UNSUPERVISED LEARNING 2011

LECTURE : FACTOR ANALYSIS

Rita Osadchy

Based on Lecture Notes by A. Ng

Motivation

Distribution comes from MoG
 Have sufficient amount of data: m>>n

num. of training points

Use EM to fit Mixture of Gaussians

● If m<<n</p>

- difficult to model a single Gaussian
- much less a mixture of Gaussian

Motivation

- *m* data points span only a low-dimensional subspace of \Re^n
- ML estimator of Gaussian parameters:

 More generally, unless m exceeds n by some reasonable amount, the maximum likelihood estimates of the mean and covariance may be quite poor.

Restriction on Σ

- Goal: Fit a reasonable Gaussian model to the data when m<<n.
- Possible solutions:
 - Limit the number of parameters, assume ∑ is diagonal.
 - Limit $\Sigma = \sigma^2 I$, where σ^2 is the parameter under our control.

Contours of a Gaussian Density

 $\Sigma = \sigma^2 I.$

Correlation in the data

- Restricting ∑ to be diagonal means modelling the different coordinates of the data as being uncorrelated and independent.
- Often, we would like to capture some interesting correlation structure in the data.

Modeling Correlation

Factor Analysis Model

Assume a latent random variable $z \in \Re^k$ (k < n), $z \sim N(0, I)$

z and ε are independent.

Example of the generative model of x

Generative process in higher dimensions

- We assume that each data point is generated by sampling a k-dimension multivariate Gaussian z_i .
- Then, it is mapped to a k-dimensional affine space of \Re^n by computing $\mu + \Lambda z_i$
- Lastly, x_i is generated by adding covariance Ψ noise to $\mu + \Lambda z_i$.

Definitions Partitioned vector

• Suppose $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is r.v., where $x_1 \in \Re^r$, $x_2 \in \Re^s$, $x \in \Re^{r+s}$

• Suppose $x \sim N(\mu, \Sigma)$, where

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \qquad \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$$

Here $\mu_1 \in \Re^r, \mu_2 \in \Re^s, \Sigma_{11} \in \Re^{r \times r}, \Sigma_{12} \in \Re^{r \times s}, \dots$ and $\Sigma_{12} = \Sigma_{21}^T$

• Under our assumptions, x_1 and x_2 are jointly multivariate Gaussian.

Marginal distribution of x₁

$$p(x_1) = \int p(x_1, x_2) dx_2$$

Marginal distributions of Gaussians are themselves Gaussian, hence $x_1 \sim N(\mu_1, \Sigma_{11})$

By definition of the joint covariance of x_1 and x_2

$$Cov(x) = \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} = E \begin{bmatrix} (x - \mu)(x - \mu)^T \end{bmatrix} = E \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix} \begin{pmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{pmatrix}^T \\ = E \begin{bmatrix} (x_1 - \mu_1)(x_1 - \mu_1)^T & (x_1 - \mu_1)(x_2 - \mu_2)^T \\ (x_2 - \mu_2)(x_1 - \mu_1)^T & (x_2 - \mu_2)(x_2 - \mu_2)^T \end{bmatrix}.$$

$$Cov(x_1) = E [(x_1 - \mu_1)(x_1 - \mu_1)^T] = \Sigma_{11}$$

Conditional distribution of x_1 given x_2

$$p(x_1 \mid x_2) = \frac{p(x_1, x_2)}{p(x_2)} \xleftarrow{N(\mu, \Sigma)}{N(\mu_2, \Sigma_{22})}$$

Referring to the definition of the multivariate Gaussian distribution, it can be shown that $x_1 | x_2 \sim N(\mu_{1|2}, \Sigma_{1|2})$, where

$$\mu_{1|2} = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \mu_2),$$

$$\Sigma_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

Finding the Parameters of FA model

• Assume z and x have a joint Gaussian distribution:

$$\begin{bmatrix} x \\ z \end{bmatrix} \sim N(\mu_{zx}, \Sigma)$$

• We want to find μ_{zx} and Σ

$$E[z] = 0 \quad (\text{since } z \sim N(0, I))$$
$$E[x] = E[\mu + \Lambda z + \varepsilon] = \mu + \Lambda E[z] + E[\varepsilon] = \mu.$$
$$\mu_{zx} = E\begin{bmatrix} z\\ x \end{bmatrix} = \begin{bmatrix} \vec{0}\\ \mu \end{bmatrix} \bigwedge k$$
n

