UNSUPERVISED LEARNING 2011

LECTURE : MANIFOLD LEARNING

Rita Osadchy

Some slides are due to L.Saul, V. C. Raykar, N. Verma

Topics

- PCA Done!MDS
- IsoMap
- LLE
- EigenMaps

Dimensionality Reduction

• Data representation

Inputs are real-valued vectors in a high dimensional space.

• Linear structure

Does the data live in a low dimensional subspace?

Nonlinear structure

Does the data live on a low dimensional submanifold?

Notations

Inputs (high dimensional) *x*₁, *x*₂,..., *x*_n points in R^D Outputs (low dimensional) *y*₁, *y*₂,..., *y*_n points in R^d (d<<D)

Goals

Nearby points remain nearby. Distant points remain distant.

Non-metric MDS for manifolds?

Rank ordering of Euclidean distances is NOT preserved in "manifold learning".

To preserve structure preserve the geodesic distance and not the euclidean distance.

Graph-Based Methods

- Tenenbaum et.al's Isomap Algorithm
 - Global approach.

Preserves global pairwise distances.

- Roweis and Saul's Locally Linear Embedding Algorithm
 - Local approach

Nearby points should map nearby

- Belkin and Niyogi Laplacian Eigenmaps Algorithm
 - Local approach
 - minimizes approximately the same value as LLE

Isomap - Key Idea:

- Use geodesic instead of Euclidean distances in MDS.
 - For neighboring points Euclidean distance is a good approximation to the geodesic distance.
 - For distant points estimate the distance by a series of short hops between neighboring points. Find shortest paths in a graph with edges connecting neighboring data points.

Step 1. Build adjacency graph.

Adjacency graph

Vertices represent inputs. Undirected edges connect neighbours.

Neighbourhood selection

Many options: k-nearest neighbours, inputs within radius r, prior knowledge.

Graph is discretized approximation of submanifold.

Building the graph

Computation

- kNN scales naively as $O(n^2 D)$
- Faster methods exploit data structures.
- Assumptions
 - 1. Graph is connected.
 - 2. Neighbourhoods on graph reflect neighbourhoods on manifold.

not allowed

Step 2. Estimate geodesics

Oynamic programming

- Weight edges by local distances.
- Compute shortest paths through graph.
- Geodesic distances
 - Estimate by lengths of shortest paths: denser sampling = better estimates.
- Computation
 - Djikstra's algorithm for shortest paths O(n²log n + n²k).

Step 3. Metric MDS

- Embedding
 - Top d eigenvectors of Gram matrix yield embedding.
- Oimensionality
 - Number of significant eigenvalues yield estimate of dimensionality.
- Computation
 - Top d eigenvectors can be computed in O(n²d).

Summary

Algorithm

- 1. k nearest neighbours
- 2. shortest paths through graph
- 3. MDS on geodesic distances

n (points) =1024 k (neighbors) =12 Isomap: Two-dimensional embedding of hand images (from Josh. Tenenbaum, Vin de Silva, John Langford 2000)

Wrist rotation

Isomap: two-dimensional embedding of hand-written '2' (from Josh. Tenenbaum, Vin de Silva, John Langford 2000)

Isomap: three-dimensional embedding of faces (from Josh. Tenenbaum, Vin de Silva, John Langford 2000)

Properties of Isomap

- Strengths :
 - Preserves the global data structure
 - Performs global optimization
 - Non-parametric (Only heuristic is neighbourhood size)
- Weaknesses :
 - Sensitive to "shortcuts"
 - Very slow

Spectral Methods

- Ommon framework
 - 1. Derive sparse graph from *kNN*.
 - 2. Derive matrix from graph weights.
 - 3. Derive embedding from eigenvectors.
- Varied solutions

Algorithms differ in step 2. Types of optimization: shortest paths, least squares fits, semidefinite programming.

Locally Linear Embedding (LLE)

- Assume that data lies on a manifold: each sample and its neighbors lie on approximately linear subspace
- Idea:
 - 1. Approximate data by a set of linear patches
 - 2. Glue these patches together on a low dimensional subspace s.t. neighborhood relationships between patches are preserved.

