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Cocktail Party 

 microphone signals are 

mixed speech signals 

 

 

 

 

 Input: microphone 

signals 

 Goal: recover the speech 

signals  
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ICA vs. PCA 

 Similar to PCA 

 Finds a new basis to represent the data 

 Different from PCA 

 PCA removes only correlations, ICA 

removes correlations, and higher order 

dependence. 

 In PCA some components are more 

important than others (based on 

eigenvalues) in  ICA components are 

equally important. 



ICA vs. PCA 

 PCA: principle 

components are 

orthogonal.   

 ICA: independent 

components are not! 



ICA vs. PCA 

maximal variance directions independent components 



 Assume data            , generated by n 

independent sources. 

 

 We assume:  
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Model 

  Assume data            , generated by n independent 

sources. 
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mic. j at time i 



Problem Definition 

 We observe                       

 Goal: recover the sources    , that generated 

the data               . 
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 Goal is to find  W, such that  

 Denote  
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ICA Intuition 



ICA Ambiguities 

 If we have no prior knowledge about the 

mixing matrix, then there are inherent 

ambiguities in A that are impossible to 

recover. 

 The sources can be recovered up to 

 Permutation 

 Scaling 

 Sign 

 



Permutation Ambiguity 

Assume  that P is a nxn permutation matrix.  
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Given only the      s , we cannot distinguish between 

W and PW. 
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The permutation of the original sources is ambiguous. 

Not important in most applications 



Scaling Ambiguity 
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We cannot recover the “correct” scaling of the sources. 

Scaling a speaker's speech signal       by some positive factor  affects 

only the volume of that speaker's speech. 
js

Not important in most applications 

Also, sign changes do not matter:      and          sound identical when 

played on a speaker. 
js js



Gaussian sources are problematic 
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Gaussian Sources are Problematic 

 Whether the mixing matrix is A or A’, we would 
observe data from a                  distribution.  

 Thus, there is no way to tell if the sources were 
mixed using A or A’.  

 There is an arbitrary rotational component in the 
mixing matrix that cannot be determined from the 
data, and we cannot recover the original sources. 

 Reason: The Gaussian distribution is spherically 
symmetric. 

 For non-Gaussian data, it is possible, given 
enough data, to recover the n independent 
sources. 
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Densities and linear transformations 

Suppose     is a r.v drawn according to 

Let            be a r.v. defined by          . The density of 

is given by: 
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(A is squared invertible matrix)  



ICA algorithm 

 Assume that the distribution of      is 

 The joint distribution is  

 

 

 

 Using the previous formulation, we can derive 

 

 

 

 We must specify a density for the individual 

sources     .   
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ICA algorithm  

 A cumulative distribution of a real r.v. z is defined by 

 

 

 

 The density of z can be found by 
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jsSpecify a density for the                   specify its cdf.  

 

If you have a prior knowledge that the sources' densities 

take a certain form, then use it here, otherwise make an 

assumption about cdf. 



Density of s 
cdf is has to be a monotonic function that increases 

from zero to one.  

 

sigmoid 
Gaussian CDF 
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ICA algorithm 

 W is a parameter of our model that we want to estimate.  

 Given a training set                         , the log likelihood is: 

 

 

 

 Maximize          using gradient ascent: 

 

                                         where     is the learning rate. 
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ICA algorithm 

 By taking the derivatives of            using: 

 

 

 

    we obtain the update rule: 

 

 

 

 

 

 When the algorithm converges, compute   
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Remarks 

 We assumed that                            are 

independent of each other. 

 This assumption is incorrect for time series where 

the xi's are dependent (e.g. speech data). 

 it can be shown, that having correlated training 

examples will not hurt the performance of the 

algorithm if we have sufficient data. 

 Tip: run stochastic gradient ascent on a randomly 

shuffled copy of the training set. 
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Application domains of ICA 

 Blind source separation  
 Image denoising 
 Medical signal processing – fMRI, ECG, EEG 
 Modelling of the hippocampus and visual cortex  
 Feature extraction, face recognition 
 Compression, redundancy reduction 
 Watermarking 
 Clustering 
 Time series analysis (stock market, microarray 

data) 
 Topic extraction 
 Econometrics: Finding hidden factors in financial 

data 

Slide due B. Poczos 
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