
LECTURE : MANIFOLD LEARNINGLECTURE : MANIFOLD LEARNINGLECTURE : MANIFOLD LEARNINGLECTURE : MANIFOLD LEARNINGLECTURE : MANIFOLD LEARNINGLECTURE : MANIFOLD LEARNINGLECTURE : MANIFOLD LEARNINGLECTURE : MANIFOLD LEARNING

Rita Osadchy

Some slides are due to  L.Saul, V. C. Raykar, N. Verma



Topics

� PCA
� MDS
� IsoMap
� LLE

Done!

� LLE
� EigenMaps



Dimensionality Reduction 

� Data representation
Inputs are real-valued vectors in a 
high dimensional space.

� Linear structure� Linear structure
Does the data live in a low 
dimensional subspace?

� Nonlinear structure
Does the data live on a low 
dimensional submanifold?



Notations

� Inputs (high dimensional)
x1,x2,…,xn points in RD

� Outputs (low dimensional)

y ,y ,…,y points  in Rd (d<<D) y1,y2,…,yn points  in Rd (d<<D) 

� Goals
Nearby points remain nearby.
Distant points remain distant.



Non-metric MDS for manifolds?

Rank ordering of Euclidean distances is
NOT preserved in “manifold learning”.



Nonlinear Manifolds

A
PCA and MDS measure the 
Euclidean distance

Unroll the manifold

What is important is the geodesic distance



To preserve structure preserve the geodesic distance and 
not the euclidean distance.



Graph-Based Methods

• Tenenbaum et.al’s Isomap Algorithm
– Global approach.

Preserves global pairwise distances.

• Roweis and Saul’s Locally Linear Embedding Algorithm• Roweis and Saul’s Locally Linear Embedding Algorithm
– Local approach

Nearby points should map nearby

• Belkin and Niyogi Laplacian Eigenmaps Algorithm
– Local approach
– minimizes approximately the same value as LLE



Isomap - Key Idea:

• For neighboring points Euclidean distance is a 
good approximation to the geodesic distance.

• For distant points estimate the distance by a 

� Use geodesic instead of Euclidean distances 
in MDS.

• For distant points estimate the distance by a 
series of short hops between neighboring 
points. Find shortest paths in a graph with 
edges connecting neighboring data points.



Step 1. Build adjacency graph.

� Adjacency graph
Vertices represent inputs. Undirected edges 
connect neighbours.

� Neighbourhood selection� Neighbourhood selection
Many options: k-nearest neighbours, inputs 
within radius r, prior knowledge.

Graph is discretized
approximation of
submanifold.



Building the graph

� Computation
� kNN scales naively as 
� Faster methods exploit data structures.

� Assumptions

)( 2DnO

� Assumptions
1. Graph is connected.
2. Neighbourhoods on graph reflect 

neighbourhoods on manifold.



Step 2. Estimate geodesics

� Dynamic programming
� Weight edges by local distances.
� Compute shortest paths through graph.

� Geodesic distances� Geodesic distances
� Estimate by lengths of shortest paths:

denser sampling = better estimates.

� Computation
� Djikstra’s algorithm for shortest paths 

O(n2log n + n2k).



Step 3. Metric MDS

� Embedding
� Top d eigenvectors of Gram matrix yield 

embedding.

� Dimensionality� Dimensionality
� Number of significant eigenvalues yield 

estimate of dimensionality.

� Computation
� Top d eigenvectors can be computed in 

O(n2d).



Summary

� Algorithm
1. k nearest neighbours
2. shortest paths through graph
3. MDS on geodesic distances3. MDS on geodesic distances



Swiss Roll

n (points) =1024
k (neighbors) =12



Isomap: Two-dimensional embedding of hand images (from Josh. 

Tenenbaum, Vin de Silva, John Langford 2000)

n =2000, k =6, D=64x64



Isomap: two-dimensional embedding of hand-written ‘2’ (from 

Josh. Tenenbaum, Vin de Silva, John Langford 2000)

n =1000, r=4.2, D=20x20



Isomap: three-dimensional embedding of faces (from Josh. 

Tenenbaum, Vin de Silva, John Langford 2000)

n =698, k=6



Properties of Isomap

� Strengths :
� Preserves the global data structure 
� Performs global optimization 
� Non-parametric (Only heuristic is neighbourhood size)

� Weaknesses :
� Sensitive to “shortcuts”
� Very slow



Spectral Methods

� Common framework
1. Derive sparse graph from kNN.
2. Derive matrix from graph weights.
3. Derive embedding from eigenvectors.3. Derive embedding from eigenvectors.

� Varied solutions
Algorithms differ in step 2. Types of 
optimization: shortest paths, least squares 
fits, semidefinite programming.



Locally Linear Embedding (LLE) 
� Assume that  data lies on a 

manifold: each sample and its 
neighbors lie on approximately 
linear subspace

� Idea: 
1. Approximate data by a set of 

linear patcheslinear patches
2. Glue these patches together on 

a low dimensional subspace 
s.t. neighborhood relationships 
between patches are 
preserved. 

Algorithm: http://cs.nyu.edu/~roweis/lle/algorithm.html



LLE at glance

� Steps
1. Nearest neighbour search.
2. Least squares fits.
3. Sparse eigenvalue problem.3. Sparse eigenvalue problem.

� Properties
� Obtains highly nonlinear embeddings.
� Not prone to local minima.
� Sparse graphs yield sparse problems.



Step 1.  Nearest neighbours 

search

Effect of Neighbourhood SizeEffect of Neighbourhood Size



Step 2. Compute weights

� Characterize local geometry of each 
neighbourhood by weights Wij.

� Compute weights by reconstructing each input 
(linearly) from neighbours.