Finding Σ

- We need to calculate
 - upper left block

 $\Sigma_{zz} = E[(z - E[z]])(z - E[z]])^{T}]$

$$\sum_{zz} = Cov(z) = I$$

upper-right block

$$\Sigma_{zx} = E[(z - E[z]])(x - E[x]])^{T}]$$

Iower-right block

$$\Sigma_{xx} = E[(x - E[x]])(x - E[x]])^{T}$$

$$E[(z - E[z])(x - E[x])^{T}] = E[z(\mu + \Lambda z + \varepsilon - \mu)^{T}]$$

=0

$$= \begin{bmatrix} zz^{T} \end{bmatrix} \Lambda + \begin{bmatrix} zz^{T} \end{bmatrix} \\ \parallel & = \\ Cov(z) \end{bmatrix} \stackrel{\text{independent}}{=} \begin{bmatrix} z \end{bmatrix} \stackrel{\text{independent}}{=} 0$$

$$= \Lambda^T$$

Similarly,

$$\begin{split} \Sigma_{xx} &= E[(x - E[x])(x - E[x])^{T}] \\ &= E[(\mu + \Lambda z + \varepsilon - \mu)(\mu + \Lambda z + \varepsilon - \mu)^{T}] \\ &= E[\Lambda z z^{T} \Lambda^{T} + \varepsilon z^{T} \Lambda^{T} - \Lambda z \varepsilon^{T} + \varepsilon \varepsilon^{T}] \\ &= \Lambda E[z z^{T}] \Lambda^{T} + E[\varepsilon \varepsilon^{T}] = \Lambda \Lambda^{T} + \Psi \end{split}$$

Finding the parameters (cont.)

Putting everything together, we have that,

$$\begin{bmatrix} z \\ x \end{bmatrix} \sim N\left(\begin{bmatrix} \vec{0} \\ \mu \end{bmatrix}, \begin{bmatrix} I & \Lambda^T \\ \Lambda & \Lambda\Lambda^T + \Psi \end{bmatrix}\right)$$

We also see that the marginal distribution of x is given by

$$x \sim N(\mu, \Lambda \Lambda^T + \Psi)$$

Thus, given a training set $\{x_i\}_{i=1}^m$ log likelihood of the parameters is:

$$l(\mu,\Lambda,\Psi) = \log \prod_{i=1}^{m} \frac{1}{(2\pi)^{n/2} |\Lambda\Lambda^{T} + \Psi|} \exp\left(-\frac{1}{2}(x_{i} - \mu)^{T}(\Lambda\Lambda^{T} + \Psi)(x_{i} - \mu)\right)$$

Finding the parameters (cont.)

$$l(\mu,\Lambda,\Psi) = \log \prod_{i=1}^{m} \frac{1}{(2\pi)^{n/2} |\Lambda\Lambda^{T} + \Psi|} \exp \left(-\frac{1}{2} (x_{i} - \mu)^{T} (\Lambda\Lambda^{T} + \Psi) (x_{i} - \mu)\right)$$

- To perform maximum likelihood estimation, we would like to maximize this quantity with respect to the parameters.
- But maximizing this formula explicitly is hard, and we are aware of no algorithm that does so in closed-form.
- So, we will instead use the EM algorithm.

EM for Factor Analysis

• E-step:

$$Q_i(z_i) = p(z_i \mid x_i, \theta)$$

$$\theta = \arg\max_{\theta} \sum_{i} \int_{z_i} Q_i(z_i) \log \frac{p(x_i, z_i; \theta)}{Q_i(z_i)} dz_i$$

E-step (EM for FA)

• We need to compute $Q_i(z_i) = p(z_i | x_i; \mu, \Lambda, \Psi)$

• Using a conditional distribution of a Gaussian we find that $z_i | x_i \sim N(\mu_{z_i|x_i}, \Sigma_{z_i|x_i})$

$$\mu_{1|2} = \mu_{1} + \Sigma_{12} \Sigma_{22}^{-1} (x_{2} - \mu_{2}),$$

$$\Sigma_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

$$\Sigma = \begin{bmatrix} I & \Lambda^{T} \\ \Lambda & \Lambda\Lambda^{T} + \Psi \end{bmatrix}$$

$$\mu_{1} \quad \Sigma_{12} \qquad \Sigma_{12} \qquad (x_{2} - \mu_{2})$$

$$\mu_{2i}|x_{i} = \vec{0} - \Lambda^{T} (\Lambda^{T} \Lambda + \Psi)^{-1} (x_{i} - \mu)$$

