
Mixture of Gaussians  

Expectation Maximization (EM) 

Part 2 

Most of the slides are due to Christopher Bishop  

BCS Summer School, Exeter, 2003. 

The rest of the slides are based on lecture notes by A. Ng 
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Limitations of K-means 

• Hard assignments of data points to clusters – small shift 

of a data point can flip it to a different cluster 

• Not clear how to choose the value of K 

• Solution: replace ‘hard’ clustering of K-means with ‘soft’ 

probabilistic assignments 

• Represents the probability distribution of the data as a 

Gaussian mixture model 
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Gaussian Mixtures 

• Linear super-position of Gaussians 

 

 

 

• Normalization and positivity require 

 

 

 

 

• Can interpret the mixing coefficients as prior probabilities 
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Maximum Likelihood for the GMM 

• The log likelihood function takes the form 

 

 

 

 

• Note: sum over components appears inside the log 

• There is no closed form solution for maximum likelihood 

• How to maximize the log likelihood 

– solved by expectation-maximization (EM) algorithm 
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EM Algorithm – Informal Derivation 

• The solutions are not closed form since they are coupled 

• Suggests an iterative scheme for solving them: 

– Make initial guesses for the parameters 

– Alternate between the following two stages: 

1. E-step: evaluate responsibilities 

2. M-step: update parameters using ML results 



General View of the EM algorithm 

Jensen's inequality: 
Let f be a convex function (                for all          ) and X 

be a and random variable. Then    
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f is convex 

X =a with probability 0.5 

X =b with probability 0.5 

 

E[X] is given by the midpoint 

between a and b. 

E[f(X)] is the midpoint between 

f(a) and f(b). 

E[f(X)] ≥f(EX). 

 



Jensen's inequality (cont.) 

Further, if  f  is a strictly convex function (               ), then 

                                holds true if and only if 

with probability 1 (i.e., if X is a constant). 

 
 

Jensen's inequality also holds for concave functions  

(               ), but with the direction of all the inequalities 

reversed (                              , etc.). 
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Problem Definition 

• Suppose we have an estimation problem in which we 

have a training set                 of iid samples. 

• We wish to fit the parameters of a model               to the 

data. 

• We want to maximize the likelihood  

 

 

• Doing it explicitly may be hard, since z’s are the non-

observed. 

•  If z’s were observed, then (often) maximum likelihood 

estimation would be easy. 
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EM at glance 

• Our strategy will be to repeatedly  

– construct a lower-bound on         (E-step),  

– optimize that lower-bound (M-step). 
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EM algorithm derivation (cont.) 
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EM algorithm derivation (cont.) 

Since we know that                     , then    
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To ensure that, we should choose          such that 

inequality in our derivation above would hold with equality. 

We require that: 



General EM Algorithm 

 

Repeat until convergence { 

 

– E-step: 

      For each i set  

 

– M-step: 

 

 

 

 } 
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EM for MoG revisited 

• For                            , define hidden variables 

 

 

•       are indicator random variables, they indicate  which 

Gaussian component generated sample 
 

• Let                             indicator r.v. correspond to 

sample     . 

 We say that            , when its k’st coordinate is 1 and 

the rest are 0. 
 

• Conditioned on     , distribution of       is Gaussian 

 

 

  

 

KjNi  1,1

if sample i was generated by component k 

otherwise 
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EM for MoG revisited 
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EM for MoG revisited 

M-step: 
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K-means Algorithm 

• Goal: represent a data set in terms of K clusters each of 

which is summarized by a prototype 

• Initialize prototypes, then iterate between two phases: 

– E-step: assign each data point to nearest prototype 

– M-step: update prototypes to be the cluster means 
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Responsibilities 

• Responsibilities assign data points to clusters 

 

 

such that  

 

 

• Example: 5 data points and 3 clusters 
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K-means Cost Function 

prototypes responsibilities 

data 
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Minimizing the Cost Function 

• E-step: minimize    w.r.t. 

– assigns each data point to nearest prototype 

• M-step: minimize    w.r.t         

– gives 

 

 

 

– each prototype set to the mean of points in that cluster 

• Convergence guaranteed since there is a finite number 

of possible settings for the responsibilities 



EM Example 

 Example from R. Gutierrez-Osuna  

 Training set of 900 examples forming an annulus 

 Mixture model with m = 30 Gaussian components of 

unknown mean and variance is used 

 Training: 
 Initialization: 

 means to 30 random examples 

 covaraince matrices initialized to be diagonal, with large variances on 

the diagonal (compared to the training data variance) 

 During EM training, components with small mixing coefficients were 

trimmed 

 This is a trick to get in a more compact model, with fewer than 30 

Gaussian components 



EM Example 

from R. Gutierrez-Osuna 



Three frames from the MPEG “flower garden” sequence 

Figure from “Representing Images with layers,”, by J. Wang and E.H. 

Adelson, IEEE Transactions on Image Processing, 1994, c 1994, IEEE 

EM Motion Segmentation Example 


