### **UNSUPERVISED LEARNING 2011**

## **LECTURE : ICA**

Rita Osadchy

Based on Lecture Notes by A. Ng

## **Cocktail Party**



 microphone signals are mixed speech signals

$$x_{1}(t) = a_{11}s_{1}(t) + a_{12}s_{2}(t) + a_{13}s_{3}(t)$$
  

$$x_{2}(t) = a_{21}s_{1}(t) + a_{22}s_{2}(t) + a_{23}s_{3}(t)$$
  

$$x_{3}(t) = a_{31}s_{1}(t) + a_{32}s_{2}(t) + a_{33}s_{3}(t)$$

- Input: microphone signals  $x_1, x_2, x_3$
- Goal: recover the speech signals  $s_1, s_2, s_3$

# ICA vs. PCA

### Similar to PCA

• Finds a new basis to represent the data

### Oifferent from PCA

- PCA removes only correlations, ICA removes correlations, and higher order dependence.
- In PCA some components are more important than others (based on eigenvalues) in ICA components are equally important.

## ICA vs. PCA



- PCA: principle components are orthogonal.
- ICA: independent components are not!

## ICA vs. PCA







### independent components

## Model

• Assume data  $s \in R^n$ , generated by *n* independent sources.

• We assume:

$$x = As,$$
  

$$\downarrow$$
  
mixing matrix

 $A \in \mathbb{R}^{n \times n}$  is unknown

## Model

• Assume data  $s \in \mathbb{R}^n$ , generated by *n* independent sources.



## **Problem Definition**

- We observe  $\{x_i; i = 1,..,m\}$  i denotes time
- Goal: recover the sources  $s_j$ , that generated the data (x = As).
- Let  $W = A^{-1}$  unmixing matrix
- Goal is to find W, such that  $s_i = Wx_i$

Denote

$$W = \begin{bmatrix} -w_1^T - \\ \vdots \\ -w_n^T - \end{bmatrix}$$

then the *j*-th source can be recovered by  $s_{ij} = w_j^T x_i$ 

## **ICA** Intuition



# **ICA** Ambiguities

- If we have no prior knowledge about the mixing matrix, then there are inherent ambiguities in A that are impossible to recover.
- The sources can be recovered up to
  - Permutation
  - Scaling
  - Sign

# **Permutation Ambiguity**

Assume that *P* is a *n*×*n* permutation matrix.

Examples: 
$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix};$$
  $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix};$   
 $W = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix};$   $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix};$   $PW = \begin{bmatrix} w_{21} & w_{22} \\ w_{11} & w_{12} \end{bmatrix}$ 

Given only the  $x_i$ 's, we cannot distinguish between *W* and *PW*.

The permutation of the original sources is ambiguous. Not important in most applications

## **Scaling Ambiguity**

$$\begin{aligned} x_i &= As_i \\ A \to 2, \quad s_i \to (0.5s_i) \implies x_i = 2A(0.5s_i) \\ A \to \begin{bmatrix} 1 & 1 & \\ a_1 \cdots aa_j \cdots \end{bmatrix}, \quad s_j \to 1/\alpha s_j \implies x_i = \begin{bmatrix} 1 & 1 & \\ a_1 \cdots aa_j \cdots \end{bmatrix} \begin{bmatrix} s_{i1} \\ \vdots \\ 1/\alpha s_{ij} \end{bmatrix} \end{aligned}$$

We cannot recover the "correct" scaling of the sources.

### Not important in most applications

Scaling a speaker's speech signal  $S_j$  by some positive factor affects only the volume of that speaker's speech.

Also, sign changes do not matter:  $S_j$  and  $-S_j$  sound identical when played on a speaker.



Figure 7: The multivariate distribution of two independent gaussian variables.

Let *R* be an arbitrary orthogonal matrix, such that  $RR^T = R^T R = I$ . Let A' = AR, then  $x' = A's \implies x' \sim N(0, AA^T)$  $E[x'x'^T] = E[A'ss^T A'^T] = E[ARss^T (AR)^T] = ARR^T A = AA^T$ 

## **Gaussian Sources are Problematic**

- Whether the mixing matrix is A or A', we would observe data from a  $N(0, AA^T)$  distribution.
- Thus, there is no way to tell if the sources were mixed using A or A'.
- There is an arbitrary rotational component in the mixing matrix that cannot be determined from the data, and we cannot recover the original sources.
- Reason: The Gaussian distribution is spherically symmetric.
- For non-Gaussian data, it is possible, given enough data, to recover the *n* independent sources.

## **Densities and linear transformations**

Suppose s is a r.v drawn according to  $p_s(s)$ .