$$\Sigma_{2i}|x_{i} = \vec{1} - \Lambda^{T} (\Lambda^{T} \Lambda + \Psi)^{-1} \Lambda$$

$$\Sigma_{2i}|x_{i} = \vec{1} - \Lambda^{T} (\Lambda^{T} \Lambda + \Psi)^{-1} \Lambda$$

$$\Sigma_{2i}|x_{i} = \vec{1} - \Lambda^{T} (\Lambda^{T} \Lambda + \Psi)^{-1} \Lambda$$

$$Q_{i}(z_{i}) = \frac{1}{(2\pi)^{2k} |\Sigma_{z_{i}|x_{i}}|^{1/2}} \exp\left(-\frac{1}{2}(z_{i} - \mu_{z_{i}|x_{i}})^{T} \Sigma_{z_{i}|x_{i}}^{-1}(z_{i} - \mu_{z_{i}|x_{i}})\right)$$

M-step (EM for FA)

Maximize:

$$\sum_{i=1}^{m} \int_{z_i} Q_i(z_i) \log \frac{p(x_i, z_i; \mu, \Lambda, \Psi)}{Q_i(z_i)} dz_i$$

with respect to the parameters μ, Λ, Ψ

- \bullet We will work out the optimization with respect to Λ
- Derivations of the updates for μ, Ψ is an exercise (Do it!)

Update for Λ

$$\sum_{i=1}^{m} \int_{z_i} Q_i(z_i) \log \frac{p(x_i, z_i; \mu, \Lambda, \Psi)}{Q_i(z_i)} dz_i$$

$$= \sum_{i=1}^{m} \int_{z_i} Q_i(z_i) [\log p(x_i \mid z_i; \mu, \Lambda, \Psi) + \log p(z_i) - \log Q_i(z_i)] dz_i$$

Expectation with respect to z_i , drawn from Q_i = $\sum_{i=1}^{m} E_{z_i \sim Q_i} \log p(x_i \mid z_i; \mu, \Lambda, \Psi) + \log p(z_i) - \log Q_i(z_i)]$

$$\sum_{i=1}^{m} E_{z_i \sim Q_i} [\log p(x_i \mid z_i; \mu, \Lambda, \Psi) + \log p(z_i) - \log Q_i(z_i)]$$

Remember that We want to maximize this expression with respect to $\boldsymbol{\Lambda}$

$$\begin{split} &\sum_{i=1}^{m} E_{z_{i} \sim Q_{i}}[\log p(x_{i} \mid z_{i}; \mu, \Lambda, \Psi)] & x \mid z \sim N(\mu + \Lambda z, \Psi) \\ &= \sum_{i=1}^{m} E \Biggl[\log \frac{1}{(2\pi)^{n/2} |\Psi|^{1/2}} \exp\Biggl(-\frac{1}{2} (x_{i} - \mu - \Lambda z_{i})^{T} \Psi^{-1} (x_{i} - \mu - \Lambda z_{i}) \Biggr) \Biggr] \\ &= \sum_{i=1}^{m} E \Biggl[-\frac{1}{2} \log |\Psi| - \frac{n}{2} \log (2\pi) - \frac{1}{2} (x_{i} - \mu - \Lambda z_{i})^{T} \Psi^{-1} (x_{i} - \mu - \Lambda z_{i}) \Biggr] \end{split}$$

Do not depend on Λ

Take derivative with respect to $\boldsymbol{\Lambda}$

$$\nabla_{\Lambda} \sum_{i=1}^{m} -E \begin{bmatrix} \frac{1}{2} (x_{i} - \mu - \Lambda z_{i})^{T} \Psi^{-1} (x_{i} - \mu - \Lambda z_{i}) \end{bmatrix} \longrightarrow \text{scalar}$$
$$\text{tr} a = a, \ a \in \Re;$$
$$= \nabla_{\Lambda} \sum_{i=1}^{m} -E \begin{bmatrix} \text{tr} \frac{1}{2} (x_{i} - \mu - \Lambda z_{i})^{T} \Psi^{-1} (x_{i} - \mu - \Lambda z_{i}) \end{bmatrix}$$

