) ∈ g−1(g(w))] ≥ 1/p(n)

for every n ∈ I. We also “fix" n ∈ I and omit it from the notation.
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Proving that g is One-Way – the Naive approach

Assume A attacks each of the t outputs of g independently: ∃ PPT A′ such
that A(z1, . . . , zt ) = A′(z1) . . . ,A′(zt )

It follows that A′ inverts f with probability greater than (1− δ).
Otherwise

Pr
w←{0,1}t·n

[A(g(w)) ∈ g−1(g(w))] =
t∏

i=1

Pr
x←{0,1}n

[
A′(f (x)) ∈ f−1(f (x))

]
≤ (1− δ)t ≤ e− log2 n ≤ n− log n

Hence A′ violates the weak hardness of f

A less naive approach would be to assume that A goes over the inputs
sequentially.

Unfortunately, we can assume none of the above.

Any idea?
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Hardcore sets

Assume f is of the form

Definition 17 (hardcore sets)

S = {Sn ⊆ {0,1}n} is a δ-hardcore set for f : {0,1}n 7→ {0,1}n, if:

1. Prx←{0,1}n [f (x) ∈ S] ≥ δ(n) for large enough n, and

2. For any PPT A and q ∈ poly: for large enough n, it holds that
Pr
[
A(y) ∈ f−1(y)

]
≤ 1

q(n) for every y ∈ Sn.

Assuming f has such a δ-HC set seems like a good starting point :-)

Unfortunately, we do not know how to prove that f has hardcore set :-<
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Failing sets

Definition 18 (failing sets)

f : {0,1}n 7→ {0,1}n has a δ-failing set for a pair (A,q) of algorithm and
polynomial, if exists S = {Sn ⊆ {0,1}n}, such that the following holds for large
enough n:

1. Prx←{0,1}n [f (x) ∈ Sn] ≥ δ(n), and

2. Pr
[
A(y) ∈ f−1(y)

]
≤ 1/q(n), for every y ∈ Sn

Claim 19
Let f be a (1− δ)-OWF, then f has a δ/2-failing set, for any pair of PPT A and
q ∈ poly.

High level idea: Define Sn := {y ∈ {0,1}n : Pr
[
A(y) ∈ f−1(y)]

]
< 1/q(n)}.

1. If this set is small, show that A inverts f very well.

2. If this set is large, then it is by definition a fooling set.
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Proof: Assume ∃ PPT A and q ∈ poly, such that for any S = {Sn ⊆ {0,1}n} at
least one of the following holds:

1. Prx←{0,1}n [f (x) ∈ Sn] < δ(n)/2 for infinitely many n’s, or

2. For infinitely many n’s: ∃y ∈ Sn with Pr
[
A(y) ∈ f−1(y)]

]
≥ 1/q(n).

We’ll use A to contradict the hardness of f .
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Using A to invert f

For n ∈ N, let Sn := {y ∈ {0,1}n : Pr
[
A(y) ∈ f−1(y)]

]
< 1/q(n)}.

The second item cannot hold, therefore the first item must hold, meaning that:

Claim 20
∃ infinite I ⊆ N with Prx←{0,1}n [f (x) ∈ Sn] < δ(n)/2 for every n ∈ I.

Algorithm 21 (The inverter B on input y ∈ {0,1}n)

Do (with fresh randomness) for n · q(n) times:
If x = A(y) ∈ f−1(y), return x

Clearly, B is a PPT

Claim 22

For n ∈ I, it holds that Prx←{0,1}n

[
B(f (x)) ∈ f−1(f (x))

]
> 1− δ(n)

2 − 2−n

Proof: ?

Hence, for large enough n ∈ I: Prx←{0,1}n

[
B(f (x)) ∈ f−1(f (x))

]
> 1− δ(n).

Namely, f is not (1− δ)-one-way
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g is not one-way =⇒ f has no δ/2 failing set
We show: g is not one way =⇒ f has no δ/2 failing-set for some PPT B and
q ∈ poly.