Let  $x \in R$  be a r.v. defined by x = As. The density of x is given by:

$$p_x(x) = p_s(Wx) \cdot |W|$$

where  $W = A^{-1}$  (A is squared invertible matrix)

Example:  $s \sim \text{Uniform}[0,1] : p_s(s) = 1 \ (0 \le s \le 1)$ Let A = 2, then x = 2s. Clearly,  $x \sim \text{Uniform}[0,2]$ Thus,  $p_x(x) = 0.5 \ (0 \le x \le 2)$ .

# ICA algorithm

- Assume that the distribution of  $s_i$  is  $p_s(s_i)$ .
- The joint distribution is

$$p(s) = \prod_{j=1}^{n} p_s(s_j)$$
 sources are independent

• Using the previous formulation, we can derive

$$p(x) = \prod_{j=1}^{n} p_s(w_j^T x) |W| \qquad x = As = W^{-1}s$$

$$p(x) = p_s(Wx) \cdot |W|$$

• We must specify a density for the individual sources  $P_s$ .

# ICA algorithm

• A cumulative distribution of a real r.v. z is defined by

$$F(z_0) = P(z \le z_0) = \int_{-\infty}^{z_0} p_z(z) dz$$

• The density of z can be found by  $p_z(z) = F'(z)$ .

Specify a density for the  $s_j$  => specify its cdf.

If you have a prior knowledge that the sources' densities take a certain form, then use it here, otherwise make an assumption about cdf.

## Density of s

cdf is has to be a monotonic function that increases from zero to one.



We assume that the data  $x_i$  has zero mean. This is necessary because our assumption that p(s) = g'(s) implies E(s) = 0. Thus E(x) = E(As) = 0

## ICA algorithm

- $\odot$  W is a parameter of our model that we want to estimate.
- Given a training set  $\{x_i; i = 1, ..., m\}$ , the log likelihood is:

$$l(W) = \sum_{i=1}^{m} \left( \sum_{j=1}^{s} \log g'(w_j^T x_i) + \log |W| \right).$$

• Maximize l(W) using gradient ascent:

 $W \leftarrow W + \eta \nabla l(W)$ , where  $\eta$  is the learning rate.

Equivalently, 
$$w_j \leftarrow w_j + \eta \frac{\partial}{\partial w_j} l(W)$$
 ?

## ICA algorithm

• By taking the derivatives of l(W) using:

$$g(x) = 1/(1 + e^{-x}); g'(x) = g(x)(1 - g(x))$$
  
 $\nabla_W |W| = |W| (W^{-1})^T$ 

we obtain the update rule:

$$W \leftarrow W + \eta \left( \begin{bmatrix} 1 - 2g(w_1^T x_i) \\ 1 - 2g(w_2^T x_i) \\ \vdots \\ 1 - 2g(w_n^T x_i) \end{bmatrix} x_i^T + (W^T)^{-1} \right)$$

• When the algorithm converges, compute  $s_i = Wx_i$ .

## Remarks

- We assumed that  $\{x_i; i = 1, ..., m\}$  are independent of each other.
- This assumption is incorrect for time series where the  $x_i$ 's are dependent (e.g. speech data).
- it can be shown, that having correlated training examples will not hurt the performance of the algorithm if we have sufficient data.
- Tip: run stochastic gradient ascent on a randomly shuffled copy of the training set.

# Application domains of ICA

- Blind source separation
- Image denoising
- Medical signal processing fMRI, ECG, EEG
- Modelling of the hippocampus and visual cortex
- Feature extraction, face recognition
- Compression, redundancy reduction
- Watermarking
- Olustering
- Time series analysis (stock market, microarray data)
- Topic extraction
- Econometrics: Finding hidden factors in financial data

## ICA Application, Removing Artifacts from EEG

- EEG ~ Neural cocktail party
- Severe *contamination* of EEG activity
  - eye movements
  - blinks
  - muscle
  - heart, ECG artifact
  - vessel pulse
  - electrode noise
  - line noise, alternating current (60 Hz)
- ICA can improve signal
  - effectively *detect, separate and remove* activity in EEG records from a wide variety of artifactual sources. (Jung, Makeig, Bell, and Sejnowski)
- ICA weights help find **location** of sources

Slide due B. Poczos





#### ICA decomposition



#### Fig. from Jung

#### Summed Projection of Selected Components



Original EEG Fp1 Fp2 F3 🖤 F4 14-14-16 (F C3 MMMMMM C4 MMMMMM A2 P4 ------01 02 F7 F8 ТЗ Τ4 Τ5 T6 Fz Cz M Pz Water ( EOG1 EOG2 2 Q З Time(sec)

#### Corrected EEG



## ICA basis vectors extracted from natural images



# Image denoising

Original image



Noisy image

Wiener filtering

ICA filtering