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LECTURE :PPCA

Slides due to Geoffrey Hinton



Probabilistic PCA

* Probabilistic, generative view of data

* Assumptions:
— underlying latent variable has a Gaussian distribution
— linear relationship between latent and observed variables

— 1sotropic Gaussian noise in observed dimensions
p(z) = N(z[0,1)
p(xlz) = N(x[Wz+ p,02T)

X =Wz -+ u+e
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Probabilistic PCA: Marginal data density

Columns of W are the principal components, o2 1s sensor noise

Product of Gaussians 1s Gaussian: the joint p(z,x), the marginal
data distribution p(x) and the posterior p(z|x) are also Gaussian
Marginal data density (predictive distribution):

= | p(z)p(x|z)dz = N (x|, WWT + ¢°1)

Can deuve by completing square in exponent, or by just
computing mean and covariance given that 1t 1s Gaussian:
Elx] = Elp+Wz+¢€ =p+ WE[z] + Elé]
= p+WO+0=p
C = Covlx] =E[(z— p)(z—p)']

= El(p+Wz+e—pw)(p+Wz+e— p)!]
E[(Wz+e)(Wz+e)']
WWT + 521




Probabilistic PCA: Joint distribution

 Joint density for PPCA (x is D-dim., z 1s M-dim):
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— where cross-covariance terms from:

Covlz,x] =

* Note that evaluating predictive distribution involves mverting C:

El(z—0)(x— )] = Elz(n+ Wz + ¢ — p)?]
E[z(Wz 4+ ¢)T] = W'

reduce O(D?) to O(M?) by applying matrix inversion lemma:.

Cl=0"11- J_EW(WTW - (TBI)_le



Probabilistic PCA: Posterior distribution

 Inference in PPCA produces posterior distribution over latent z
* Derive by applying Gaussian conditioning formulas (see 2.3 in
book) to joint distribution -
oK1 = A (0] |7 |2 202
(X2 Xo| ' [pa] T [ 201 2o
p(x1) = N(p1,Z1)
p(xi|x0) = N (x1[my 5, Vo)

—1
ml|.2 =[] + EIEEQ_Q {Xj — [12)

p(z|x) = N(z/m,V) Vip = Ei1 — Z19X5, oy
m = W/ (WW! +521)"1(x—pn)
V = I- W/ (WW! +42T)" W

* Mean of inferred z 1s projection of centered x — linear operation
» Posterior variance does not depend on the mput x at all!



Standard PCA: Zero-noise limit of PPCA

Can derive standard PCA as limit of Probabilistic PCA (PPCA) as
o2 — (.

ML parameters W™ are the same

Inference 1s easier: orthogonal projection
lim,2_,g WH(WW! +o2WH = = (WIW)"i1w!

Posterior covariance 1s zero



Probabilistic PCA: Constramed covariance
Marginal density for PPCA (x 1s D-dim., z 1s M-dim):
p(x|0) = N (x|p, WWT + 521)

— where 0 =W, u, o
Effective covariance 1s low-rank outer product of two long skinny
matrices plus a constant diagonal matrix

WT
Cov[x] — W —+ J

So PPCA 1s just a constrained Gaussian model:
— Standard Gaussian has D + D(D+1)/2 effective parameters
— Diagonal-covariance Gaussian has D+D, but cannot capture correlations
— PPCA: DM + 1 — M(M-1)/2, can represent M most significant correlations




Probabilistic PCA: EM

Rather than solving directly, can apply EM
Need complete-data log likelihood

log p(X, Z|j, W, 0%) = > [logp(xy, |z, ) + log p(z,)]
E step: compute expectation of complete log likelthood with
respect to posterior of latent variables z, using current parameters —
can derive E[z | and E[z,z '] from posterior p(z|x)
M step: maximize with respect to parameters W and o2
[terative solution, updating parameters given current expectations,
expectations give current parameters
Nice property — avoids direct O(ND?) construction of covariance
matrix, instead involves sums over data cases: O(NDAM); can be
implemented online, without storing data



Probabilistic PCA: Why bother?

Seems like a lot of formulas, algebra to get to stmilar model to
standard PCA, but. ..

Leads to understanding of underlying data model, assumptions
(e.g., vs. standard Gaussian, other constrained forms)

Derive EM version of inference/learning: more efficient

Can understand other models as generalizations, modifications
More readily extend to mixtures of PPCA models

Principled method of handling missing values in data

Can generate samples from data distribution



