
Hidden Markov Models Fundamentals

Daniel Ramage

CS229 Section Notes

December 1, 2007

Abstract

How can we apply machine learning to data that is represented as a

sequence of observations over time? For instance, we might be interested

in discovering the sequence of words that someone spoke based on an

audio recording of their speech. Or we might be interested in annotating

a sequence of words with their part-of-speech tags. These notes provides a

thorough mathematical introduction to the concept of Markov Models �

a formalism for reasoning about states over time � and Hidden Markov

Models � where we wish to recover a series of states from a series of

observations. The �nal section includes some pointers to resources that

present this material from other perspectives.

1 Markov Models

Given a set of states S = {s1, s2, ...s|S|} we can observe a series over time
~z ∈ ST . For example, we might have the states from a weather system S =
{sun, cloud, rain} with |S| = 3 and observe the weather over a few days {z1 =
ssun, z2 = scloud, z3 = scloud, z4 = srain, z5 = scloud} with T = 5.

The observed states of our weather example represent the output of a random
process over time. Without some further assumptions, state sj at time t could
be a function of any number of variables, including all the states from times 1
to t− 1 and possibly many others that we don't even model. However, we will
make two Markov assumptions that will allow us to tractably reason about
time series.

The limited horizon assumption is that the probability of being in a
state at time t depends only on the state at time t−1. The intuition underlying
this assumption is that the state at time t represents �enough� summary of the
past to reasonably predict the future. Formally:

P (zt|zt−1, zt−2, ..., z1) = P (zt|zt−1)

The stationary process assumption is that the conditional distribution
over next state given current state does not change over time. Formally:

1

P (zt|zt−1) = P (z2|z1); t ∈ 2...T

As a convention, we will also assume that there is an initial state and initial
observation z0 ≡ s0, where s0 represents the initial probability distribution over
states at time 0. This notational convenience allows us to encode our belief
about the prior probability of seeing the �rst real state z1 as P (z1|z0). Note
that P (zt|zt−1, ..., z1) = P (zt|zt−1, ..., z1, z0) because we've de�ned z0 = s0 for
any state sequence. (Other presentations of HMMs sometimes represent these
prior believes with a vector π ∈ R|S|.)

We parametrize these transitions by de�ning a state transition matrix A ∈
R(|S|+1)×(|S|+1). The value Aij is the probability of transitioning from state i
to state j at any time t. For our sun and rain example, we might have following
transition matrix:

A =

s0 ssun scloud srain

s0 0 .33 .33 .33
ssun 0 .8 .1 .1
scloud 0 .2 .6 .2
srain 0 .1 .2 .7

Note that these numbers (which I made up) represent the intuition that the
weather is self-correlated: if it's sunny it will tend to stay sunny, cloudy will
stay cloudy, etc. This pattern is common in many Markov models and can
be observed as a strong diagonal in the transition matrix. Note that in this
example, our initial state s0 shows uniform probability of transitioning to each
of the three states in our weather system.

1.1 Two questions of a Markov Model

Combining the Markov assumptions with our state transition parametrization
A, we can answer two basic questions about a sequence of states in a Markov
chain. What is the probability of a particular sequence of states ~z? And how
do we estimate the parameters of our model A such to maximize the likelihood
of an observed sequence ~z?

1.1.1 Probability of a state sequence

We can compute the probability of a particular series of states ~z by use of the
chain rule of probability:

P (~z) = P (zt, zt−1, ..., z1;A)
= P (zt, zt−1, ..., z1, z0;A)
= P (zt|zt−1, zt−2, ..., z1;A)P (zt−1|zt−2, ..., z1;A)...P (z1|z0;A)
= P (zt|zt−1;A)P (zt−1|zt−2;A)...P (z2|z1;A)P (z1|z0;A)

2

=
T∏

t=1

P (zt|zt−1;A)

=
T∏

t=1

Azt−1 zt

In the second line we introduce z0 into our joint probability, which is allowed
by the de�nition of z0 above. The third line is true of any joint distribution
by the chain rule of probabilities or repeated application of Bayes rule. The
fourth line follows from the Markov assumptions and the last line represents
these terms as their elements in our transition matrix A.

