Mixture of Gaussians
Expectation Maximization (EM)

Part 2

Most of the slides are due to Christopher Bishop
BCS Summer School, Exeter, 2003.

The rest of the slides are based on lecture notes by A. Ng



Limitations of K-means

« Hard assignments of data points to clusters — small shift
of a data point can flip it to a different cluster

 Not clear how to choose the value of K

» Solution: replace ‘hard’ clustering of K-means with ‘soft’
probabilistic assignments

* Represents the probabillity distribution of the data as a
Gaussian mixture model
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Gaussian Mixtures

* Linear super-position of Gaussians
K

p(x) = > mN(x|pg, Xi)
k=1

« Normalization and positivity require

A\

K
Y m=1 0<m <1
k=1

« Can interpret the mixing coefficients as prior probabilities

p(X) = Z p(K) p(x k)
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Maximum Likelihood for the GMM

« The log likelihood function takes the form

N K
Inp(D|m, pw,X) = > In { > WkN(Xnuk»Ek)}
n=1 |k=1

« Note: sum over components appears inside the log
* There is no closed form solution for maximum likelihood
« How to maximize the log likelihood

— solved by expectation-maximization (EM) algorithm
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EM Algorithm — Informal Derivation

 The solutions are not closed form since they are coupled
e Suggests an iterative scheme for solving them:
— Make initial guesses for the parameters
— Alternate between the following two stages:
1. E-step: evaluate responsibilities
2. M-step: update parameters using ML results
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General View of the EM algorithm

Jensen's inequality:
Let f be a convex function (f"(x) =0 for all xe®R) and X
be a and random variable. Then E[f (X)]= f (E[X]).

fis convex
X =a with probability 0.5
X =b with probability 0.5

fla)p----- f |
E[X] is given by the midpoint
E[f(X)]--- -~~~ el / between a and b.
“\ E[f(X)] is the midpoint between
115 S S oo f(a) and f(b).
fEX) ____Ti_____________j';--_--._.._;_____ l E[f(X)] 2f(EX).




Jensen's inequality (cont.)

Further, if f is a strictly convex function (f"'(x) >0), then
E[f(X)]=f(E[X] holds true if and only if E[X]=X
with probability 1 (i.e., if X is a constant).

Jensen's inequality also holds for concave functions

( f'"(x) <0), but with the direction of all the inequalities
reversed (E[f (X)]< f(E[X]), etc.).



Problem Definition

e Suppose we have an estimation problem in which we
have a training set {x,,.., x_} of iid samples.

« We wish to fit the parameters of a model p(x, z; &) to the
data. observed

[ rameter
+ We want to maximize the likelihood hidden PRETEER
1(6) =" log p(x,0) =Y 109> p(x,z;0)
1=1 =1 Z

* Doing it explicitly may be hard, since z’s are the non-
observed.

« If 2’s were observed, then (often) maximum likelihood
estimation would be easy.



EM at glance

« Qur strategy will be to repeatedly
— construct a lower-bound on 1(6) (E-step),
— optimize that lower-bound (M-step).

1)

Lower bounds on |

g, 6, 6, 0, A 6’



EM algorithm derivation

(0)=Y.10g p(x,0) = >_log " p(x,,2,:0)

Vi, Q.(Z) is some distribution over z’s

B p(x,z;0)
" 2Pe. 2@ T | Y e@=1 Q@20

v
il X ,Z:6 {p(xpzi;e)}
= Zlog E{ p(%.2;;6) E| Q@) | iswith respecttoz; drawn
i=1 Qi (Zi) according to the distribution given by Q;

E{Iog p(Xi \ Zi;ﬁ)} Jensen's inequality: |og(E[X])2 E[|og X]
Qi(z)

ZQ(Z)IOQ (X, 2,:6)

i=1 i ZI

B&MB

This is a lower bound on (&)



EM algorithm derivation (cont.)

- P(X,z;0)
1(0) > (2] 0 4
()>§;Q.(Z.) 0g 0.(2)

We want a lower bound to be equal to | at the previous ¢




EM algorithm derivation (cont.)

To ensure that, we should choose Q.(z) such that
Inequality in our derivation above would hold with equality.
We require that:

p(x;,Z;;0)
Qi(z)

=const —  Q(z)x p(x,z;0)

Since we know that ZQi(zi) =1, then

o p(x,z;0)  p(x,z;0) .
% (=)= > p(%,2:0)  p(x;0) = Plxi6)



General EM Algorithm

Repeat until convergence {

— E-step:
For each i set Q,(z) = p(z]x;0)

— M-step:

0 = argmaxZZQ(z)log P(%,2;0)

=1z QI(Zi)
\ }
|
1 Lower bound on 1(6)




EM for MoG revisited

* For 1<i<N, 1<j<K , define hidden variables Z;
{l if sample i was generated by component k

L =
J (0 otherwise

- Z;; are indicator random variables, they indicate which
Gaussian component generated sample X;

. Let z, ={z,,..., Z, } indicator r.v. correspond to
sample X; .
We say that Z; = K, when its k’st coordinate is 1 and
the rest are 0.

« Conditioned on Z;, distribution of X; is Gaussian

p(xi | Z, :k)~ N(:ukizk)



EM for MoG revisited

E-step:
Qi(zi — k) — p(zi — k‘Xi;,u,Z,ﬂ')

NOG | i, Zy)
- ZﬂjN(Xi |1uj’zj) =7 ()




EM for MoG revisited

M-step: maxizml:;Qi(zi) 0g p((;(.lé,l)é’)

set ZYk (X)X,
V()20 = 4 -1
ZVk(X.)
Similarly, o
1 N ZVk (%) (X — 1 )(X, _:Uk)T
Tk :ﬁiz_llyk(xi), I =+

Zyk(xi)



K-means Algorithm

« Goal: represent a data set in terms of K clusters each of
which is summarized by a prototype pt;

* Initialize prototypes, then iterate between two phases:
— E-step: assign each data point to nearest prototype
— M-step: update prototypes to be the cluster means
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Responsibilities

* Responsibilities assign data points to clusters

Tnk € {Oa 1}

such that
Tnk — 1
k

« Example: 5 data points and 3 clusters

0 )
1
O

1
0/
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K-means Cost Function

data
. L

N
T=33 rullxn — pll?
n=1

k=1
///f \\\\proToTypes

responsibilities

BCS Summer School, Exeter, 2003 Christopher M. Bishop



Minimizing the Cost Function

« E-step: minimize J w.r.t. v,z
— assigns each data point to nearest prototype
* M-step: minimize J w.r.t p,
— gives
py = Sl
>nTkn

— each prototype set to the mean of points in that cluster

« Convergence guaranteed since there is a finite number
of possible settings for the responsibilities
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EM Example

Example from R. Gutierrez-Osuna

Training set of 900 examples forming an annulus
Mixture model with m = 30 Gaussian components of
unknown mean and variance is used

Training:

= [nitialization:
= means to 30 random examples
= covaraince matrices initialized to be diagonal, with large variances on
the diagonal (compared to the training data variance)
=  During EM training, components with small mixing coefficients were
trimmed
= Thisis a trick to get in a more compact model, with fewer than 30
Gaussian components



EM Example

lteration O lteration 25 lteration 50

from R. Gutierrez-Osuna



EM Motion Segmentation Example

Three frames from the MPEG “flower garden” sequence

— 5

Figure from “Representing Images with layers,”, by J. Wang and E.H.
Adelson, IEEE Transactions on Image Processing, 1994, c 1994, IEEE