Claim 23
Assume ∃ PPT A, p ∈ poly and an infinite set I ⊆ N such that

Pr
w←{0,1}t(n)·n

[
A(g(x)) ∈ g−1(g(w))

]
≥ 1

p(n)

for every n ∈ I. Then ∃ PPT B such that

Pr
x←{0,1}n|y=f (x)∈Sn

[
B(y) ∈ f−1(y)

]
≥ 1

t(n)p(n) − n− log n

for every n ∈ I and every Sn ⊆ {0,1}n with Prx←{0,1}n [f (x) ∈ Sn] ≥ δ(n)/2.

Thm follows: Fix S = {Sn ⊆ {0,1}n}. By Claim 23, for every n ∈ I, either
I Prx←{0,1}n [f (x) ∈ Sn] < δ(n)/2, or

I Prx←{0,1}n|y=f (x)∈Sn

[
B(y) ∈ f−1(y)

]
≥ 1

t(n)p(n) − n− log n

(for large enough n)
≥ 1

2t(n)p(n)

(for large enough n)
=⇒ ∃y ∈ Sn: Pr

[
B(y) ∈ f−1(y)

]
≥ 1

2t(n)p(n) .

Namely, f has no δ/2 failing set for (B,q = 2t(n)p(n))
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The no failing-set algorithm: Proof of main claim

Algorithm 24 (Inverter B on input y ∈ {0,1}n)

1. Choose w ← ({0,1}n)t(n), z = (z1, . . . , zt ) = g(w) and i ← [t ]

2. Set z ′ = (z1, . . . , zi−1, y , zi+1, . . . , zt )

3. Return A(z ′)i

Fix n ∈ I and a set Sn ⊆ {0,1}n with Prx←{0,1}n [f (x) ∈ S] ≥ δ(n)/2.

Claim 25

Prx←{0,1}n|y=f (x)∈Sn

[
B(y) ∈ f−1(y)

]
≥ 1

t(n)·p(n) − n− log n

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography 2018 24 / 27



Proving Prx←{0,1}n|y=f (x)∈Sn

[
B(y) ∈ f−1(y)

]
≥ 1

t(n)·p(n) − n− log n

Algorithm 26 (Inverter B on input y ∈ {0, 1}n)

1. Choose w ← ({0, 1}n)t(n), z = (z1, . . . , zt ) = g(w) and i ← [t]

2. Set z′ = (z1, . . . , zi−1, y , zi+1, . . . , zt )

3. Return A(z′)i

I For Typ = {v ∈ {0,1}t·n : ∃i ∈ [t ] : vi ∈ Sn}, it holds Prz [Typ] ≥ 1−n− log n

I ∀L ⊆ {0,1}t(n)·n :
Pr
z

[L′ = L ∩ Typ] =
∑
`∈L′

Pr [z = `] ≤
∑
`∈L′

Pr[z′=`]
t =

Prz′ [L′]
t .

I Hence ∀L ⊆ {0,1}t(n)·n : Prz′ [L] ≥ Prz [L∩Typ]
t(n) ≥ Prz [L]−n− log n

t(n) .

I Assume A is deterministic and let LA = {v ∈ {0,1}t·n : A(v) ∈ g−1(v)}.

Pr
x←{0,1}n|y=f (x)∈Sn

[
B(y) ∈ f−1(y)

]
≥ Pr [z ′ ∈ LA] ≥ Pr [z ∈ LA]− n− log n

t(n)

≥ 1
t(n) · p(n)

− n− log n
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Proving Prx←{0,1}n|y=f (x)∈Sn

[
B(y) ∈ f−1(y)

]
≥ 1

t(n)·p(n) − n− log n , cont.

In the case that A is randomized, let

I Ar — A whose coins fixed to r

I αr (n) — the inversion probability of Ar , for a uniform input for g

Note that Er [αr (n)] ≥ 1/p(n).

It follows that

Pr
x←{0,1}n|y=f (x)∈Sn

[
B(y) ∈ f−1(y)

]
≥ E

r

[
αr (n)

t(n)
− n− log n

]
= E

r
[αr (n)] /t(n)− n− log n

≥ 1
t(n) · p(n)

− n− log n.
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Closing remarks

I Weak OWFs can be amplified into strong one

I Can we give a more security preserving amplification?

I Similar hardness amplification theorems for other cryptographic
primitives (e.g., Captchas, general protocols)?

I What properties of the weak OWFs have we used in the proof?
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