Let's compute the probability of our example time sequence from earlier. We
want P (z1 = ssun, z2 = scloud, z3 = srain, z4 = srain, z5 = scloud) which can be
factored as P (ssun|s0)P (scloud|ssun)P (srain|scloud)P (srain|srain)P (scloud|srain) =
.33× .1× .2× .7× .2.

1.1.2 Maximum likelihood parameter assignment

From a learning perspective, we could seek to �nd the parameters A that maxi-
mize the log-likelihood of sequence of observations ~z. This corresponds to �nd-
ing the likelihoods of transitioning from sunny to cloudy versus sunny to sunny,
etc., that make a set of observations most likely. Let's de�ne the log-likelihood
a Markov model.

l(A) = logP (~z;A)

= log
T∏

t=1

Azt−1 zt

=
T∑

t=1

logAzt−1 zt

=
|S|∑
i=1

|S|∑
j=1

T∑
t=1

1{zt−1 = si ∧ zt = sj} logAij

In the last line, we use an indicator function whose value is one when the
condition holds and zero otherwise to select the observed transition at each
time step. When solving this optimization problem, it's important to ensure
that solved parameters A still make a valid transition matrix. In particular, we
need to enforce that the outgoing probability distribution from state i always
sums to 1 and all elements of A are non-negative. We can solve this optimization
problem using the method of Lagrange multipliers.

max
A

l(A)

3

s.t.

|S|∑
j=1

Aij = 1, i = 1..|S|

Aij ≥ 0, i, j = 1..|S|

This constrained optimization problem can be solved in closed form using the
method of Lagrange multipliers. We'll introduce the equality constraint into the
Lagrangian, but the inequality constraint can safely be ignored � the optimal
solution will produce positive values for Aij anyway. Therefore we construct
the Lagrangian as:

L(A,α) =
|S|∑
i=1

|S|∑
j=1

T∑
t=1

1{zt−1 = si ∧ zt = sj} logAij +
|S|∑
i=1

αi(1−
|S|∑
j=1

Aij)

Taking partial derivatives and setting them equal to zero we get:

∂L(A,α)
∂Aij

=
∂

∂Aij
(

T∑
t=1

1{zt−1 = si ∧ zt = sj} logAij) +
∂

∂Aij
αi(1−

|S|∑
j=1

Aij)

=
1
Aij

T∑
t=1

1{zt−1 = si ∧ zt = sj} − αi ≡ 0

⇒

Aij =
1
αi

T∑
t=1

1{zt−1 = si ∧ zt = sj}

Substituting back in and setting the partial with respect to α equal to zero:

∂L(A, β)
∂αi

= 1−
|S|∑
j=1

Aij

= 1−
|S|∑
j=1

1
αi

T∑
t=1

1{zt−1 = si ∧ zt = sj} ≡ 0

⇒

αi =
|S|∑
j=1

T∑
t=1

1{zt−1 = si ∧ zt = sj}

=
T∑

t=1

1{zt−1 = si}

Substituting in this value for αi into the expression we derived for Aij we

obtain our �nal maximum likelihood parameter value for Âij .

4

Âij =
∑T

t=1 1{zt−1 = si ∧ zt = sj}∑T
t=1 1{zt−1 = si}

This formula encodes a simple intuition: the maximum likelihood probability
of transitioning from state i to state j is just the number of times we transition
from i to j divided by the total number of times we are in i. In other words, the
maximum likelihood parameter corresponds to the fraction of the time when we
were in state i that we transitioned to j.

2 Hidden Markov Models

Markov Models are a powerful abstraction for time series data, but fail to cap-
ture a very common scenario. How can we reason about a series of states if we
cannot observe the states themselves, but rather only some probabilistic func-
tion of those states? This is the scenario for part-of-speech tagging where the
words are observed but the parts-of-speech tags aren't, and for speech recogni-
tion where the sound sequence is observed but not the words that generated it.
For a simple example, let's borrow the setup proposed by Jason Eisner in 2002
[1], �Ice Cream Climatology.�

The situation: You are a climatologist in the year 2799, studying
the history of global warming. You can't �nd any records of Balti-
more weather, but you do �nd my (Jason Eisner's) diary, in which I
assiduously recorded how much ice cream I ate each day. What can

you �gure out from this about the weather that summer?

