UNSUPERVISED LEARNING 2011

DIMENSIONALITY REDUCTION:
PCA, MDS

Rita Osadchy

slides are due to L.Saul, A. Ng, and A. Ghodsi



Topics

PCA

MDS
IsoMap
LLE
EigenMaps



Types of Structure in High Dimension

Clumps
Clustering
Density Estimation

L ow Dimensional Manifolds
Linear
NonLinear




Dimensionality Reduction

Data representation

Inputs are real-valued vectors in a
high dimensional space.

Linear structure

Does the data live in a low
dimensional subspace?

Nonlinear structure

Does the data live on a low
dimensional submanifold?




Dimensionality Reduction

Question
How can we detect low dimensional

structure in high dimensional data?
Applications

Digital image and speech processing

Analysis of neuronal populations

Gene expression microarray data

Visualization of large networks



Notations

Inputs (high dimensional)
X1,X5,...,X, poOints in RP
Outputs (low dimensional)
Y1,¥Yo,...,¥Y, Points in RY (d<<D)

Goals
Nearby points remain nearby.
Distant points remain distant.



Linear Methods

PCA
MDS



Principle Component Analysis

good representation poor representation
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the projected data has a fairly large the projections have a significantly

variance, and the points tend to be far smaller variance, and are much
from zero. closer to the origin.



Principle Component Analysis

Seek most accurate data representation in a
lower dimensional space.

The good direction/subspace to use for
projection lies in the direction of largest
variance.



Maximum Variance Subspace

Assume inputs are centered: Z X =0
i

Given a unit vector u and a point x, the

length of the projection of x onto u Is given
T

by X U

Maximize projected variance:
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1D Subspace

Maximizing U' CU subject to HUH =1
where C = n_lz )(i)(iT IS the empirical
i

covariance matrix of the data,
gives the principle eigenvector of C.



d-dimensional Subspace
to project the data into a d-dimensional
subspace (d <<D), we should choose
U,,...,U,; to be the top d eigenvectors of C.

U,,...,U; now form a new, orthogonal basis for
the data.

The low dimensional representation of x Is
iven b Ty |
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Interpreting PCA

Eigenvectors:

principal axes of maximum variance
subspace.

Eigenvalues:

variance of projected inputs along principle
axes.

Estimated dimensionality:

number of significant (nonnegative)
eigenvalues.



PCA summary
Input: Z ERD, 1=1..n Output: Y eFf’,i:l,..,n

1. Subtract sample mean from the data
X=2-j, [A=1Yn) z
2. Compute the covariance matrilx
C=Yn2 xx
3. Compute eigenvectors e,,e,,...,e4 corresponding to the
d largest eigenvalues of C (d<<D).
4. The desired Y is
y=P'%x, P=[e,...,e]



Equivalence

PCA finds the directions that have the most
variance.

var(y):%ZHPTxHZ

Same result can be obtained by minimizing the
squared reconstruction error.

err(y) :%ZH‘ PP



Example of PCA

0.0 0.2 0.4 0.6 0.8 1o

elgenvalues normalized by trace

Eigenvectors and eigenvalues of covariance
matrix for n=1600 inputs in d=3 dimensions.



Example: faces

Eigenfaces from 7562
Images:

top left image

IS linear

combination

of the rest.
Sirovich & Kirby (1987)
Turk & Pentland (1991)



Properties of PCA

Strengths:
Eigenvector method
No tuning parameters

Non-iterative
No local optima

Weaknesses:

Limited to second order statistics
Limited to linear projections
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Multidimensional Scaling (MDS)

MDS attempts to preserve pairwise distances.

Attempts to construct a configuration of n
points in Euclidian space by using the

Information about the distances between the n
patterns.



