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Motivation

Distribution comes from MoG , dimension
Have sufficient amount of data: m>>n

u num. of training points
Use EM to fit Mixture of Gaussians

If m<<n

difficult to model a single Gaussian
much less a mixture of Gaussian




Motivation

m data points span only a low-dimensional
subspace of R"

ML estimator of Gaussian parameters:

13 n
u= 2 z:%;(xi—u)m—uf

_ Can’t compute
Singular => Gaussian Density

More generally, unless m exceeds n by some
reasonable amount, the maximum likelihood
estimates of the mean and covariance may be
guite poor.



Restriction on ).

Goal: Fit a reasonable Gaussian model
to the data when m<<n.

Possible solutions:

Limit the number of parameters, assume )
IS diagonal.

Limit £ =0o’l, where o is the parameter
under our control.



Contours of a Gaussian Density
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Correlation in the data

Restricting > to be diagonal means modelling the
different coordinates of the data as being
uncorrelated and independent.

Often, we would like to capture some interesting
correlation structure in the data.



Modeling Correlation
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Factor Analysis Model

Assume a latent random variable Z€ R (k<n), z~N(O,1)

The parameters of the model

—
X|z~N(u+Az,\¥)

ueR AcR™  WeR™ is diagonal

Equivalently, X=1+AZ+é&

g~ N(0,W)
Z and ¢ are independent.



Example of the generative model
of X

Ze R, xeR? A 2
p(z|0,) |1
0
H = 0
Z, Z157, Z, Z"‘N(Ol)
\ , 1 0
AZ7€% lLl-l—AZ Y= 0 2




Generative process in higher
dimensions

We assume that each data point Is

generated by sampling a k-dimension
multivariate Gaussian Z;.

Then, It iIs mapped to a k-dimensional
affine space of R" by computing 4+ Az

Lastly, X; Is generated by adding
covariance ¥ noise to 4+ Az;.



Definitions

Partitioned vector
Xl

} is r.v.,, wherex, e R", X, e R*, xe R"™*
X2

Suppose X = {

Suppose X~ N(g,%), where
,u=|:'ul}, Z:{Zn z12}
K 2y 2y
Here 1, e R", 1, eR*, 5, e R, 2, eR™,...and Z;, =2y,

Under our assumptions, % and X, are jointly multivariate
Gaussian.



Marginal distribution of x,

p(x) = [ P(X,%,)dx,

. X2 . . . .
Marginal distributions of Gaussians are themselves

Gaussian, hence X, ~ N(z,%,,)

By definition of the joint covariance of X;and X;

Cov(x) =2 = Z“}:E[(X—u)(x—ﬂ)TFE (Xl_”l

2y Ly X, — U,

i} Eﬂ(xl — )0 =)' (% = 1) 0% — 1) }
(X, — 14,) (%, _:ul)T (X, = #4,) (X, _luz)T

Cov(x,) = E[(Xl — :ul)(x1 - M)T] =2

)

X —
X, =l

T




Conditional distribution of x,

given X,

p(X,, X,) N (2, %)
p(x,) N (£, 25,)

p(xl | Xz) —

Referring to the definition of the multivariate Gaussian
distribution, it can be shown that x, | x, ~ N(z4,,Z,,),

where

My = Hy T z:122;;()(2 — 1Ly),
Z1|2 =2y — Z:1222221



Finding the Parameters of FA
model

Assume z and x have a joint Gaussian distribution:

X
{ ]* N (12,4, %)
Z

We want to find 4, and X

E[z]=0 (since z~N(0,1))
E[X]=E[u+Az+¢&]=u+ AE[z]+ E|[e] = 1

_Z 6 k
lLlZX = E =
_X} L} n




Finding 2.

We need to calculate
upper left block
>, =E(z-E[z)(z-E[zZI)"] =, =Cov(z)=
upper-right block
%, =E[(z—E[2]D(x—E[x]])']

lower-right block

%, = E[(x—E[XID(x—E[x]])']

z~N(,1)



Finding ..,

E[(z —ﬂ@—w ~ Elz{u+ Az+ - ")
=0

= E[zz7' ]|A+ E[ze']
Il Il independent

Cov(z)|  |E[z]E[£]=0

— A



Finding 2.,

Similarly,

% = EL[(x—E[X])(x—E[x])']

=E
=E

:(,u+AZ+8—,u)(,u+AZ+8—,u)T]

Az2' A + 2" N —Aze" + ']

= AE[zz"]JA" + E[ss' ]= AN +¥



Finding the parameters (cont.)

Putting everything together, we have that,

HR ()

We also see that the marginal distribution of x is given by
X~ N(u, AN +P)

Thus, given a training set {x.}", log likelihood of the
parameters Is:

(1, A, W) = |ogﬁ g

exp(— % (x, — 1) (AAT + 9 )x, — ,u)}

n/2
7)

AN +‘11\



Finding the parameters (cont.)

