
Hidden Markov Models 

 

 
Based on www-nlp.stanford.edu/fsnlp/hmm-chap/blei-hmm-

ch9.ppt 



Models for sequential data 

• First-order Markov model: conditions on 

previous observation: 



Models for sequential data 

• Second-order Markov model conditions on 

the two previous 

• observations: 



Hidden Markov Model 

• Hidden states – Markov chain: 

– Dependent only on the previous state 

– “The past is independent of the future given the 

present.” 

 

 



Hidden Markov Model 

• Shaded nodes are observed variables 

• Dependent only on their corresponding hidden 

state 

 



HMM Formalism 

• S : {s1…sN } are the values for the hidden states 

• K : {k1…kM } are the values for the observations 
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HMM Formalism 

• Parameters: {S, K, P, A, B}  

•  Initial hidden state probabilities:  P = {pi} 

•  Transition probabilities. A = {aij} are the state transition 

probabilities. 

•  Emission probabilities. B = {bik} are the observation state 

probabilities (HMM can also work with continues emission probabilities). 
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HMM hidden state example  



HMM hidden state example  



Inference in an HMM 

• Compute the probability of a given observation 

sequence 

• Given an observation sequence, compute the most 

likely hidden state sequence 

• Given an observation sequence and set of possible 

models, which model most closely fits the data? 
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Given an observation sequence and a model, 

compute the probability of the observation sequence 
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Decoding 

xT x1 xt xt-1 xt+1 

z1 zt+1 zT zt zt-1 

The sum contains          terms: T variables, each with N 

states  - the number of terms grows exponentially with the 

length of the chain  

TN

Doesn’t factorize over t.  
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Forward Procedure 

 

• Special structure gives us an efficient solution 

using dynamic programming. 

• Intuition: Probability of the first t observations is 

the same for all possible t+1 length state 

sequences.  

• Define: 
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Forward Procedure 
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Forward Procedure 
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Forward Procedure 

xT x1 xt xt-1 xt+1 

z1 zt+1 zT zt zt-1 
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Forward Procedure 

xT x1 xt xt-1 xt+1 

z1 zt+1 zT zt zt-1 
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Forward Procedure 

xT x1 xt xt-1 xt+1 

z1 zt+1 zT zt zt-1 
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Decoding Solution 
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Backward Procedure 

Combination 
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Best State Sequence 

• Find the state sequence that best explains the observations 

 

 

 

 

• Viterbi Algorithm: same as forward procedure except that 

instead of tracking the total probability, we track the 

maximum probability and record its corresponding state 

sequence. 
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Viterbi Algorithm 
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The state sequence which maximizes the 

probability of seeing the observations to time 

t-1, landing in state j, and seeing the 

observation at time t 
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Viterbi Algorithm 
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Computation 
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Viterbi Algorithm 
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Compute the most 

likely state sequence 

by working 

backwards 
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Parameter Estimation 

• Given an observation sequence, find the model 

that is most likely to produce that sequence. 

• No analytic method -> EM 
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Parameter Estimation: E-step 
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Probability of 

traversing an arc 
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Parameter Estimation: M-step 
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Now we can 

compute the new 

estimates of the 

model parameters. 
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HMM Applications 

• Analysis of biological sequences 

• Tagging speech 

• Speech recognition 

• Many others 


