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Topics

PCA
MDS
IsoMap
LLE
EigenMaps

Done!




Dimensionality Reduction

® Data representation

Inputs are real-valued vectors in a
high dimensional space.

® Linear structure
Does the data live in a low
dimensional subspace?
 Nonlinear structure |
Does the data live on a low
dimensional submanifold?




Notations

Inputs (high dimensional)
X1,X5,...,X, poOints in RP
Outputs (low dimensional)
Y1,¥Yo,...,¥Y, Points in RY (d<<D)

Goals
Nearby points remain nearby.
Distant points remain distant.



Non-metric MDS for manifolds?

Rank ordering of Euclidean distances is
NOT preserved in “manifold learning”.

d(A,C) <d(A,B)

d(A,C) > d(A,B)




Nonlinear Manifolds

PCA and MDS measure the
A Euclidean distance

What is important is the geodesic distance

»
»

Unroll the manifold
O




To preserve structure preserve the geodesic distance and

not the euclidean distance.




Graph-Based Methods

e Tenenbaum et.al’'s Isomap Algorithm
— Global approach.
Preserves global pairwise distances.

 Roweis and Saul’'s Locally Linear Embedding Algorithm
— Local approach
Nearby points should map nearby

« Belkin and Niyogi Laplacian Eigenmajps Algorithm
— Local approach
— minimizes approximately the same value as LLE



Isomap - Key ldea:

Use geodesic instead of Euclidean distances
In MDS.

For neighboring points Euclidean distance is a
good approximation to the geodesic distance.

For distant points estimate the distance by a
series of short hops between neighboring
points. Find shortest paths in a graph with
edges connecting neighboring data points.
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Step 1. Build adjacency graph.

Adjacency graph

Vertices represent inputs. Undirected edges
connect neighbours.

Neighbourhood selection

Many options: k-nearest neighbours, inputs
within radius r, prior knowledge.

Graph is discretized
approximation of
submanifold.




Building the graph

Computation
kNN scales naively as O(n“D)
Faster methods exploit data structures.

Assumptions
Graph is connected. |

not allowed

Neighbourhoods on graph reflect . S
neighbourhoods on manifold. | s e




Step 2. Estimate geodesics

Dynamic programming
Weight edges by local distances.
Compute shortest paths through graph.
Geodesic distances
Estimate by lengths of shortest paths:
denser sampling = better estimates.
Computation

Djikstra’s algorithm for shortest paths
O(n?log n + n?k).



Step 3. Metric MDS

Embedding

Top d eigenvectors of Gram matrix yield
embedding.

Dimensionality

Number of significant eigenvalues yield
estimate of dimensionality.

Computation

Top d eigenvectors can be computed in
O(n4d).



Summary

Algorithm
kK nearest neighbours
shortest paths through graph
MDS on geodesic distances



Swiss Roll

n (points) =1024
K (neighbors) =12



Isomap: Two-dimensional embedding of hand images (from Josh.
Tenenbaum, Vin de Silva, John Langford 2000)

i
n =2000, k =6, D=64x64
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Isomap: two-dimensional embedding of hand-written ‘2’ (from
Josh. Tenenbaum, Vin de Silva, John Langford 2000)
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Isomap: three-dimensional embedding of faces (from Josh.
Tenenbaum, Vin de Silva, John Langford 2000)
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Properties of Isomap

Strengths :
Preserves the global data structure
Performs global optimization
Non-parametric (Only heuristic is neighbourhood size)

Weaknesses |
Sensitive to “shortcuts” o =
Very slow . =28




Spectral Methods

Common framework

Derive sparse graph from KNN.
Derive matrix from graph weights.
Derive embedding from eigenvectors.

Varied solutions

Algorithms differ in step 2. Types of
optimization: shortest paths, least squares
fits, semidefinite programming.



Locally Linear Embedding (LLE)

Assume that data lies on a
manifold: each sample and its
neighbors lie on approximately
linear subspace

|dea:

Approximate data by a set of
linear patches

Glue these patches together on
a low dimensional subspace
s.t. neighborhood relationships
between patches are
preserved.

Algorithm: http://cs.nyu.edu/~rowels/lle/algorithm.html



LLE at glance

Steps
Nearest neighbour search.
Least squares fits.
Sparse eigenvalue problem.

Properties
ODbtains highly nonlinear embeddings.

Not prone to local minima.
Sparse graphs yield sparse problems.



Step 1. Nearest neighbours
search

Effect of Neighbourhood Size




Step 2. Compute weights

Characterize local geometry of each
neighbourhood by weights Wij.

Compute weights by reconstructing each input
(linearly) from neighbours.



Linear reconstructions

Local linearity

Assume neighbours lie on locally linear patches of
a low dimensional manifold.

Minimize reconstruction error

Each point can be written as a linear combination
of its neighbors.

The weights chosen to minimize the reconstruction
error:
2
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Least squares fits (Computing V\/ij)

| ocal reconstructions

Choose weights to minimize: ®(W) = Z X =

Constraints

Set W, =01If Xj is notanelghbor of X
Welghts must sum to one: ) W, =
j
iInvariance to translation

| ocal invariance

Optimal weights VV”- are invariant to rotation,
translation, and scaling.