A Hidden Markov Model (HMM) can be used to explore this scenario. We
don't get to observe the actual sequence of states (the weather on each day).
Rather, we can only observe some outcome generated by each state (how many
ice creams were eaten that day).

Formally, an HMM is a Markov model for which we have a series of observed
outputs x = {x1, x2, ..., xT } drawn from an output alphabet V = {v1, v2, ..., v|V |},
i.e. xt ∈ V, t = 1..T . As in the previous section, we also posit the existence of se-
ries of states z = {z1, z2, ..., zT } drawn from a state alphabet S = {s1, s2, ...s|S|},
zt ∈ S, t = 1..T but in this scenario the values of the states are unobserved. The
transition between states i and j will again be represented by the corresponding
value in our state transition matrix Aij .

We also model the probability of generating an output observation as a
function of our hidden state. To do so, we make the output independence

assumption and de�ne P (xt = vk|zt = sj) = P (xt = vk|x1, ..., xT , z1, ..., zT) =
Bjk . The matrix B encodes the probability of our hidden state generating
output vk given that the state at the corresponding time was sj .

Returning to the weather example, imagine that you have logs of ice cream
consumption over a four day period: ~x = {x1 = v3, x2 = v2, x3 = v1, x4 = v2}

5

where our alphabet just encodes the number of ice creams consumed, i.e. V =
{v1 = 1 ice cream, v2 = 2 ice creams, v3 = 3 ice creams}. What questions can
an HMM let us answer?

2.1 Three questions of a Hidden Markov Model

There are three fundamental questions we might ask of an HMM. What is the
probability of an observed sequence (how likely were we to see 3, 2, 1, 2 ice creams
consumed)? What is the most likely series of states to generate the observations
(what was the weather for those four days)? And how can we learn values for
the HMM's parameters A and B given some data?

2.2 Probability of an observed sequence: Forward proce-

dure

In an HMM, we assume that our data was generated by the following process:
posit the existence of a series of states ~z over the length of our time series.
This state sequence is generated by a Markov model parametrized by a state
transition matrix A. At each time step t, we select an output xt as a function of
the state zt. Therefore, to get the probability of a sequence of observations, we
need to add up the likelihood of the data ~x given every possible series of states.

P (~x;A,B) =
∑

~z

P (~x, ~z;A,B)

=
∑

~z

P (~x|~z;A,B)P (~z;A,B)

The formulas above are true for any probability distribution. However, the
HMM assumptions allow us to simplify the expression further:

P (~x;A,B) =
∑

~z

P (~x|~z;A,B)P (~z;A,B)

=
∑

~z

(
T∏

t=1

P (xt|zt;B)) (
T∏

t=1

P (zt|zt−1;A))

=
∑

~z

(
T∏

t=1

Bzt xt) (
T∏

t=1

Azt−1 zt)

The good news is that this is a simple expression in terms of our parame-
ters. The derivation follows the HMM assumptions: the output independence
assumption, Markov assumption, and stationary process assumption are all used
to derive the second line. The bad news is that the sum is over every possible
assignment to ~z. Because zt can take one of |S| possible values at each time
step, evaluating this sum directly will require O(|S|T) operations.

6

Algorithm 1 Forward Procedure for computing αi(t)
1. Base case: αi(0) = A0 i, i = 1..|S|
2. Recursion: αj(t) =

∑|S|
i=1 αi(t− 1)AijBj xt

, j = 1..|S|, t = 1..T

Fortunately, a faster means of computing P (~x;A,B) is possible via a dy-
namic programming algorithm called the Forward Procedure. First, let's
de�ne a quantity αi(t) = P (x1, x2, ..., xt, zt = si;A,B). αi(t) represents the
total probability of all the observations up through time t (by any state assign-
ment) and that we are in state si at time t. If we had such a quantity, the
probability of our full set of observations P (~x) could be represented as:

P (~x;A,B) = P (x1, x2, ..., xT ;A,B)

=
|S|∑
i=1

P (x1, x2, ..., xT , zT = si;A,B)

=
|S|∑
i=1

αi(T)

Algorithm 2.2 presents an e�cient way to compute αi(t). At each time step
we must do only O(|S|) operations, resulting in a �nal algorithm complexity
of O(|S| · T) to compute the total probability of an observed state sequence
P (~x;A,B).