Linear reconstructions

� Local linearity
� Assume neighbours lie on locally linear patches of 

a low dimensional manifold.

� Minimize reconstruction error� Minimize reconstruction error
� Each point can be written as a linear combination 

of its neighbors.
� The weights chosen to minimize the reconstruction 

error:
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Least squares fits (Computing  Wij)

� Local reconstructions
� Choose weights to minimize:

� Constraints
Set              if       is not a neighbor of
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invariance to translation

� Set              if       is not a neighbor of
� Weights must sum to one:

� Local invariance
� Optimal weights       are invariant to rotation, 

translation, and scaling.
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Step 3. Finding the Embedding 

� Low dimensional representation
Map inputs to outputs:

� Minimize reconstruction errors
Optimize outputs for fixed weights:
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Optimize outputs for fixed weights:

� Constraints:
� Center outputs on origin 

� Impose unit covariance matrix 
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Minimization

� Quadratic form:

( )  )( ∑ ⋅=Ψ
ij

jiij yyMy

,kjkijiijijij WWWWM ∑+−−= δ ,kj
k

kijiijijij WWWWM ∑+−−= δ



 =

=
otherwise0

 if1 ji
ijδ

)()( WIWIM T −−=

It can be shown that 



Sparse eigenvalue problem

� Optimal embedding 
given by bottom d+1 eigenvectors, 
corresponding to the d+1 smallest eigenvalues
(Rayleigh-Ritz theorem).  

� Solution
� Discard bottom eigenvector [1 1 … 1] (with 

eigenvalue zero).
� Other eigenvectors satisfy constraints.



Surfaces

N=1000
inputs
k=8
nearest
neighbors



Lips
N=15960
images
K=24
neighbors
D=65664
pixels
d=2d=2
(shown)



Pose and
expression
N=1965
images
k=12
nearest
neighborsneighbors
D=560
pixels
d=2
(shown)



Properties of LLE

� Strengths:
� Fast
� No local minima
� Non-iterative� Non-iterative
� Non-parametric (only heuristic is 

neighbourhood size).

� Weaknesses:
� Sensitive to “shortcuts”
� No estimate of dimensionality



LLE versus Isomap

� Many similarities
� Graph-based, spectral method
� No local minima

� Essential differences� Essential differences
� Does not estimate dimensionality �
� No theoretical guarantees �
� Constructs sparse vs. dense matrix ☺

� Preserves weights vs. distances
� Much faster ☺



Laplacian Eigenmaps

� Map nearby inputs to nearby outputs, 
where nearness is encoded by graph.

� Summary of the Algorithm� Summary of the Algorithm
1. Identify k-nearest neighbours (as in LLE)
2. Assign weights to neighbours

3. Sparse eigenvalue problem



Step 2. Construct the graph

� Vertices represent inputs. 
� Undirected edges connect neighbours.
� Assign weights to neighbours:

� Simple: 1=W� Simple: 
or

� Heat kernel

1=ijW

( )2
exp jiij xxW −−= β



Step 3. Graph Laplacian

� Compute outputs by minimizing:
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Step 3. Generalized  eigenvalue

problem
� Minimize 

constrained by

� Optimal embedding:
given by bottom d+1 eigenvectors 

Lyy t

1=Dyy t

) ( DeLe λ=
given by bottom d+1 eigenvectors 
(corresponding to the d+1  smallest 
eigenvalues). 

� Solution:
Discard bottom eigenvector [1 1 … 1] (with 
eigenvalue zero). Other eigenvectors satisfy 
constraints.



Analysis on Manifolds

� Consider Riemannian manifold 
� a real differentiable manifold in which 

tangent space is equipped with dot product.

� Laplace Beltrami operator

Dℜ∈Ω

� Laplace Beltrami operator
� has a ‘natural’ operator ∆ on differentiable 

functions. 
� ∆ is a second order differential operator 

defined as a “divergence of the gradient”
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Spectral desomposition of ∆

� Assume  L 2(Ω) is space of all square 
integrable functions on 

� ∆   is a self-adjoint positive semi-
definate operator and its eigenfunctions

Ω

definate operator and its eigenfunctions
form the basis.

� Thus all f in L 2(Ω) can be written as

(provided Ω is compact)
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Smoothness functional 

� Defined as 

� value close to zero implies f being smooth.
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� value close to zero implies f being smooth.

� Since 

we have 
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choosing the lowest p eigenfunctions provides a 
maximally smooth approximation to the manifold.



Spectral graph theory

� Weighted graph is discretized
representation of manifold.

� Laplacian measures smoothness of 
functions over manifold  and graph.functions over manifold  and graph.

( ) LffffW

dffdf

t
ji

ij
ij =−

∆=∇

∑

∫∫
Ω

2

2
 ωωManifold:

Graph:



Interpreting Laplacian Eigenmaps

� Eigenvectors
functions from nodes to R in a way that 
"close by" points are assigned "close by" 
values.

� Eigenvalues
measure how close are the values of 
neighbouring points – smoothness. 



Example: S1 (the circle)

� Continuous
� Eigenfunctions of Laplacian are basis for 

periodic functions on circle, ordered by 
smoothness.

� Eigenvalues measure smoothness.



Example: S1 (the circle)

� Discrete (n equally spaced points)
� Eigenvectors of graph Laplacian are discrete 

sines and cosines.
� Eigenvalues measure smoothness.� Eigenvalues measure smoothness.



Laplacian vs LLE

� More similar than different
� Graph-based, spectral method
� Sparse eigenvalue problem
� Similar results in practice� Similar results in practice

� Essential differences
� Preserves locality vs local linearity
� Uses graph Laplacian