Example : Distances between US Cities

BOS CHI DC DEN LA MIAL  NY SEA SF
BOS 0 963 429 1,949 2979 1,504 206 2,976 3,095
CHI 963 0 671 996 2,054 1,329 802 2,013 2,142
DC 429 671 0 1,616 2,631 1,075 233 2,684 2,799
DEN 1,949 996 1,616 0 1,059 2,037 1,771 1,307 1,235
LA 2979 2,054 2,631 1,089 0 2,687 2,786 1,131 379
MIA 1,504 1,329 1,075 2,037 2,687 0 1,308 3,273 3,053
NY 206 802 233 1,771 2,786 1,308 0 2,815 2,934
SEA 2,976 2,013 2,684 1,307 1,131 3,273 2,815 0 808
SF 3,095 2,142 2,799 1,235 379 3,053 2,934 808 0
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Multidimensional Scaling (MDS)

e A n x n matrix D is called a distance or affinity matrix if

it is svmmetric, d;; = 0, and  d;; > 0, 2 # J.

e Given a distance matrix D), MDS attempts to find n
data points 11, ..., y, in d dimensions, such that it dE y ) de-
notes the Euclidean distance between y; and y;, then DY

is similar to D).



Metric MDS

Metric MDS minimizes

min 3 ()~ dM)?

=1 j=1

where

di* =% -x | and df” =]y -y



Metric MDS

The distance matrix D*’ can be converted to
a Gram matrix K by

K = —%H (DY)*H

1 .
where H =1 — —ee' and eis the vector of
ones. n



Metric MDS

K is p.s.d, thus it can be written as K = X' X

manZ(d(x) di"”)? is equivalent to

Iljl
min Y > (¢, - yy,)’
=1 j=1

The norm can be converted to a trace:

min Tr (XTX - YTY )



Metric MDS

Using Singular Value Decomposition we
can decompose:

XTX =VAVT
Y'Y = QAQT

Since Y'Y is p.s.d., /A\ has no negative
values, thus

VY — Al/ZQT



Metric MDS

Returning to the minimization, we can write
min Tr (\/AVT —QAQT )2
Q,A
: TAIL ATV ¥
= min Tr( —V QAQ V)
Q

A

T
G
=GrT1Ain Tr (A —GAGT )2

= min Tr (A> + GAGTGAG™ - 2AGAG)

G,A



Metric MDS

For a fixed A we can minimize for G, obtaining
G=I
min Tr (A2 + A2 - 2A/A\G)
A

= mﬁin Tr (A —/A\)Z



Metric MDS

To make the two matrices A and A similar, we
can make A to be the top d diagonal elements
of A.

Also G=V'Q and G =1 implythat V = Q.
Therefore,

Y — /A\WQT =) v _ AUZyT

where V comprises the eigenvectors of X ' X
corresponding to the top d eigenvalues and A
comprises the top d eigenvalues of X ™ X.



Interpreting MDS

Eigenvectors:

Ordered, scaled, and truncated to yield low
dimensional embedding.

Eigenvalues:

Measure how each dimension contributes to dot
products.

Estimated dimensionality:
Number of significant (nonnegative) eigenvalues.



Relation to PCA

PCA MDS
Spectral Covariance Gram matrix
Decomposition | matrix (D x D) (n X n)
Eigenvalues Matrices share nonzero eigenvalues
up to constant factor
Results Same
Computation O((n+d)D?) O((D+d)n?)




Non-Metric MDS

Transform pairwise distances: &; —0(4))
Transformation: nonlinear, but monotonic.
Preserves rank order of distances.

Find vectors ¥ such that |y -y ~g(3)

Cost = myin Z (9(5u ) - Hyi —Y H)Z



Non-Metric MDS

Possible objective function:

2
Cost =Y {nxi =X lI=1lyi -y ||J
)

|1 =X |l




Properties of non-metric MDS

Strengths
Relaxes distance constraints.
Yields nonlinear embeddings.

Weaknesses
Highly nonlinear, iterative optimization with
local minima.

Unclear how to choose distance
transformation.