A similar algorithm known as the Backward Procedure can be used to
compute an analogous probability βi(t) = P (xT , xT−1, .., xt+1, zt = si;A,B).

2.3 Maximum Likelihood State Assignment: The Viterbi

Algorithm

One of the most common queries of a Hidden Markov Model is to ask what
was the most likely series of states ~z ∈ ST given an observed series of outputs
~x ∈ V T . Formally, we seek:

arg max
~z

P (~z|~x;A,B) = arg max
~z

P (~x, ~z;A,B)∑
~z P (~x, ~z;A,B)

= arg max
~z

P (~x, ~z;A,B)

The �rst simpli�cation follows from Bayes rule and the second from the
observation that the denominator does not directly depend on ~z. Naively, we
might try every possible assignment to ~z and take the one with the highest
joint probability assigned by our model. However, this would require O(|S|T)
operations just to enumerate the set of possible assignments. At this point, you
might think a dynamic programming solution like the Forward Algorithm might
save the day, and you'd be right. Notice that if you replaced the arg max~z with∑

~z, our current task is exactly analogous to the expression which motivated
the forward procedure.

7

Algorithm 2 Naive application of EM to HMMs

Repeat until convergence {
(E-Step) For every possible labeling ~z ∈ ST , set

Q(~z) := p(~z|~x;A,B)

(M-Step) Set

A,B := arg max
A,B

∑
~z

Q(~z) log
P (~x, ~z;A,B)

Q(~z)

s.t.

|S|∑
j=1

Aij = 1, i = 1..|S|; Aij ≥ 0, i, j = 1..|S|

|V |∑
k=1

Bik = 1, i = 1..|S|; Bik ≥ 0, i = 1..|S|, k = 1..|V |

}

The Viterbi Algorithm is just like the forward procedure except that
instead of tracking the total probability of generating the observations seen so
far, we need only track the maximum probability and record its corresponding
state sequence.

2.4 Parameter Learning: EM for HMMs

The �nal question to ask of an HMM is: given a set of observations, what
are the values of the state transition probabilities A and the output emission
probabilities B that make the data most likely? For example, solving for the
maximum likelihood parameters based on a speech recognition dataset will allow
us to e�ectively train the HMM before asking for the maximum likelihood state
assignment of a candidate speech signal.

In this section, we present a derivation of the Expectation Maximization
algorithm for Hidden Markov Models. This proof follows from the general for-
mulation of EM presented in the CS229 lecture notes. Algorithm 2.4 shows the
basic EM algorithm. Notice that the optimization problem in the M-Step is now
constrained such that A and B contain valid probabilities. Like the maximum
likelihood solution we found for (non-Hidden) Markov models, we'll be able to
solve this optimization problem with Lagrange multipliers. Notice also that the
E-Step and M-Step both require enumerating all |S|T possible labellings of ~z.
We'll make use of the Forward and Backward algorithms mentioned earlier to
compute a set of su�cient statistics for our E-Step and M-Step tractably.

First, let's rewrite the objective function using our Markov assumptions.

8

A,B = arg max
A,B

∑
~z

Q(~z) log
P (~x, ~z;A,B)

Q(~z)

= arg max
A,B

∑
~z

Q(~z) logP (~x, ~z;A,B)

= arg max
A,B

∑
~z

Q(~z) log(
T∏

t=1

P (xt|zt;B)) (
T∏

t=1

P (zt|zt−1;A))

= arg max
A,B

∑
~z

Q(~z)
T∑

t=1

logBzt xt + logAzt−1 zt

= arg max
A,B

∑
~z

Q(~z)
|S|∑
i=1

|S|∑
j=1

|V |∑
k=1

T∑
t=1

1{zt = sj ∧ xt = vk} logBjk + 1{zt−1 = si ∧ zt = sj} logAij

In the �rst line we split the log division into a subtraction and note that
the denominator's term does not depend on the parameters A,B. The Markov
assumptions are applied in line 3. Line 5 uses indicator functions to index A
and B by state.