Step 3. Finding the Embedding

Low dimensional representation
Map inputs to outputs: x e R® -y € R
Minimize reconstruction errors
Optimize outputs for fixed Weightg:

Y(y)= Z Yi _Z\Nijyj

Constraints:
Center outputs on origin Zy,

Impose unit covariance matrlx —Z vy =1,



Minimization
Quadratic form:
LP(y)=;l\/lij(yi-yj)
My = 8 =W =Wj; + > WW,
1oifiei
0 otherwise

0. =1

J

It can be shown that
M = (I —W)T(I -W)



Sparse eigenvalue problem

Optimal embedding

given by bottom d+1 eigenvectors,
corresponding to the d+1 smallest eigenvalues
(Rayleigh-Ritz theorem).

Solution

Discard bottom eigenvector [1 1 ... 1] (with
eigenvalue zero).

Other eigenvectors satisfy constraints.



Surfaces

N=1000
Inputs
k=8
nearest
neighbors




Lips
N=15960
Images
K=24
neighbors
D=65664
pixels

d=2
(shown)




Pose and
expression
N=1965
Images
k=12
nearest
neighbors
D=560
pixels

d=2
(shown)
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Properties of LLE

Strengths:
Fast
No local minima
Non-iterative

Non-parametric (only heuristic is
neighbourhood size).

Weaknesses:
Sensitive to “shortcuts”
No estimate of dimensionality



LLE versus Isomap

Many similarities
Graph-based, spectral method
No local minima

Essential differences
Does not estimate dimensionality ®
No theoretical guarantees ®
Constructs sparse vs. dense matrix ©
Preserves weights vs. distances
Much faster ©



Laplacian Eigenmaps

Map nearby inputs to nearby outputs,
where nearness is encoded by graph.

Summary of the Algorithm
|dentify k-nearest neighbours (as in LLE)
Assign weights to neighbours

Sparse eigenvalue problem



Step 2. Construct the graph

Vertices represent inputs.
Undirected edges connect neighbours.
Assign weights to neighbours:
Simple: W, =1
or
Heat kernel W = exp(— ,BHK _XjHZ)



Step 3. Graph Laplacian
Compute outputs by minimizing:
2
Y(y) = Z:V\/ij Hyi -y, H under appropriate constraints
W (y2+y2-2yy,) W is symmetric
]

= Z yizll?ii +Z y;iDj - 22 Yi YW Zyll‘y
i j

D. = ZW” Graph Laplacian L =D -W
|




Step 3. Generalized eigenvalue

problem

Minimize y Ly
constrained by y'Dy =1

Optimal embedding: (Le = 4ADe)

given by bottom d+1 eigenvectors
(corresponding to the d+1 smallest
eigenvalues).

Solution:

Discard bottom eigenvector [1 1 ... 1] (with
eigenvalue zero). Other eigenvectors satisfy
constraints.



Analysis on Manifolds

Consider Riemannian manifold Q e R°

a real differentiable manifold in which
tangent space is equipped with dot product.

Laplace Beltrami operator

() has a ‘natural’ operator A on differentiable
functions.

A Is a second order differential operator
defined as a “divergence of the gradient”

2

A=Y 2
~ OX



Spectral desomposition of A

Assume X ?(Q) is space of all square
Integrable functions on €2

A Is a self-adjoint positive semi-
definate operator and its eigenfunctions
form the basis.

Thus all f in £2%(Q) can be written as

f(0=Y ae(x)

(provided Q Is compact)



Smoothness functional

Defined as ;
S(f)=[|Vf[dw= [ fAf do=(Af, f).
Q

value close to zero implies f being smooth.

Since S(q):<Ae e>:ﬁ.

we have

S(f) = (Af. f>:<z aiAei,Zaiei>:Zliai

choosing the lowest p eigenfunctions provides a
maximally smooth approximation to the manifold.



Spectral graph theory

Welighted graph is discretized
representation of manifold.

Laplacian measures smoothness of
functions over manifold and graph.

Manifold: I‘Vf\zdw :j fAT do
Q

Graph: ZV\/iJ-(fi — fj)2 = f'Lf
j



Interpreting Laplacian Eigenmaps

Eigenvectors

functions from nodes to R in a way that

"close by" points are assigned "close by"
values.

Eigenvalues

measure how close are the values of
neighbouring points — smoothness.



Example: S1 (the circle)

Continuous

Eigenfunctions of Laplacian are basis for
periodic functions on circle, ordered by

smoothness.
Eigenvalues measure smoothness.
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Example: S1 (the circle)

Discrete (n equally spaced points)

Eigenvectors of graph Laplacian are discrete
sines and cosines.

Eigenvalues measure smoothness.

Graph embedding from
Laplacian eigenmaps:

v, =(cos(27k/n),sin(27k/n))




Laplacian vs LLE

More similar than different
Graph-based, spectral method
Sparse eigenvalue problem
Similar results in practice

Essential differences
Preserves locality vs local linearity
Uses graph Laplacian