Simplify:

$$=\sum_{i=1}^{m} \nabla_{\Lambda} E \left[-\operatorname{tr} \frac{1}{2} z_{i}^{T} \Lambda^{T} \Psi^{-1} \Lambda z_{i} + \operatorname{tr} z_{i}^{T} \Lambda^{T} \Psi^{-1} (x_{i} - \mu) \right]$$

$$\sum_{i=1}^{m} \nabla_{\Lambda} E \left[-\operatorname{tr} \frac{1}{2} z_{i}^{T} \Lambda^{T} \Psi^{-1} \Lambda z_{i} + \operatorname{tr} z_{i}^{T} \Lambda^{T} \Psi^{-1} (x_{i} - \mu) \right]$$
$$\operatorname{tr} AB = \operatorname{tr} BA$$
$$= \sum_{i=1}^{m} \nabla_{\Lambda} E \left[-\operatorname{tr} \frac{1}{2} \Lambda^{T} \Psi^{-1} \Lambda z_{i} z_{i}^{T} + \operatorname{tr} \Lambda^{T} \Psi^{-1} (x_{i} - \mu) z_{i}^{T} \right]$$
$$\nabla_{A^{T}} \operatorname{tr} ABA^{T} C = B^{T} A^{T} C^{T} + B^{T} A^{T} C$$

$$= \sum_{i=1}^{m} E \left[-\Psi^{-1} \Lambda z_{i} z_{i}^{T} + \Psi^{-1} (x_{i} - \mu) z_{i}^{T} \right]$$

$$\sum_{i=1}^{m} E\left[-\Psi^{-1}\Lambda z_{i} z_{i}^{T} + \Psi^{-1}(x_{i} - \mu) z_{i}^{T}\right]$$

Setting this to zero and simplifying, we get:

$$\sum_{i=1}^{m} \Lambda E_{z_i \sim Q_i} \left[z_i z_i^T \right] = \sum_{i=1}^{m} (x_i - \mu) E_{z_i \sim Q_i} \left[z_i^T \right]$$

Solving for Λ , we obtain:

$$\Lambda = \left(\sum_{i=1}^{m} (x_i - \mu) E_{z_i \sim Q_i} \begin{bmatrix} z_i^T \end{bmatrix}\right) \left(\sum_{i=1}^{m} E_{z_i \sim Q_i} \begin{bmatrix} z_i z_i^T \end{bmatrix}\right)^{-1}$$

Since Q is Gaussian with mean $\mu_{z_i|x_i}$ and covariance $\Sigma_{z_i|x_i}$

$$E_{z_i \sim Q_i}[z_i^T] = \mu_{z_i \mid x_i}^T$$
$$E_{z_i \sim Q_i}[z_i z_i^T] = \mu_{z_i \mid x_i} \mu_{z_i \mid x_i}^T + \Sigma_{z_i \mid x_i}$$

 $Cov(Y) = E[YY^{T}] - E[Y]E[Y^{T}]$ hence, $E[YY^{T}] = E[Y]E[Y^{T}] + Cov(Y)$

$$E_{z_i \sim Q_i}[z_i z_i^T] = \mu_{z_i \mid x_i} \mu_{z_i \mid x_i}^T + \Sigma_{z_i \mid x_i}$$
$$E_{z_i \sim Q_i}[z_i^T] = \mu_{z_i \mid x_i}^T$$
substitute
$$\Lambda = \left(\sum_{i=1}^m (x_i - \mu) E_{z_i \sim Q_i}[z_i^T]\right) \left(\sum_{i=1}^m E_{z_i \sim Q_i}[z_i z_i^T]\right)^{-1}$$

$$\Lambda = \left(\sum_{i=1}^{m} (x_i - \mu) \mu_{z_i | x_i}^T\right) \left(\sum_{i=1}^{m} \mu_{z_i | x_i} \mu_{z_i | x_i}^T + \Sigma_{z_i | x_i}\right)^{-1}$$

M-step updates for μ and Ψ

Doesn't depend on $Q_i(z_i) = p(z_i | x_i; \mu, \Lambda, \Psi)$, hence can be computed once for all the iterations.

$$\Phi = \frac{1}{m} \sum_{i=1}^{m} x_i x_i^T - x_i \mu_{z_i | x_i}^T \Lambda^T - \Lambda \mu_{z_i | x_i} x_i^T + \Lambda (\mu_{z_i | x_i} \mu_{z_i | x_i}^T + \Sigma_{z_i | x_i}) \Lambda^T$$

The diagonal Ψ_{ii} =

$$\Psi_{ii} = \Phi_{ii}$$

(contains only diagonal entrees)

Probabilistic PCA

Probabilistic, generative view of data

Compare

Probabilistic PCA

- The columns of W are the principle components.
- Can be found using
 - ML in closed form
 - EM (more efficient when only few eigenvectors are required, avoids evaluation of data covariance matrix)
 - Other advantages (see Bishop, Ch.12.2)