Nonparametric Density Estimation
Intro
Parzen Windows



Non-Parametric Methods

= Neither probability distribution nor EIOt s
discriminant function is known Pr—

= Happens quite often
= All we have is |labeled data

salmon bass salmon salmon

= Estimate the probability distribution
from the labeled data S

little Is
known
“harder”




NonParametric Techniques: Introduction

= |n previous lectures we assumed that either

1. someone gives us the density p(x|c;)
= |n pattern recognition applications this never happens

2. someone gives us p(x| &)
= Does happen sometimes, but

= we are likely to suspect whether the given p(x| 8
models the data well

= Most parametric densities are unimodal (have a
single local maximum), whereas many practical
problems involve multi-modal densities



NonParametric Techniques: Introduction

= Nonparametric procedures can be used with
arbitrary distributions and without any
assumption about the forms of the underlying
densities

= There are two types of nonparametric methods:

= Parzen windows
= Estimate likelihood p(x | c;)

= Nearest Neighbors

= Bypass likelihood and go directly to posterior estimation
P(c;| x)



NonParametric Techniques: Introduction

= Nonparametric technigues attempt to estimate the
underlying density functions from the training data

" Idea: the more data in a region, the larger Is the density
function  p [ & ®]= jf (x )dx
R

p(x) N

\.
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salmon length x




NonParametric Technigues: Introduction
Pr[X eSR]=jf(x)dx

_ R
= How can we approximate Pr{x e%,] and Pr[X e®,]?

= Pr[X esnl]z;—o and Pr[X eiRz]zZG—o

= Should the density curves above ®, and ®, be
equally high?
= No, since ®; is smaller than ®,
Pr(X e R, ]= If(x)dx ~ jf(x)dx =Pr[X e R, ]

R R
= To get density, normalize by regalon Size

p(X)

A

R, R, salmon length x
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NonParametric Technigues: Introduction

= Assuming f(x) Is basically flat inside ®,

#of samples in R
total # of samples

~Pr[X eSR]=jf(y)dy ~f(x)*Volume (R)

= Thus, density at a point x inside ®, can be
approximated

f(x)~ #of samples in R 1
" total #of samples Volume (R)

= Now let’s derive this formula more formally



Binomial Random Variable

Let us flip a coin n times (each one Is called “trial”)
= Probability of head p, probability of tail is 1-p

Binomial random variable K counts the number of
heads In n trials

P(K =K)=(} Jo" (t- o)™

where (&)= i

Mean is E(K)=np

Variance is var(K)=np(1- p)



Density Estimation: Basic Issues

= From the definition of a density function, probability
p that a vector x will fall in region R Is:

p=Pr[x e R]=

Jp(x dx

= Suppose we have samples Xx;, X,,..., X, drawn from

the distribution p(x). The probabillity that k points fall
In ® IS then given by binomial distribution:

PrlK = k]=([<‘)

= Suppose that k points fall
estimate the value of p. T

p(1-p)"™

IN ®, we can use MLE to
ne likelihood function is

p(1-p)"™



Density Estimation: Basic Issues

= This likelihood function is maximized at p= K

« Thus the MLE is ,3:%

n

= Assume that p(x) is continuous and that the region ®
IS so small that p(x) Is approximately constant in ®

[ p(x")dx'= p(x)V

= X isin ®and V is the volume of ® T R

p(x)

= Recall from the previous slide: © = j p(x")dx’
R

= Thus p(x) can be approximated:

K/nN
p(x)=~ v




Density Estimation: Basic Issues

= This Is exactly what we had before:

kK/n X IS Inside some region ®
p(x)~ Y k = number of samples inside ®

n=total number of samples
é - V =volume of ®

R,

= Qur estimate will always be the average of true
density over ®

ldXI
in 5 PO
p(x)==— = =2

v

= |deally, p(x) should be constant inside ®




Density Estimation: Histogram

k/n
p(x)= v
t p(l)
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= If regions ® ;‘'s do not overlap, we have a histogram



