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Cocktail Party 

 microphone signals are 

mixed speech signals 

 

 

 

 

 Input: microphone 

signals 

 Goal: recover the speech 

signals  
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ICA vs. PCA 

 Similar to PCA 

 Finds a new basis to represent the data 

 Different from PCA 

 PCA removes only correlations, ICA 

removes correlations, and higher order 

dependence. 

 In PCA some components are more 

important than others (based on 

eigenvalues) in  ICA components are 

equally important. 



ICA vs. PCA 

 PCA: principle 

components are 

orthogonal.   

 ICA: independent 

components are not! 



ICA vs. PCA 

maximal variance directions independent components 



 Assume data            , generated by n 

independent sources. 

 

 We assume:  
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Model 

  Assume data            , generated by n independent 

sources. 
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mic. j at time i 



Problem Definition 

 We observe                       

 Goal: recover the sources    , that generated 

the data               . 

 

 Let  

 Goal is to find  W, such that  

 Denote  
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ICA Intuition 



ICA Ambiguities 

 If we have no prior knowledge about the 

mixing matrix, then there are inherent 

ambiguities in A that are impossible to 

recover. 

 The sources can be recovered up to 

 Permutation 

 Scaling 

 Sign 

 



Permutation Ambiguity 

Assume  that P is a nxn permutation matrix.  
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The permutation of the original sources is ambiguous. 

Not important in most applications 



Scaling Ambiguity 
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We cannot recover the “correct” scaling of the sources. 

Scaling a speaker's speech signal       by some positive factor  affects 

only the volume of that speaker's speech. 
js

Not important in most applications 

Also, sign changes do not matter:      and          sound identical when 

played on a speaker. 
js js



Gaussian sources are problematic 
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Gaussian Sources are Problematic 

 Whether the mixing matrix is A or A’, we would 
observe data from a                  distribution.  

 Thus, there is no way to tell if the sources were 
mixed using A or A’.  

 There is an arbitrary rotational component in the 
mixing matrix that cannot be determined from the 
data, and we cannot recover the original sources. 

 Reason: The Gaussian distribution is spherically 
symmetric. 

 For non-Gaussian data, it is possible, given 
enough data, to recover the n independent 
sources. 
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Densities and linear transformations 

Suppose     is a r.v drawn according to 

Let            be a r.v. defined by          . The density of 

is given by: 
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ICA algorithm 

 Assume that the distribution of      is 

 The joint distribution is  

 

 

 

 Using the previous formulation, we can derive 

 

 

 

 We must specify a density for the individual 

sources     .   
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ICA algorithm  

 A cumulative distribution of a real r.v. z is defined by 

 

 

 

 The density of z can be found by 
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jsSpecify a density for the                   specify its cdf.  

 

If you have a prior knowledge that the sources' densities 

take a certain form, then use it here, otherwise make an 

assumption about cdf. 



Density of s 
cdf is has to be a monotonic function that increases 

from zero to one.  
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ICA algorithm 

 W is a parameter of our model that we want to estimate.  

 Given a training set                         , the log likelihood is: 

 

 

 

 Maximize          using gradient ascent: 

 

                                         where     is the learning rate. 

 mixi ,...,1; 

  .log'log)(
1 1

 
 
















m

i

s

j

i

T

j WxwgWl

)(Wl

),(WlWW  

Equivalently, )(Wl
w

ww
j

jj



  ? 





ICA algorithm 

 By taking the derivatives of            using: 

 

 

 

    we obtain the update rule: 

 

 

 

 

 

 When the algorithm converges, compute   
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Remarks 

 We assumed that                            are 

independent of each other. 

 This assumption is incorrect for time series where 

the xi's are dependent (e.g. speech data). 

 it can be shown, that having correlated training 

examples will not hurt the performance of the 

algorithm if we have sufficient data. 

 Tip: run stochastic gradient ascent on a randomly 

shuffled copy of the training set. 
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Application domains of ICA 

 Blind source separation  
 Image denoising 
 Medical signal processing – fMRI, ECG, EEG 
 Modelling of the hippocampus and visual cortex  
 Feature extraction, face recognition 
 Compression, redundancy reduction 
 Watermarking 
 Clustering 
 Time series analysis (stock market, microarray 

data) 
 Topic extraction 
 Econometrics: Finding hidden factors in financial 

data 

Slide due B. Poczos 



Slide due B. Poczos 



Fig. from Jung 
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