
LECTURE : MANIFOLD LEARNINGLECTURE : MANIFOLD LEARNINGLECTURE : MANIFOLD LEARNINGLECTURE : MANIFOLD LEARNINGLECTURE : MANIFOLD LEARNINGLECTURE : MANIFOLD LEARNINGLECTURE : MANIFOLD LEARNINGLECTURE : MANIFOLD LEARNING

Rita Osadchy

Some slides are due to L.Saul, V. C. Raykar, N. Verma

Topics

� PCA
� MDS
� IsoMap
� LLE

Done!

� LLE
� EigenMaps

Dimensionality Reduction

� Data representation
Inputs are real-valued vectors in a
high dimensional space.

� Linear structure� Linear structure
Does the data live in a low
dimensional subspace?

� Nonlinear structure
Does the data live on a low
dimensional submanifold?

Notations

� Inputs (high dimensional)
x1,x2,…,xn points in RD

� Outputs (low dimensional)

y ,y ,…,y points in Rd (d<<D) y1,y2,…,yn points in Rd (d<<D)

� Goals
Nearby points remain nearby.
Distant points remain distant.

Non-metric MDS for manifolds?

Rank ordering of Euclidean distances is
NOT preserved in “manifold learning”.

Nonlinear Manifolds

A
PCA and MDS measure the
Euclidean distance

Unroll the manifold

What is important is the geodesic distance

To preserve structure preserve the geodesic distance and
not the euclidean distance.

Graph-Based Methods

• Tenenbaum et.al’s Isomap Algorithm
– Global approach.

Preserves global pairwise distances.

• Roweis and Saul’s Locally Linear Embedding Algorithm• Roweis and Saul’s Locally Linear Embedding Algorithm
– Local approach

Nearby points should map nearby

• Belkin and Niyogi Laplacian Eigenmaps Algorithm
– Local approach
– minimizes approximately the same value as LLE

Isomap - Key Idea:

• For neighboring points Euclidean distance is a
good approximation to the geodesic distance.

• For distant points estimate the distance by a

� Use geodesic instead of Euclidean distances
in MDS.

• For distant points estimate the distance by a
series of short hops between neighboring
points. Find shortest paths in a graph with
edges connecting neighboring data points.

Step 1. Build adjacency graph.

� Adjacency graph
Vertices represent inputs. Undirected edges
connect neighbours.

� Neighbourhood selection� Neighbourhood selection
Many options: k-nearest neighbours, inputs
within radius r, prior knowledge.

Graph is discretized
approximation of
submanifold.

Building the graph

� Computation
� kNN scales naively as
� Faster methods exploit data structures.

� Assumptions

)(2DnO

� Assumptions
1. Graph is connected.
2. Neighbourhoods on graph reflect

neighbourhoods on manifold.

Step 2. Estimate geodesics

� Dynamic programming
� Weight edges by local distances.
� Compute shortest paths through graph.

� Geodesic distances� Geodesic distances
� Estimate by lengths of shortest paths:

denser sampling = better estimates.

� Computation
� Djikstra’s algorithm for shortest paths

O(n2log n + n2k).

Step 3. Metric MDS

� Embedding
� Top d eigenvectors of Gram matrix yield

embedding.

� Dimensionality� Dimensionality
� Number of significant eigenvalues yield

estimate of dimensionality.

� Computation
� Top d eigenvectors can be computed in

O(n2d).

Summary

� Algorithm
1. k nearest neighbours
2. shortest paths through graph
3. MDS on geodesic distances3. MDS on geodesic distances

Swiss Roll

n (points) =1024
k (neighbors) =12

Isomap: Two-dimensional embedding of hand images (from Josh.

Tenenbaum, Vin de Silva, John Langford 2000)

n =2000, k =6, D=64x64

Isomap: two-dimensional embedding of hand-written ‘2’ (from

Josh. Tenenbaum, Vin de Silva, John Langford 2000)

n =1000, r=4.2, D=20x20

Isomap: three-dimensional embedding of faces (from Josh.

