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microphone signals are
mixed speech signals

X, (1) = a;;8, (t) +a;,8, (1) + a;35;(t)
X, (1) = @,,8, (1) + 25,5, (1) +2,35,(t)
X3 (1) = 8y, (1) + 85,8, () + 535, (t)

Input: microphone
sighals X, X;, X,

Goal: recover the speech
signals s;,s,,s;

http://research.ics.tkk.fi/ica/cocktail/cocktail en.caqi



http://research.ics.tkk.fi/ica/cocktail/cocktail_en.cgi

ICA vs. PCA

Similar to PCA
Finds a new basis to represent the data

Different from PCA

PCA removes only correlations, ICA
removes correlations, and higher order
dependence.

In PCA some components are more
Important than others (based on
eigenvalues) in ICA components are
equally important.




ICA vs. PCA

PCA: principle
components are
orthogonal.

ICA: independent
components are not!




ICA vs. PCA
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Model

Assume data s<€R", generated by n
Independent sources.

We assume:;
X = AS,
mixing matrix

AceR™ is unknown



Model

Assume data s e R", generated by n independent
sources.

Sjj signal from source j at time i.
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Problem Definition

We observe {Xi; i:1,..,m}

Goal: recover the sources s;, that generated
the data (x=As).

Let W =A" unmixing matrix

Goal is to find W, such that s; =Wx
Denote —w -]
w=|
_WT —

then the j-th source can be recovered by s; =w;x



|CA Intuition

original mixed
s; € Uniform[-1]]



ICA Ambiguities

If we have no prior knowledge about the
mixing matrix, then there are inherent
ambiguities in A that are impossible to

recover.
The sources can be recovered up to
Permutation

Scaling
Sign



Permutation Ambiguity

Assume that P Is a nxn permutation matrix.
1

0 o {o 1}

0 1 0

Wll W12

Given only the X;'s , we cannot distinguish between
W and PW.

The permutation of the original sources is ambiguous.
Not important in most applications

Examples: P=

o +— O

0]
0
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Scaling Ambiguity

X. =

A—2 s —(0.5s)
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We cannot recover the “correct” scaling of the sources.

Not important in most applications

Scaling a speaker's speech signal S j by some positive factor affects
only the volume of that speaker's speech.

Also, sign changes do not matter: Sj and — Sj sound identical when

played on a speaker.



(Gaussian sources are problematic

n=2,s~N(0,1), x=As

I
x ~ N(0, AA")

E[xx']=E[Ass' A']= AA'

Figure 7: The multivariate distribution of two independent gaussian variables.

Let R be an arbitrary orthogonal matrix, such that RR" =R'R=1.

Let A'= AR, then X'= A's = x'~ N(0, AA")
E[x'x™ ]=E[A'ss" AT]=E[ARss" (AR) ]= ARRT A= AAT



Gaussian Sources are Problematic

Whether the mixing matrix is A or 4°, we would
observe data from a N(0, AA") distribution.

Thus, there is no way to tell if the sources were
mixed using A or A’

There is an arbitrary rotational component in the
mixing matrix that cannot be determined from the
data, and we cannot recover the original sources.

Reason: The Gaussian distribution is spherically
symmetric.

For non-Gaussian data, it is possible, given
enough data, to recover the n independent
sources.



Densities and linear transformations

Suppose § is a r.v drawn according to P, (S).

Let X € R be ar.v. defined by x = As. The density of X
IS given by:

px(x) — ps(VVX)’\N‘

where W = A (A is squared invertible matrix)

Example:s ~ Uniform[0,1] : Ps(S) =1(0<s<1)
Let A=2, then X=2S. Clearly,X ~ Uniform[0,2]

Thus , P,(X)=0.5(0<x<2).




|ICA algorithm

Assume that the distribution of S; is Ps (S:).
The joint distribution is

n
p(s)=] ] p.(s;)
j=1

Using the previous formulation, we can derive

X=As=W"Ts

P(X) = H Ps (WJT X)’W‘ p(X) = p, (Wx)-\W|
=

We must specify a density for the individual
sources BPs.



|ICA algorithm

A cumulative distribution of a real r.v. z is defined by

F(z,)=P(z<7,)= | p,(2)dz

The density of z can be found by p,(z) =F'(z).

Specify a density for the S; === specify its cdf.

If you have a prior knowledge that the sources' densities
take a certain form, then use it here, otherwise make an
assumption about cdf.




Density of S

cdf i1s has to be a monotonic function that increases
from zero to one.

Gaussian CDF ~_ sigmoid

] py

1(1+exp(-x)) —

1.0

08

sg (s) : 1é/ (i+ 4e‘56)
p(s) =9'(s)

We assume that the data X, has zero mean. This is necessary because
our assumption that P(S) = g'(s) implies E(s)=0.Thus E(x) = E(As) =0

0.0




|ICA algorithm

W is a parameter of our model that we want to estimate.
Given a training set {Xi =1, m}, the log likelihood is:

W) =i@'099'(WIxi)+'09NV\}

Maximize |(W) using gradient ascent:

W W +7VI(W), where 77 is the learning rate.

0

Equivalently, W; < W, +7]%|(W) ?

J




|ICA algorithm

By taking the derivatives of (W) using:
g(x)=1/A+e™"); g'(x) =g()A-g(x))

Vi W[ =W )
we obtain the update rule:
(_1—2g(W1T X, )_ \
W W +7 1_29,("";)(‘) X"+
\_1—Zg(ngi )_ )

When the algorithm converges, compute s; =WX;.



Remarks

We assumed that {x.;i=1..,m} are
iIndependent of each other.

This assumption is incorrect for time series where
the x;'s are dependent (e.g. speech data).

It can be shown, that having correlated training
examples will not hurt the performance of the
algorithm if we have sufficient data.

Tip: run stochastic gradient ascent on a randomly
shuffled copy of the training set.



Application domains of ICA

Blind source separation

Image denoising

Medical signal processing — fMRI, ECG, EEG
Modelling of the hippocampus and visual cortex
Feature extraction, face recognition
Compression, redundancy reduction
Watermarking

Clustering

Time series analysis (stock market, microarray
data)

Topic extraction

dEctonometrics: Finding hidden factors in financial
ata

Slide due B. Poczos



ICA Application,
Removing Artifacts from EEG

e EEG ~ Neural cocktail party

o Severe contamination of EEG activity
— eye movements
— blinks
— muscle
— heart, ECG artifact
— vessel pulse
— electrode noise
— line noise, alternating current (60 Hz)

e ICA can improve signal

— effectively detect, separate and remove activity in EEG

records from a wide varietz of artifactual sources.
(Jung, Makeig, Bell, and Sejnowski)

o ICA weights help find location of sources

Slide due B. Poczos



EEG Scalp Channels

ICA decomposition
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Summed Projection of Selected Components
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Original EEG Corrected EEG
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ICA basis vectors extracted from
natural images

¢

Gabor wavelets,
edge detection,
receptive fields of V1 cells...
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Image denoising

Original
Image

ICA
filtering

Wiener
filtering