Algorithm: http://cs.nyu.edu/~roweis/lle/algorithm.html

LLE at glance

Steps

- 1. Nearest neighbour search.
- 2. Least squares fits.
- 3. Sparse eigenvalue problem.
- Properties
 - Obtains highly nonlinear embeddings.
 - Not prone to local minima.
 - Sparse graphs yield sparse problems.

Step 1. Nearest neighbours search

Effect of Neighbourhood Size

Step 2. Compute weights

 Characterize local geometry of each neighbourhood by weights Wij.

 Compute weights by reconstructing each input (linearly) from neighbours.

Linear reconstructions

• Local linearity

 Assume neighbours lie on locally linear patches of a low dimensional manifold.

Minimize reconstruction error

- Each point can be written as a linear combination of its neighbors.
- The weights chosen to minimize the reconstruction error:

$$\min_{W} \sum_{i} \left| x_{i} - \sum_{j} W_{ij} x_{j} \right|^{2}$$

Least squares fits (Computing W_{ij})

• Local reconstructions

• Choose weights to minimize: $\Phi(W) = \sum_{i} \left| x_i - \sum_{i} W_{ij} x_j \right|$

Constraints

• Set $W_{ii} = 0$ if x_j is not a neighbor of x_i

• Weights must sum to one:
$$\sum W_{ij} = 1$$

invariance to translation

- Local invariance
 - Optimal weights W_{ij} are invariant to rotation, translation, and scaling.

Step 3. Finding the Embedding

- Low dimensional representation Map inputs to outputs: $x_i \in R^D \rightarrow y_i \in R^d$
- Minimize reconstruction errors Optimize outputs for fixed weights: $\Psi(y) = \sum_{i} \left| y_{i} - \sum_{i} W_{ij} y_{j} \right|^{2}$
- Constraints:

 - Center outputs on origin $\sum_{i} y_{i} = 0$ Impose unit covariance matrix $\frac{1}{N} \sum_{i} y_{i} y_{i} = I_{d}$

Minimization

• Quadratic form:

$$\Psi(y) = \sum_{ij} M_{ij} (y_i \cdot y_j)$$
$$M_{ij} = \delta_{ij} - W_{ij} - W_{ji} + \sum_k W_{ki} W_{kj},$$
$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

It can be shown that

$$M = (I - W)^T (I - W)$$

Sparse eigenvalue problem

Optimal embedding

given by bottom d+1 eigenvectors, corresponding to the d+1 smallest eigenvalues (Rayleigh-Ritz theorem).

- Solution
 - Discard bottom eigenvector [1 1 ... 1] (with eigenvalue zero).
 - Other eigenvectors satisfy constraints.

Surfaces

N=1000 inputs k=8 nearest neighbors

Lips N=15960 images K=24 neighbors **D=65664** pixels d=2 (shown)

Pose and expression N=1965 images k=12 nearest neighbors **D=560** pixels d=2 (shown)

Properties of LLE

- Strengths:
 - Fast
 - No local minima
 - Non-iterative
 - Non-parametric (only heuristic is neighbourhood size).
- Weaknesses:
 - Sensitive to "shortcuts"
 - No estimate of dimensionality

LLE versus Isomap

- Many similarities
 - Graph-based, spectral method
 - No local minima
- Essential differences
 - Does not estimate dimensionality 😕
 - No theoretical guarantees ☺
 - Constructs sparse vs. dense matrix 🙂
 - Preserves weights vs. distances
 - Much faster ☺

Laplacian Eigenmaps

- Map nearby inputs to nearby outputs, where nearness is encoded by graph.
- Summary of the Algorithm
 - 1. Identify k-nearest neighbours (as in LLE)
 - 2. Assign weights to neighbours
 - 3. Sparse eigenvalue problem

Step 2. Construct the graph

- Vertices represent inputs.
- Output of the second second
- Assign weights to neighbours:

• Simple:
$$W_{ij} = 1$$

or

Heat kernel
$$W_{ij} = \exp\left(-\beta \left\|x_i - x_j\right\|^2\right)$$

Step 3. Graph Laplacian

• Compute outputs by minimizing:

 $\Psi(y) = \sum_{ij} W_{ij} \|y_i - y_j\|^2 \text{ under appropriate constraints}$

$$\Psi(y) = \sum_{ij} W_{ij} \left(y_i^2 + y_j^2 - 2y_i y_j \right) \qquad W_{ij} \text{ is symmetric}$$
$$= \sum_i y_i^2 D_{ii} + \sum_j y_j^2 D_{jj} - 2\sum_{ij} y_i y_j W_{ij} = 2y_j^t Ly$$
$$D_{ii} = \sum_j W_{ij} \qquad \text{Graph Laplacian } L = D - W$$

Step 3. Generalized eigenvalue problem

• Minimize $y^{t}Ly$ constrained by $y^{t}Dy = 1$

$$(Le = \lambda De)$$

 Optimal embedding:
 given by bottom d+1 eigenvectors (corresponding to the d+1 smallest eigenvalues).

• Solution:

Discard bottom eigenvector [1 1 ... 1] (with eigenvalue zero). Other eigenvectors satisfy constraints.

Analysis on Manifolds

- Consider Riemannian manifold $\Omega \in \Re^{D}$
 - a real differentiable manifold in which tangent space is equipped with dot product.
- Laplace Beltrami operator
 - Ω has a 'natural' operator Δ on differentiable functions.
 - Δ is a second order differential operator defined as a "divergence of the gradient"

$$\Delta = \sum_{i} \frac{\partial^2}{\partial x_i^2}$$

Spectral desomposition of Δ

- Assume $\mathscr{K}^2(\Omega)$ is space of all square integrable functions on Ω
- Δ is a self-adjoint positive semidefinate operator and its eigenfunctions form the basis.
- Thus all f in $\mathscr{Z}^2(\Omega)$ can be written as

$$f(x) = \sum_{i} \alpha_{i} e_{i}(x)$$

(provided Ω is compact)

Smoothness functional

• Defined as

$$S(f) = \int_{\Omega} |\nabla f|^2 d\omega = \int f \Delta f \, d\omega = \langle \Delta f, f \rangle_{L^2(\Omega)}$$

• value close to zero implies *f* being smooth.

Since

$$S(e_i) = \left\langle \Delta e_i, e_i \right\rangle = \lambda_i$$

we have

$$S(f) = \left\langle \Delta f, f \right\rangle = \left\langle \sum_{i} \alpha_{i} \Delta e_{i}, \sum_{i} \alpha_{i} e_{i} \right\rangle = \sum_{i} \lambda_{i} \alpha_{i}$$

choosing the lowest p eigenfunctions provides a maximally smooth approximation to the manifold.

Spectral graph theory

- Weighted graph is discretized representation of manifold.
- Laplacian measures smoothness of functions over manifold and graph.

Manifold:

Graph:

$$\begin{split} \int_{\Omega} |\nabla f|^2 d\omega &= \int f \Delta f \, d\omega \\ \sum_{ij} W_{ij} \left(f_i - f_j \right)^2 &= f^{t} L f \end{split}$$

Interpreting Laplacian Eigenmaps

Eigenvectors

functions from nodes to \mathbb{R} in a way that "close by" points are assigned "close by" values.

• Eigenvalues

measure how close are the values of neighbouring points – smoothness.

Example: S1 (the circle)

Continuous

- Eigenfunctions of Laplacian are basis for periodic functions on circle, ordered by smoothness.
- Eigenvalues measure smoothness.

Example: S1 (the circle)

Discrete (n equally spaced points)

- Eigenvectors of graph Laplacian are discrete sines and cosines.
- Eigenvalues measure smoothness.

Graph embedding from Laplacian eigenmaps:

 $\vec{y}_k = (\cos(2\pi k/n), \sin(2\pi k/n))$

Laplacian vs LLE

More similar than different

- Graph-based, spectral method
- Sparse eigenvalue problem
- Similar results in practice
- Essential differences
 - Preserves locality vs local linearity
 - Uses graph Laplacian