UNSUPERVISED LEARNING 2011

DIMENSIONALITY REDUCTION: PCA, MDS

Rita Osadchy

slides are due to L.Saul , A. Ng, and A. Ghodsi

Topics

- PCA
- MDS
- IsoMap
- LLE
- EigenMaps

Types of Structure in High Dimension

- Olymps
 - Clustering
 - Density Estimation
- Low Dimensional Manifolds
 - Linear
 - NonLinear

Dimensionality Reduction

• Data representation

Inputs are real-valued vectors in a high dimensional space.

Linear structure

Does the data live in a low dimensional subspace?

Nonlinear structure

Does the data live on a low dimensional submanifold?

Dimensionality Reduction

Question

How can we detect low dimensional structure in high dimensional data?

- Applications
 - Digital image and speech processing
 - Analysis of neuronal populations
 - Gene expression microarray data
 - Visualization of large networks

Notations

Inputs (high dimensional) *x*₁, *x*₂,..., *x*_n points in R^D Outputs (low dimensional) *y*₁, *y*₂,..., *y*_n points in R^d (d<<D)

Goals

Nearby points remain nearby. Distant points remain distant.

Linear Methods

PCAMDS

Principle Component Analysis

good representation

the projected data has a fairly large variance, and the points tend to be far from zero. the projections have a significantly smaller variance, and are much closer to the origin.

Principle Component Analysis

- Seek most accurate data representation in a lower dimensional space.
- The good direction/subspace to use for projection lies in the direction of largest variance.

Maximum Variance Subspace

- Assume inputs are centered: $\sum x_i = 0$
- Given a unit vector u and a point x, the length of the projection of x onto u is given by $x^{T}u$
- Maximize projected variance:

$$\operatorname{var}(y) = \frac{1}{n} \sum_{i} (x_{i}^{T} u)^{2} = \frac{1}{n} \sum_{i} u^{T} x_{i} x_{i}^{T} u^{T}$$
$$= u^{T} \left(\frac{1}{n} \sum_{i} x_{i} x_{i}^{T} \right) u$$

1D Subspace • Maximizing $u^T C u$ subject to ||u|| = 1

where
$$C = n^{-1} \sum_{i} x_{i} x_{i}^{T}$$
 is the empirical

covariance matrix of the data, gives the principle eigenvector of *C*.

d-dimensional Subspace

 to project the data into a d-dimensional subspace (d <<D), we should choose

 u_1, \ldots, u_d to be the top d eigenvectors of C.

- $u_1, ..., u_d$ now form a new, orthogonal basis for the data.
- The low dimensional representation of x is given by $\begin{bmatrix} \mu^T \\ \mu^T \end{bmatrix}$

$$y_i = \begin{vmatrix} u_1 & x_i \\ u_2^T & x_i \\ \vdots \\ u_k^T & x_i \end{vmatrix} \in \Re^d.$$

Interpreting PCA

• Eigenvectors:

principal axes of maximum variance subspace.

• Eigenvalues:

variance of projected inputs along principle axes.

 Estimated dimensionality: number of significant (nonnegative) eigenvalues.

PCA summary

Input: $z_i \in R^D$, i = 1,..,n Output: $y_i \in R^d$, i = 1,..,n

1. Subtract sample mean from the data

$$x_i = z_i - \hat{\mu}, \quad \hat{\mu} = 1/n \sum_i z_i$$

2. Compute the covariance matrix $C = 1/n \sum_{i=1}^{n} x_i x_i^t$

- 3. Compute eigenvectors $e_1, e_2, ..., e_d$ corresponding to the *d* largest eigenvalues of *C* (d<<D).
- 4. The desired y is

$$y = P^{t}x, P = [e_1, ..., e_d]$$

Equivalence

PCA finds the directions that have the most variance.

$$\operatorname{var}(y) = \frac{1}{n} \sum_{i} \left\| P^T x_i \right\|^2$$

• Same result can be obtained by minimizing the squared reconstruction error.

$$err(y) = \frac{1}{n} \sum_{i} \left\| x_i - PP^T x_i \right\|^2$$

Example of PCA

Eigenvectors and eigenvalues of covariance matrix for n=1600 inputs in d=3 dimensions.

Example: faces

Eigenfaces from 7562 Images: top left image is linear combination of the rest. Sirovich & Kirby (1987) Turk & Pentland (1991)

Properties of PCA

• Strengths:

- Eigenvector method
- No tuning parameters
- Non-iterative
- No local optima

- Weaknesses:
 - Limited to second order statistics
 - Limited to linear projections

Multidimensional Scaling (MDS)

- MDS attempts to preserve pairwise distances.
- Attempts to construct a configuration of n points in Euclidian space by using the information about the distances between the n patterns.

Example : Distances between US Cities

	BOS	CHI	DC	DEN	LA	MIA	NY	SEA	SF
BOS	0	963	429	1,949	2,979	1,504	206	2,976	3,095
CHI	963	0	671	996	2,054	1,329	802	2,013	2,142
DC	429	671	0	1,616	2,631	1,075	233	2,684	2,799
DEN	1,949	996	1,616	0	1,059	2,037	1,771	1,307	1,235
LA	2,979	2,054	2,631	1,059	0	2,687	2,786	1,131	379
MIA	1,504	1,329	1,075	2,037	2,687	0	1,308	3,273	3,053
NY	206	802	233	1,771	2,786	1,308	0	2,815	2,934
SEA	2,976	2,013	2,684	1,307	1,131	3,273	2,815	0	808
SF	3,095	2,142	2,799	1,235	379	3,053	2,934	808	0

Multidimensional Scaling (MDS)

• A $n \times n$ matrix \mathcal{D} is called a distance or affinity matrix if

it is symmetric, $\mathbf{d}_{ii} = 0$, and $\mathbf{d}_{ij} > 0$, $i \neq j$.