Density Estimation: Accuracy

= How accurate is density approximation p(x)~

= We have made two approximations
i, e
n . . :
= as nincreases, this estimate becomes more accurate

2. jp(x')dx'; p(x)V
= as ® grows smaller, the estimate becomes more accurate
ol | = As we shrink ® we have to make sure
° It contains samples, otherwise our
. 5 _ 5
estimated p(x)=0forall X in ®

= Thus in theory, If we have an unlimited number of
samples, we get convergence as we
simultaneously increase the number of samples n,
and shrink region ®, but not too much so that ® still
contains a lot of samples

K/n

?
%




Density Estimation: Accuracy

k/n
p(x)=~ v

In practice, the number of samples is always fixed

Thus the only avalilable option to increase the
accuracy Is by decreasing the size of R (V gets

smaller)

= IfVistoo small, p(x)=0 for most x, because most
regions will have no samples

= Thus have to find a compromise for V
= not too small so that it has enough samples

= put also not too large so that p(x) Is
approximately constant inside V



Density Estimation: Two Approaches

k/n
p(x)=~ v
1. Parzen Windows:

" Choose a fixed value for volume V | oo [¢]
and determine the corresponding k E
from the data *e

2. k-Nearest Neighbors

= Choose a fixed value for k and E‘c E
determine the corresponding __.-‘.

volume V from the data

= Under appropriate conditions and as number
of samples goes to infinity, both methods can
be shown to converge to the true p(x)



Parzen Windows

K /n X IS Inside some region R,
K = number of samples inside ®

n=total number of samples
V =volume of ®

p(x)~ =

= To estimate the density at point x, simply center the
region R at x, count the number of samples in R,
and substitute everything in our formula

X 3/6
— 220 2 o 0o— p(x)z

. 10



Parzen Windows

= In Parzen-window approach to estimate densities we
fix the size and shape of region ®

= Let us assume that the region ® Is a d-dimensional
hypercube with side length h thus it's volume is h¢

R b T
E = —

1 dimension 2 dimensions 3 dimensions



Parzen Windows

= Let u=[uy, U,,..., Uy] and define a window function

@(U) = 4

e

1 \uj\s% i=1,..,d

1 dimqnsion
¢(u)

1

1/2

0 otherwise

@is 1 inside

‘U, /

1/2 < / u,

P
@ Is O outside

2 dimensions



Parzen Windows

= Recall we have d-dimensional samples Xx;, X,,..., X, .
Let x;; be the jth coordinate of sample x;.Then

o(

X - X,

h

/

u

)=<

1 xj-x,js% Jj=1..,d
0 o fhe/*u//lse\ 1
<3
R | ;
X
O * h
o XI
- /

If X; IS inside the hypercube with
width h and centered at x

otherwise



Parzen Windows

= How do we count the total number of sample points
X1, X5,..., X, WhiCh are inside the hypercube with

side h and centered at x?

K /
= Recall p(x)~ Vn \/=hd

= Thus we get the desired analytical expression for
the estimate of density p 4(x)

< (X=X, )
Z(D( h /n 1i=n1 X — X.
_ ) _1 _¢( )




Parzen Windows

= Let's make sure p,(x) Isin fact a density

" p,(X)=20 VX

volume of hypercube

A
181 (x-x ), _ 1 &% (x=-x) "
' qu’(x)dxzjﬁé_”o( : jdx_hdn;jq)( h )dx
1 1 &
- == $hd =
nhd 1=1 1



Parzen Windows: Example in 1D

p (X)=1§h:b qa(x;]xi)
= Suppose we have 7 samples D={2,3,4,8,10,11,12}

1 1 P s(x)
21 @ X
1' b1 | | ¢ 1 ¢ 4 &

= Let window width h=3, estimate density at x=1

19 (1ox) 1] (1-2) (1-3), (1-4)  (1-10
p¢’(1)_7§3¢( 3 ]_21{‘”( 3 jw( 3 jw( 3 j+"'+¢( 3 ﬂ