(1, A, W) = Iogﬁ 2

1 1 o i
AX exp(—z(xi - 1) (AAT + ) ﬂ)j

To perform maximum likelihood estimation, we
would like to maximize this quantity with
respect to the parameters.

But maximizing this formula explicitly is hard,
and we are aware of no algorithm that does
so in closed-form.

So, we will instead use the EM algorithm.



EM for Factor Analysis

E-step:
Qi(zi): p(zi |Xi"9)

M-step:

6 = arg max ZIQ‘ (z,)log P, 2; e)dzi

Q(z)



E-step (EM for FA)

We need to compute Q(z)=p(z; | %; 1. A, P)
Using a conditional distribution of a Gaussian
we find that z; | X ~ N (.2, )

z—l
- 3 22 X —
Hyp = fh + 2125 (X, — 1), #h 12 (X, — 44,)

S = Zi — ZpE %, Mg = 0—A" (AT A+Y) - (X — )

T
A AN+ S, =1 —AT(ATA+¥P) A
o 211 Z12 =1 212
Z22
1 1 _
Qi (Zi): 1/2 exp(__(zi _’uzi|xi )Tzzilb(i (Zi _’uzi|xi )j
(272)2k zzilxi 2




M-step (EM for FA)

Maximize:;
J- |Og p(Xi,Zi,lLl,A,“P) dZ

Q(z)

with respect to he parameters 4, A,

We will work out the optimization with respect to A

Derivations of the updates for 4t is an exercise
(Do it!)



Update for A

n EXpectation with respect to z;, drawn from Qi

= log p(x, | z;; 1, A, "¥) +log p(z,) —10gQ;(z, )]

1=1



Update for A (cont.)

Y E, o [10g p(x | Z;; 11, A, ') + 105 p(z,) —109Q, (7, )]
=1

Remember that We want to maximize this expression

with respect to A

SE, ol10g p(x 210, A, P)] X2~ N(u+ Az, ¥)

i=1 _ _
3 1 1 Twy-1

:ZE Iog N/2 1w 11/2 eXp __(Xi_lu_AZi) Y (Xi_zu_AZi)
= | (277) |‘P| 2 ]
i 1. I 1 Ty-L

:ZE _7!09‘T|_§|09‘\27z)_§(xi —u—Az) Y (X% - u—Az)

1=1
Do not depend on A



Update for A (cont.)

Take derivative with respect to A

v.3-g

=1

%(xi —u=AZ) ¥ (¥ — u—Az)

s scalar

:VA

=1

Simplify:

tra=a, aeR;

E[’[I’% (% —1—=Az) P (% — 1 —AZ )}

— ZVAE[— tr% ziTAT‘I"lAzi +tr ziTAT‘{"l(Xi — y)}




Update for A (cont.)

ZVA { tr—z "ATWAZ +trz AP (X — p)

trAB = trBA

— ZVAE[— tr%AT\If‘lAziziT +tr AP TH(X, —y)ziT}

VATtrABATC =B'A'C' +B'A'C

- i E[— YAz zZ + P (X — )z, ]



Update for A (cont.)

S EL WAz W (- )7 ]

i;etting this to zero and simplifying, we get:
> AE, gl ]2 B, o e

Solving for A, we obtain:

S )

=1
Since Q is Gaussian with mean #.x, and covariance 2, 1x

T

E, o[z 1= 14, Cov(Y) = EYY "]~ E[Y]E[Y]
Ty_ T hence,

Ezi~Qi [Zi Zi ] _ /uzi|xi /uzi|xi +Zzi|xi E[YY"]= E[YIE[Y "]+ Cov(Y)




Update for A (cont.)

[ZZ ] :uz|x:uz|x +Z
Zi"Qi [Z' ] ’u2i|Xi

ﬂ substitute

S )

SRS

-1




M-step updates for uand ¥

1 Doesn’t depend on Q(z)=p(z; | X; 1, A, W),
H= EZ Xi| hence can be computed once for all the
=l iterations .

O = lZ:Xi XiT o Xi/u;r-|x- AT _A:uz-|x- XiT +A(:uz-|x- /u;r-|x- +2 )AT
m __1 (M| [ (R (M|

Zi|x

The diagonal |Yii = P;

(contains only diagonal entrees)



Probabilistic PCA

Probabilistic, generative view of data

p(z) = N(z]0,1) xeR®, zeRY
p(x|z) = N(x|Wz + p,o?I)




Compare

Probabilistic PCA
p(z) = N(z[0,I)

p(x|z) = N(x[Wz+ p|o°I)

FA spherical
p(z) = N(z|0,I)

p(x|z) = N(x|Wz+ pu,|¥

)

Y

diagonal, axis-aligned



Probabilistic PCA

The columns of W are the principle
components.

Can be found using
ML in closed form

EM ( more efficient when only few
eigenvectors are required, avoids evaluation

of data covariance matrix)
Other advantages (see Bishop, Ch.12.2)