• Given a distance matrix $\mathcal{D}^{(X)}$, MDS attempts to find ndata points $y_1, ..., y_n$ in d dimensions, such that if $d_{ij}^{(Y)}$ denotes the Euclidean distance between y_i and y_j , then \mathcal{D}^Y is similar to $\mathcal{D}^{(X)}$.

Metric MDS minimizes

$$\min_{Y} \sum_{i=1}^{n} \sum_{j=1}^{n} (d_{ij}^{(X)} - d_{ij}^{(Y)})^2$$

where

$$d_{ij}^{(X)} = ||x_i - x_j||$$
 and $d_{ij}^{(Y)} = ||y_i - y_j||.$

• The distance matrix $D^{(X)}$ can be converted to a Gram matrix *K* by

$$K = -\frac{1}{2} H (D^{(X)})^2 H$$

where $H = I - \frac{1}{n}ee^{T}$ and *e* is the vector of ones.

• *K* is *p.s.d*, thus it can be written as $K = X^T X$

•
$$\min_{Y} \sum_{i=1}^{n} \sum_{j=1}^{n} (d_{ij}^{(X)} - d_{ij}^{(Y)})^{2}$$
 is equivalent to
 $\min_{Y} \sum_{i=1}^{n} \sum_{j=1}^{n} (x_{i}^{T} x_{j} - y_{i}^{T} y_{j})^{2}$

• The norm can be converted to a trace:

$$\min_{Y} Tr\left(X^T X - Y^T Y\right)^2$$

 Using Singular Value Decomposition we can decompose:

$$X^{T}X = V\Lambda V^{T}$$
$$Y^{T}Y = Q\hat{\Lambda}Q^{T}$$

• Since $Y^{T}Y$ is *p.s.d.*, $\hat{\Lambda}$ has no negative values, thus

$$Y = \hat{\Lambda}^{1/2} Q^{T}$$

• Returning to the minimization, we can write

$$\min_{Q,\hat{\Lambda}} Tr \left(V\Lambda V^{T} - Q\hat{\Lambda}Q^{T} \right)^{2}$$

$$= \min_{Q,\hat{\Lambda}} Tr \left(\Lambda - V^{T}Q\hat{\Lambda}Q^{T}V \right)^{2}$$

$$= \min_{G,\hat{\Lambda}} Tr \left(\Lambda - G\hat{\Lambda}G^{T} \right)^{2}$$

$$= \min_{G,\hat{\Lambda}} Tr \left(\Lambda^2 + G \hat{\Lambda} G^T G \hat{\Lambda} G^T - 2\Lambda G \hat{\Lambda} G^T \right)$$

• For a fixed $\hat{\Lambda}$ we can minimize for *G*, obtaining

$$G = I$$

$$\min_{\hat{\Lambda}} Tr \left(\Lambda^2 + \hat{\Lambda}^2 - 2\Lambda \hat{\Lambda} G \right)$$
$$= \min_{\hat{\Lambda}} Tr \left(\Lambda - \hat{\Lambda} \right)^2$$

- To make the two matrices Λ and similar, we can make to be the top d diagonal elements of Λ.
- Also $G = V^T Q$ and G = I imply that V = Q.
- Therefore,

$$Y = \hat{\Lambda}^{1/2} Q^T \longrightarrow Y = \hat{\Lambda}^{1/2} V^T$$

where *V* comprises the eigenvectors of $X^T X$ corresponding to the top *d* eigenvalues and $\hat{\Lambda}$ comprises the top *d* eigenvalues of $X^T X$.

Interpreting MDS

• Eigenvectors:

Ordered, scaled, and truncated to yield low dimensional embedding.

• Eigenvalues:

Measure how each dimension contributes to dot products.

• Estimated dimensionality:

Number of significant (nonnegative) eigenvalues.

Relation to PCA

	PCA	MDS		
Spectral Decomposition	Covariance matrix (D x D)	Gram matrix (n x n)		
Eigenvalues	Matrices share nonzero eigenvalues up to constant factor			
Results	Same			
Computation	$O((n+d)D^2)$	$O((D+d)n^2)$		

Non-Metric MDS

- Transform pairwise distances: $\delta_{ii} \rightarrow g(\delta_{ii})$
 - Transformation: nonlinear, but monotonic.
 - Preserves rank order of distances.
- Find vectors y_i such that $||y_i y_j|| \approx g(\delta_{ij})$

$$Cost = \min_{y} \sum_{ij} \left(g(\delta_{ij}) - \left\| y_i - y_j \right\| \right)^2$$

Non-Metric MDS

• Possible objective function:

$$Cost = \sum_{i j} \left(\frac{\|\mathbf{x}_i - \mathbf{x}_j\| - \|\mathbf{y}_i - \mathbf{y}_j\|}{\|\mathbf{x}_i - \mathbf{x}_j\|} \right)^2$$

Properties of non-metric MDS

Strengths

- Relaxes distance constraints.
- Yields nonlinear embeddings.
- Weaknesses
 - Highly nonlinear, iterative optimization with local minima.
 - Unclear how to choose distance transformation.