Just as for the maximum likelihood parameters for a visible Markov model,
it is safe to ignore the inequality constraints because the solution form naturally
results in only positive solutions. Constructing the Lagrangian:

L(A,B, δ, ε) =
∑

~z

Q(~z)
|S|∑
i=1

|S|∑
j=1

|V |∑
k=1

T∑
t=1

1{zt = sj ∧ xt = vk} logBjk + 1{zt−1 = si ∧ zt = sj} logAij

+
|S|∑
j=1

εj(1−
|V |∑
k=1

Bjk) +
|S|∑
i=1

δi(1−
|S|∑
j=1

Aij)

Taking partial derivatives and setting them equal to zero:

∂L(A,B, δ, ε)
∂Aij

=
∑

~z

Q(~z)
1
Aij

T∑
t=1

1{zt−1 = si ∧ zt = sj} − δi ≡ 0

Aij =
1
δi

∑
~z

Q(~z)
T∑

t=1

1{zt−1 = si ∧ zt = sj}

∂L(A,B, δ, ε)
∂Bjk

=
∑

~z

Q(~z)
1
Bjk

T∑
t=1

1{zt = sj ∧ xt = vk} − εj ≡ 0

Bjk =
1
εj

∑
~z

Q(~z)
T∑

t=1

1{zt = sj ∧ xt = vk}

9

Taking partial derivatives with respect to the Lagrange multipliers and sub-
stituting our values of Aij and Bjk above:

∂L(A,B, δ, ε)
∂δi

= 1−
|S|∑
j=1

Aij

= 1−
|S|∑
j=1

1
δi

∑
~z

Q(~z)
T∑

t=1

1{zt−1 = si ∧ zt = sj} ≡ 0

δi =
|S|∑
j=1

∑
~z

Q(~z)
T∑

t=1

1{zt−1 = si ∧ zt = sj}

=
∑

~z

Q(~z)
T∑

t=1

1{zt−1 = si}

∂L(A,B, δ, ε)
∂εj

= 1−
|V |∑
k=1

Bjk

= 1−
|V |∑
k=1

1
εj

∑
~z

Q(~z)
T∑

t=1

1{zt = sj ∧ xt = vk} ≡ 0

εj =
|V |∑
k=1

∑
~z

Q(~z)
T∑

t=1

1{zt = sj ∧ xt = vk}

=
∑

~z

Q(~z)
T∑

t=1

1{zt = sj}

Substituting back into our expressions above, we �nd that parameters Â and
B̂ that maximize our predicted counts with respect to the dataset are:

Âij =
∑

~z Q(~z)
∑T

t=1 1{zt−1 = si ∧ zt = sj}∑
~z Q(~z)

∑T
t=1 1{zt−1 = si}

B̂jk =
∑

~z Q(~z)
∑T

t=1 1{zt = sj ∧ xt = vk}∑
~z Q(~z)

∑T
t=1 1{zt = sj}

Unfortunately, each of these sums is over all possible labellings ~z ∈ ST . But
recall that Q(~z) was de�ned in the E-step as P (~z|~x;A,B) for parameters A and
B at the last time step. Let's consider how to represent �rst the numerator of
Âij in terms of our forward and backward probabilities, αi(t) and βj(t).

∑
~z

Q(~z)
T∑

t=1

1{zt−1 = si ∧ zt = sj}

10

=
T∑

t=1

∑
~z

1{zt−1 = si ∧ zt = sj}Q(~z)

=
T∑

t=1

∑
~z

1{zt−1 = si ∧ zt = sj}P (~z|~x;A,B)

=
1

P (~x;A,B)

T∑
t=1

∑
~z

1{zt−1 = si ∧ zt = sj}P (~z, ~x;A,B)

=
1

P (~x;A,B)

T∑
t=1

αi(t)AijBj xt
βj(t+ 1)

In the �rst two steps we rearrange terms and substitute in for our de�nition
of Q. Then we use Bayes rule in deriving line four, followed by the de�nitions
of α, β, A, and B, in line �ve. Similarly, the denominator can be represented
by summing out over j the value of the numerator.

