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Probabilistic Graphical Models 

• Graphical representation of a probabilistic model 

• Each variable corresponds to a node in the graph 

• Links in the graph denote probabilistic relations between 

variables 



Why do we need graphical models? 

• Graphs are an intuitive way of representing and visualising the 

relationships between many variables. (Examples: family trees, 

electric circuit diagrams, neural networks) 

 

• A graph allows us to abstract out the conditional independence 

relationships between the variables from the details of their 

parametric forms. Thus we can ask questions like: “Is A dependent 

on B given that we know the value of C ?” just by looking at the 

graph. 

 

• Graphical models allow us to define general message-passing 

algorithms that implement Bayesian inference efficiently. Thus we 

can answer queries like “What is P(A|C = c)?” without enumerating 

all settings of all variables in the model. 
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Three kinds of Graphical Models 
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or Bayesian Networks 

useful to express causal 

relationships between 

variables 

or Markov random fields 

useful to express soft 

constraints between 

variables 

convenient for 

solving inference 

problems 



Bayesian Networks 

Directed Acyclic Graph (DAG) 

Note: the left-hand side is symmetrical w/r to the variables whereas the right-

hand side is not. 



Bayesian Networks 

Generalization to K variables: 

 

 
 The associated graph is fully connected. 

    The absence of links conveys important information. 



Bayesian Networks 

General Factorization 



Some Notations(1) 
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More compact 

representation 



Some Notations(2) 

Condition on data 

Shaded to indicate that the r.v. is set to its observed value  



Generative Models 

Causal process for generating images 



PPCA 

nx

nz

N

W

2



Discrete Variables 

 Denote the probability of observing both               and               

              by    

 

General joint distribution: K  2 { 1 parameters 

 

 

 

 

 

K states K states 

11 kx

12 lx 1   ,   klk lkl 

)x()x|x()x,x( 11221 ppp 

K -1 
parameters 

K -1 
parameters 

K2-1 
parameters 



Discrete Variables 

Independent joint distribution: 2(K { 1) parameters 

 



Discrete Variables 

General joint distribution over M variables:  
KM { 1 parameters 

 

M -node Markov chain: K { 1 + (M { 1)  K(K { 1) 
parameters 

Reduce the number of parameters by dropping link in the graph, at the 

expense of having a restricted class of distributions.  
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Conditional Independence 

a is independent of b given c 

 

 

Equivalently 

 

 

Notation 



Conditional Independence: Example 1 

marginalize w.r.t  c 

as it doesn‟t factorize into p(a)p(b) in 

general 

tail-to-tail 



Conditional Independence: Example 1 

tail-to-tail 



Conditional Independence: Example 2 

marginalize w.r.t  c 

head-to-tail 



Conditional Independence: Example 2 

head-to-tail 



Conditional Independence: Example 3 

 

 

 

 

 

 

 

 

 

 

 

Note: this is the opposite of Example 1 and 2, with c unobserved. 

marginalize w.r.t  c 

head-to-head 



Conditional Independence: Example 3 

 

 

 

 

 

 

 

 

 

 

 

Note: this is the opposite of Example 1 and 2, with c observed. 

head-to-head 



“Am I out of fuel?” 

B = Battery (0=flat, 1=fully charged) 
F = Fuel Tank (0=empty, 1=full) 
G = Fuel Gauge Reading 
  (0=empty, 1=full) 

and hence 



“Am I out of fuel?” 

Probability of an empty tank increased by observing G   = 0.  



“Am I out of fuel?” 

Probability of an empty tank reduced by observing B   = 0.  
This referred to as “explaining away”. 

the state of the fuel tank and that of the 

battery have become dependent on each 

other as a result of observing the reading 

on the fuel gauge. 



D-separation 
• A, B, and C are non-intersecting subsets of nodes in a 

directed graph. 
• A path from A to B is blocked if it contains a node such that 

either 
a) the arrows on the path meet either head-to-tail or tail-

to-tail at the node, and the node is in the set C, or 
b) the arrows meet head-to-head at the node, and 

neither the node, nor any of its descendants, are in the 
set C. 

• If all paths from A to B are blocked, A is said to be d-
separated from B by C.  

• If A is d-separated from B by C, the joint distribution over 
all variables in the graph satisfies                       . 



D-separation: Example 



D-separation: I.I.D. Data 



The Markov Blanket 

Markov Blanket (remaining factors) 
 

Parents and children  of xi 

Co-parents: parents of children of xi  

due to „explaining away‟ phenomenon 



Factorization Properties 



Cliques and Maximal Cliques 

Clique 

Maximal Clique 

Thus, if {x1, x2, x3} is a maximal clique and we define  an 
arbitrary function over this clique, then including 
another factor defined over a subset of these variables 
would be redundant. 



Notations: C – max. clique,        - the set of variables in that clique. 

Joint Distribution 

 

 

where                   is the potential over clique C    , which is a non-negative function 

which measures “compatibility” between settings of the variables. 

 

 

 

is the partition function (used for normalization). 

note: M K-state variables  KM terms in Z. 

 

 



Hammersley and Clifford Theorem 

• UI:  the set of distributions that are consistent with the set of 
conditional independence statements read from the graph using graph 
separation. 

• UF:  the set of distributions that can be expressed as a factorization  
described with respect to the maximal cliques. 

• The Hammersley-Clifford theorem states that the sets UI and UF are 
identical if                    is strictly positive. 

• In such case 

 

 

     where                   is called an energy function, and the exponential 
representation is called the Boltzmann distribution. 



Illustration: Image De-Noising using MRF 

Original Image Noisy Image 

  Noisy image is obtained by randomly flipping the sign of pixels in the 

     Noise free image with some small probability. 
 

 The Goal: Given Noisy image recover Noise Free Image 



Markov Model 

strong correlation between xi and yi. 

neighbouring pixels xi  and xj in an image are 

   strongly correlated. 



Markov Model 

biasing the model towards pixel 

values that have one particular 

sign in preference to the other. 



The joint distribution 
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having a high probability 



Illustration: Image De-Noising (3) 

Noisy Image Restored Image (ICM) 



Illustration: Image De-Noising (4) 

Restored Image (Graph cuts) Restored Image (ICM) 