Tenenbaum, Vin de Silva, John Langford 2000)

n =698, k=6

Properties of Isomap

� Strengths :
� Preserves the global data structure
� Performs global optimization
� Non-parametric (Only heuristic is neighbourhood size)

� Weaknesses :
� Sensitive to “shortcuts”
� Very slow

Spectral Methods

� Common framework
1. Derive sparse graph from kNN.
2. Derive matrix from graph weights.
3. Derive embedding from eigenvectors.3. Derive embedding from eigenvectors.

� Varied solutions
Algorithms differ in step 2. Types of
optimization: shortest paths, least squares
fits, semidefinite programming.

Locally Linear Embedding (LLE)
� Assume that data lies on a

manifold: each sample and its
neighbors lie on approximately
linear subspace

� Idea:
1. Approximate data by a set of

linear patcheslinear patches
2. Glue these patches together on

a low dimensional subspace
s.t. neighborhood relationships
between patches are
preserved.

Algorithm: http://cs.nyu.edu/~roweis/lle/algorithm.html

LLE at glance

� Steps
1. Nearest neighbour search.
2. Least squares fits.
3. Sparse eigenvalue problem.3. Sparse eigenvalue problem.

� Properties
� Obtains highly nonlinear embeddings.
� Not prone to local minima.
� Sparse graphs yield sparse problems.

Step 1. Nearest neighbours

search

Effect of Neighbourhood SizeEffect of Neighbourhood Size

Step 2. Compute weights

� Characterize local geometry of each
neighbourhood by weights Wij.

� Compute weights by reconstructing each input
(linearly) from neighbours.

Linear reconstructions

� Local linearity
� Assume neighbours lie on locally linear patches of

a low dimensional manifold.

� Minimize reconstruction error� Minimize reconstruction error
� Each point can be written as a linear combination

of its neighbors.
� The weights chosen to minimize the reconstruction

error:
2

min∑ ∑−
i j

jiji
W

xWx

Least squares fits (Computing Wij)

� Local reconstructions
� Choose weights to minimize:

� Constraints
Set if is not a neighbor of

2

)(∑ ∑−=Φ
i j

jiji xWxW

x0=W x

∑ =
j

ijW 1

invariance to translation

� Set if is not a neighbor of
� Weights must sum to one:

� Local invariance
� Optimal weights are invariant to rotation,

translation, and scaling.

jx0=ijW ix

ijW

Step 3. Finding the Embedding

� Low dimensional representation
Map inputs to outputs:

� Minimize reconstruction errors
Optimize outputs for fixed weights:

d
i

D
i RyRx ∈→∈

Optimize outputs for fixed weights:

� Constraints:
� Center outputs on origin

� Impose unit covariance matrix

2

)(∑ ∑−=Ψ
i j

jiji yWyy

∑ =
i

iy 0

∑ =
i

dii Iyy
N

1

Minimization

� Quadratic form:

())(∑ ⋅=Ψ
ij

jiij yyMy

,kjkijiijijij WWWWM ∑+−−= δ ,kj
k

kijiijijij WWWWM ∑+−−= δ



 =

=
otherwise0

 if1 ji
ijδ

)()(WIWIM T −−=

It can be shown that

Sparse eigenvalue problem

� Optimal embedding
given by bottom d+1 eigenvectors,
corresponding to the d+1 smallest eigenvalues
(Rayleigh-Ritz theorem).

� Solution
� Discard bottom eigenvector [1 1 … 1] (with

eigenvalue zero).
� Other eigenvectors satisfy constraints.

Surfaces

N=1000
inputs
k=8
nearest
neighbors

Lips
N=15960
images
K=24
neighbors
D=65664
pixels
d=2d=2
(shown)

Pose and
expression
N=1965
images
k=12
nearest
neighborsneighbors
D=560
pixels
d=2
(shown)

Properties of LLE

� Strengths:
� Fast
� No local minima
� Non-iterative� Non-iterative
� Non-parametric (only heuristic is

neighbourhood size).

