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Topics

� PCA
� MDS
� IsoMap
� LLE� LLE
� EigenMaps



Types of Structure in High Dimension

� Clumps
� Clustering
� Density Estimation 

� Low Dimensional Manifolds
� Linear 
� NonLinear



Dimensionality Reduction 

� Data representation
Inputs are real-valued vectors in a 
high dimensional space.

� Linear structure� Linear structure
Does the data live in a low 
dimensional subspace?

� Nonlinear structure
Does the data live on a low 
dimensional submanifold?



Dimensionality Reduction 

� Question
How can we detect low dimensional   
structure in high dimensional data?

� Applications� Applications
� Digital image and speech processing
� Analysis of neuronal populations
� Gene expression microarray data
� Visualization of large networks



Notations

� Inputs (high dimensional)
x1,x2,…,xn points in RD

� Outputs (low dimensional)

y ,y ,…,y points  in Rd (d<<D) y1,y2,…,yn points  in Rd (d<<D) 

� Goals
Nearby points remain nearby.
Distant points remain distant.



Linear Methods

� PCA
� MDS



Principle Component Analysis  

good representation poor representation

the projections have a significantly 
smaller variance, and are much
closer to the origin.

the projected data has a fairly large 
variance, and the points tend to be far 
from zero.



Principle Component Analysis 

D=2, d=1

� Seek most accurate data representation in a 
lower dimensional space.

� The good direction/subspace to use for 
projection lies in the direction of largest 
variance. 

D=2, d=1 D=3, d=2



Maximum Variance Subspace

� Assume inputs are centered:

� Given a unit vector u and a point x, the 
length of the projection of x onto u is given 
by
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1D Subspace

� Maximizing             subject to              

where                              is the empirical 

CuuT 

T
i

i
i xxnC ∑−= 1

1u =

covariance matrix of the data,
gives the principle eigenvector of C.



d-dimensional Subspace
� to project the data into a d-dimensional 

subspace (d <<D), we should choose
to be the top d eigenvectors of C.

� now form a new, orthogonal basis for 
the data.

duu ,..., 1

duu ,..., 1
the data.

� The low dimensional representation of x is 
given by
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Interpreting PCA

� Eigenvectors:
principal axes of maximum variance 
subspace.

� Eigenvalues:� Eigenvalues:
variance of projected inputs along principle 
axes.

� Estimated dimensionality:
number of significant (nonnegative) 
eigenvalues.



PCA summary

1. Subtract sample mean from the data

2. Compute the covariance matrix
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2. Compute the covariance matrix

3. Compute eigenvectors e1,e2,…,ed corresponding to the 
d largest eigenvalues of C (d<<D).

4. The desired y is
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Equivalence

� PCA finds the directions that have the most 
variance. 
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� Same result can be obtained by minimizing the 
squared reconstruction error. 
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Example of PCA

Eigenvectors and eigenvalues of covariance 
matrix for n=1600 inputs in d=3 dimensions.



Example: faces

Eigenfaces from 7562
Images:
top left image
is linearis linear
combination
of the rest.
Sirovich & Kirby (1987)
Turk & Pentland (1991)



Properties of PCA

� Strengths:
� Eigenvector method
� No tuning parameters
� Non-iterative� Non-iterative
� No local optima

� Weaknesses:
� Limited to second order statistics
� Limited to linear projections



Multidimensional Scaling (MDS)

� MDS attempts to preserve pairwise distances.

� Attempts to construct a configuration of n 
points in Euclidian space by using the 
information about the distances between the ninformation about the distances between the n
patterns.



Example : Distances between US Cities



Multidimensional Scaling (MDS)



Metric MDS

� Metric MDS minimizes
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Metric MDS

� The distance matrix           can be converted to 
a Gram matrix K by
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Metric MDS

� K is p.s.d, thus it can be written as

� is  equivalent to 
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� The norm can be converted to a trace:
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Metric MDS

� Using Singular Value Decomposition we 
can decompose: 
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� Since            is p.s.d.,       has no negative 
values, thus
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Metric MDS

� Returning to the minimization, we can write
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Metric MDS

� For a fixed     we can minimize for    , obtaining Λ̂ G

IG =

( )
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Metric MDS

� To make the two matrices     and    similar, we 
can make      to be the top d diagonal elements 
of     . 

� Also                  and             imply that            .
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� Therefore, 

where     comprises the eigenvectors of            
corresponding to the top d eigenvalues and 
comprises the top d eigenvalues of          .   
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Interpreting MDSInterpreting MDSInterpreting MDSInterpreting MDS

� Eigenvectors:
Ordered, scaled, and truncated to yield  low 
dimensional embedding.

� Eigenvalues:� Eigenvalues:
Measure how each dimension contributes to dot 
products.

� Estimated dimensionality:
Number of significant (nonnegative) eigenvalues.



Relation to PCA

PCA MDS

Spectral 
Decomposition

Covariance
matrix (D x D)

Gram matrix
(n x n)

Eigenvalues Matrices share nonzero eigenvalues
up to constant factor

Results Same

Computation O((n+d)D2) O((D+d)n2)



Non-Metric MDS

� Transform pairwise distances:
� Transformation: nonlinear, but monotonic.
� Preserves rank order of distances.
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Non-Metric MDS

� Possible objective function:
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Properties of non-metric MDS

� Strengths
� Relaxes distance constraints.
� Yields nonlinear embeddings.

� Weaknesses� Weaknesses
� Highly nonlinear, iterative optimization with 

local minima.
� Unclear how to choose distance 

transformation.


