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Based on Lecture Notes by A. Ng 



Motivation 

 Distribution comes from MoG 

 Have sufficient amount of data: m>>n 

 

 Use EM to fit Mixture of Gaussians  

 

 If m<<n  

 difficult to model a single Gaussian 

 much less a mixture of Gaussian 

 

num. of training points 

dimension 



Motivation 
 m data points span only a low-dimensional 

subspace of 

 ML estimator of Gaussian parameters: 

 

 

 

 

 

 More generally, unless m exceeds n by some 
reasonable amount, the maximum likelihood 
estimates of the mean and covariance may be 
quite poor. 
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Singular 
Can’t compute 

Gaussian Density 



Restriction on ∑ 

 Goal: Fit a reasonable Gaussian model 

to the data when m<<n. 

 Possible solutions: 

  Limit the number of parameters, assume ∑ 
is diagonal. 

 Limit               where       is the parameter 

under our control. 
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Contours of a Gaussian Density 

General ∑ 
Diagonal ∑ 

Contours are axis aligned 
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Correlation in the data 
 Restricting ∑ to be diagonal means modelling the 

different coordinates of the data as being 

uncorrelated and independent.  

 

 Often, we would like to capture some interesting 

correlation structure in the data.  



Modeling Correlation 

The model we 

will see today 



Factor Analysis Model 

Assume a latent random variable 
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     and     are independent. 

 

 

 



Example of the generative model 
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Generative process in higher 

dimensions 

 We assume that each data point is 

generated by sampling a k-dimension 

multivariate Gaussian    .  

 Then, it is mapped to a k-dimensional 

affine space of       by computing    

 Lastly,    is generated by adding 

covariance       noise to  
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Definitions 

 Suppose                is  r.v., where  

 

 Suppose                     , where 

 

 

 

Here                                                              …and   

 

 Under our assumptions,    and    are jointly multivariate 

Gaussian. 
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Partitioned vector 



Marginal distribution of x1 

By definition of the joint covariance of    and 
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Marginal distributions of Gaussians are themselves 

Gaussian, hence  ),(~ 1111 Nx
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Conditional distribution of x1 

given x2 

    Referring to the definition of the multivariate Gaussian 

distribution, it can be shown that 

     where  
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Finding the Parameters of FA 

model 

 Assume z and x have a joint Gaussian distribution:  

 

 

 

 We want to find       and 
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Finding ∑ 

 We need to calculate  

 upper left block  

   

 upper-right block  

 

 lower-right block 
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Finding ∑zx 
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Finding ∑xx 

Similarly, 
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Finding the parameters (cont.) 

Putting everything together, we have that, 
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We also see that the marginal distribution of x is given by 

),(~ TNx 

Thus, given a training set            log likelihood of the 

parameters is: 
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Finding the parameters (cont.) 

 To perform maximum likelihood estimation, we 

would like to maximize this quantity with 

respect to the parameters.  

 But maximizing this formula explicitly is hard, 

and we are aware of no algorithm that does 

so in closed-form.  

 So, we will instead use the EM algorithm.  
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EM for Factor Analysis 

 E-step: 

 

 

 M-step: 
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E-step (EM for FA) 

 We need to compute 

 Using a conditional distribution of a Gaussian 

we find that 
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M-step (EM for FA) 

Maximize: 

 

 

with respect to the parameters 

 

 We will work out the optimization with respect to      

 

 Derivations of the updates for          is an exercise 

(Do it!) 
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Update for Λ 
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Expectation with respect to    , drawn from  iz iQ



Update for Λ (cont.) 
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Remember that We want to maximize this expression 

with respect to Λ  
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Do not depend on Λ  
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Update for Λ (cont.) 
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Take derivative with respect to Λ  
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Simplify: 
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Update for Λ (cont.) 
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Update for Λ (cont.) 

Setting this to zero and simplifying, we get: 
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Solving for Λ, we obtain: 
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Since      is Gaussian with mean         and covariance    | ii xz
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Update for Λ (cont.) 
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M-step updates for μ and Ψ 
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Doesn’t depend on                                 , 

hence can be computed once for all the 

iterations . 
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The diagonal                     

 

(contains only diagonal entrees)  
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Probabilistic PCA 

 Probabilistic, generative view of data 

MDx  z ,



Compare 

 Probabilistic PCA 

 

 

 

 FA 

diagonal, axis-aligned 

spherical 



Probabilistic PCA 

 The columns of W are the principle 

components. 

 Can be found using  

 ML in closed form 

 EM  ( more efficient when only few 
eigenvectors are required, avoids evaluation 

of data covariance matrix) 

 Other advantages (see  Bishop, Ch.12.2) 

  