� Weaknesses:
� Sensitive to “shortcuts”
� No estimate of dimensionality

LLE versus Isomap

� Many similarities
� Graph-based, spectral method
� No local minima

� Essential differences� Essential differences
� Does not estimate dimensionality �
� No theoretical guarantees �
� Constructs sparse vs. dense matrix ☺

� Preserves weights vs. distances
� Much faster ☺

Laplacian Eigenmaps

� Map nearby inputs to nearby outputs,
where nearness is encoded by graph.

� Summary of the Algorithm� Summary of the Algorithm
1. Identify k-nearest neighbours (as in LLE)
2. Assign weights to neighbours

3. Sparse eigenvalue problem

Step 2. Construct the graph

� Vertices represent inputs.
� Undirected edges connect neighbours.
� Assign weights to neighbours:

� Simple: 1=W� Simple:
or

� Heat kernel

1=ijW

()2
exp jiij xxW −−= β

Step 3. Graph Laplacian

� Compute outputs by minimizing:

() ()∑ −+=Ψ yyyyWy 222

∑ −=Ψ
ij

jiij yyWy
2

)(under appropriate constraints

is symmetricW() ()

∑ ∑∑

∑

=−+=

−+=Ψ

j

t

ij
ijjijjj

i
iii

ij
jijiij

LyyWyyDyDy

yyyyWy

22

2

22

22

∑=
j

ijii WD WDL −= Graph Laplacian

is symmetricijW

Step 3. Generalized eigenvalue

problem
� Minimize

constrained by

� Optimal embedding:
given by bottom d+1 eigenvectors

Lyy t

1=Dyy t

) (DeLe λ=
given by bottom d+1 eigenvectors
(corresponding to the d+1 smallest
eigenvalues).

� Solution:
Discard bottom eigenvector [1 1 … 1] (with
eigenvalue zero). Other eigenvectors satisfy
constraints.

Analysis on Manifolds

� Consider Riemannian manifold
� a real differentiable manifold in which

tangent space is equipped with dot product.

� Laplace Beltrami operator

Dℜ∈Ω

� Laplace Beltrami operator
� has a ‘natural’ operator ∆ on differentiable

functions.
� ∆ is a second order differential operator

defined as a “divergence of the gradient”

Ω

∑ ∂
∂

=∆
i ix 2

2

Spectral desomposition of ∆

� Assume L 2(Ω) is space of all square
integrable functions on

� ∆ is a self-adjoint positive semi-
definate operator and its eigenfunctions

Ω

definate operator and its eigenfunctions
form the basis.

� Thus all f in L 2(Ω) can be written as

(provided Ω is compact)

)()(xexf i
i

i∑= α

Smoothness functional

� Defined as

� value close to zero implies f being smooth.

()Ω
Ω

∆=∆=∇= ∫∫ 2,)(
2

L
ffdffdffS ωω

� value close to zero implies f being smooth.

� Since

we have
iiii eeeS λ=∆= ,)(

∑∑ ∑ =∆=∆=
i

ii
i i

iiii eefffS αλαα ,,)(

choosing the lowest p eigenfunctions provides a
maximally smooth approximation to the manifold.

Spectral graph theory

� Weighted graph is discretized
representation of manifold.

� Laplacian measures smoothness of
functions over manifold and graph.functions over manifold and graph.

() LffffW

dffdf

t
ji

ij
ij =−

∆=∇

∑

∫∫
Ω

2

2
 ωωManifold:

Graph:

Interpreting Laplacian Eigenmaps

� Eigenvectors
functions from nodes to R in a way that
"close by" points are assigned "close by"
values.

� Eigenvalues
measure how close are the values of
neighbouring points – smoothness.

Example: S1 (the circle)

� Continuous
� Eigenfunctions of Laplacian are basis for

periodic functions on circle, ordered by
smoothness.

� Eigenvalues measure smoothness.

Example: S1 (the circle)

� Discrete (n equally spaced points)
� Eigenvectors of graph Laplacian are discrete

sines and cosines.
� Eigenvalues measure smoothness.� Eigenvalues measure smoothness.

Laplacian vs LLE

� More similar than different
� Graph-based, spectral method
� Sparse eigenvalue problem
� Similar results in practice� Similar results in practice

� Essential differences
� Preserves locality vs local linearity
� Uses graph Laplacian