∑
~z

Q(~z)
T∑

t=1

1{zt−1 = si}

=
|S|∑
j=1

∑
~z

Q(~z)
T∑

t=1

1{zt−1 = si ∧ zt = sj}

=
1

P (~x;A,B)

|S|∑
j=1

T∑
t=1

αi(t)AijBj xt
βj(t+ 1)

Combining these expressions, we can fully characterize our maximum likeli-
hood state transitions Âij without needing to enumerate all possible labellings
as:

Âij =
∑T

t=1 αi(t)AijBj xtβj(t+ 1)∑|S|
j=1

∑T
t=1 αi(t)AijBj xt

βj(t+ 1)

Similarly, we can represent the numerator for B̂jk as:

∑
~z

Q(~z)
T∑

t=1

1{zt = sj ∧ xt = vk}

=
1

P (~x;A,B)

T∑
t=1

∑
~z

1{zt = sj ∧ xt = vk}P (~z, ~x;A,B)

=
1

P (~x;A,B)

|S|∑
i=1

T∑
t=1

∑
~z

1{zt−1 = si ∧ zt = sj ∧ xt = vk}P (~z, ~x;A,B)

11

Algorithm 3 Forward-Backward algorithm for HMM parameter learning

Initialization: Set A and B as random valid probability matrices
where Ai0 = 0 and B0k = 0 for i = 1..|S| and k = 1..|V |.

Repeat until convergence {
(E-Step) Run the Forward and Backward algorithms to compute αi and βi for
i = 1..|S|. Then set:

γt(i, j) := αi(t)AijBj xt
βj(t+ 1)

(M-Step) Re-estimate the maximum likelihood parameters as:

Aij :=
∑T

t=1 γt(i, j)∑|S|
j=1

∑T
t=1 γt(i, j)

Bjk :=
∑|S|

i=1

∑T
t=1 1{xt = vk} γt(i, j)∑|S|
i=1

∑T
t=1 γt(i, j)

}

=
1

P (~x;A,B)

|S|∑
i=1

T∑
t=1

1{xt = vk}αi(t)AijBj xtβj(t+ 1)

And the denominator of B̂jk as:

∑
~z

Q(~z)
T∑

t=1

1{zt = sj}

=
1

P (~x;A,B)

|S|∑
i=1

T∑
t=1

∑
~z

1{zt−1 = si ∧ zt = sj}P (~z, ~x;A,B)

=
1

P (~x;A,B)

|S|∑
i=1

T∑
t=1

αi(t)AijBj xt
βj(t+ 1)

Combining these expressions, we have the following form for our maximum
likelihood emission probabilities as:

B̂jk =
∑|S|

i=1

∑T
t=1 1{xt = vk}αi(t)AijBj xt

βj(t+ 1)∑|S|
i=1

∑T
t=1 αi(t)AijBj xt

βj(t+ 1)

Algorithm 2.4 shows a variant of the Forward-Backward Algorithm,
or the Baum-Welch Algorithm for parameter learning in HMMs. In the

12

E-Step, rather than explicitly evaluating Q(~z) for all ~z ∈ ST , we compute
a su�cient statistics γt(i, j) = αi(t)AijBj xt

βj(t + 1) that is proportional to
the probability of transitioning between sate si and sj at time t given all of
our observations ~x. The derived expressions for Aij and Bjk are intuitively
appealing. Aij is computed as the expected number of transitions from si to
sj divided by the expected number of appearances of si. Similarly, Bjk is
computed as the expected number of emissions of vk from sj divided by the
expected number of appearances of sj .

Like many applications of EM, parameter learning for HMMs is a non-convex
problem with many local maxima. EM will converge to a maximum based on
its initial parameters, so multiple runs might be in order. Also, it is often
important to smooth the probability distributions represented by A and B so
that no transition or emission is assigned 0 probability.

2.5 Further reading

There are many good sources for learning about Hidden Markov Models. For ap-
plications in NLP, I recommend consulting Jurafsky & Martin's draft second edi-
tion of Speech and Language Processing1 or Manning & Schütze's Foundations of
Statistical Natural Language Processing. Also, Eisner's HMM-in-a-spreadsheet
[1] is a light-weight interactive way to play with an HMM that requires only a
spreadsheet application.

References

[1] Jason Eisner. An interactive spreadsheet for teaching the forward-backward
algorithm. In Dragomir Radev and Chris Brew, editors, Proceedings of the
ACL Workshop on E�ective Tools and Methodologies for Teaching NLP and

CL, pages 10�18, 2002.

1http://www.cs.colorado.edu/~martin/slp2.html

13