1
‘—551/2 ‘_2>1/2 -1>1/2 ‘11

3 1/2

121 (1-x.) 1 S1
1 =—E— - |=—|1+0+0+...+0|=—
Py(1) 7i=13¢( 3 j DL 1751



Parzen Windows: Sum of Functions

= Now let's look at our density estimate p 4(x) again:

I=n

1 1
p¢(X)=HZh—d¢(

=1

h

e
Znne Yl h

\ . 7

1 inside square centered at X
O otherwise

= Thus p,4(x) Is just a sum of n “box like” functions

each of height

1
nh®




Parzen Windows: Example in 1D

= Let’s come back to our example
= 7 samples D={2,3,4,8,10,11,12}, h=3
P 4(X)

1

le 11g 1g 5|||| | 6"':‘6'6' ,|
X

= To see what the function looks like, we need to
generate 7 boxes and add them up

= The width is h=3 and the height is

11
nh® 21




Parzen Windows: Interpolation

= |n essence, window function ¢ is used for interpolation:
each sample x; contributes to the resulting density at x
If X IS close enough to x;

P

11 g 14 5|||l | ‘I'lzhlﬁlx]

1
21




Parzen Windows: Drawbacks of Hypercube ¢

= As long as sample point x; and x are in the same
hypercube, the contribution of x; to the density at X Is
constant, regardless of how close x; Is to X

e S NN SRR CEAT

= The resulting density p 4(x) Is not smooth, it has
discontinuities

P 4(X)

f

e e S




Parzen Windows: general ¢

181 (x-x
pAX):H;hd (0( h )

= We can use a general window ¢ as long as the

resulting p ,(x) Is a legitimate density, I.e. 1
’ ¢ [(u) 28
1.p,(u)=0
= satisfied if p(u) >0
2. Ip¢(x)dx =1

= satisfied if [o(u)du =

[, (x)dx - le Ico(x;lx j /=nhd Zjhd

change coordinate s to u =%, thus du =dTX




Parzen Windows: general ¢

18 1 (x-—x
= Notice that with the general window ¢ we are no
longer counting the number of samples inside R.

= \We are counting the weighted average of potentially
every single sample point (although only those within
distance h have any significant weight) /\¢

/ X
o »-g
= With infinite number of samples, and appropriate

conditions, It can still be shown that
p2(x) = p(x)




Parzen Windows: Gaussian ¢

181 (x-x
pAX)_H;hd (0( h )
= A popular choice for ¢ i1s N(0,1) density
L)

S

= Solves both drawbacks of the “box” window

= Points x which are close to the sample point x;
receive higher weight

= Resulting density p 4(x) Is smooth



Parzen Windows: Example with General ¢

= Let’s come back to our example

" p,x) Is the sum of of 7 Gaussians, each centered at
one of the sample points, and each scaled by 1/7



Parzen Windows: Did We Solve the Problem?

= Let's test if we solved the problem
1. Draw samples from a known distribution

2. Use our density approximation method and
compare with the true density
= We will vary the number of samples n and

the window size h
= We will play with 2 distributions

VAN VN

N(0,1) triangle and
uniform mixture

)



Parzen Windows: True
Density N(0O,1)
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Parzen Windows: True

Density N(0,1) —

h=1 h=0 h=0.1

. - .:\ A

-
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FIGURE 4.5. Farzen-window estimates of a univariate normal density using different
window widths and numbers of samples. The vertical axes have been scaled to best
show the structure in each graph. Note particularly that the n = oo estimates are the
same (and match the true density function), resardless of window width. From: Richard



Parzen Windows: True ;

density is Mixture of
Uniform and Triangle A
h= h=0.5 h=0.2
h=1 h,=00.5 h =002
n_:1 t/\ A } \

i 2 3 A o 3 A4
s :'.. I I ] L:; .[: Il .|: :
L i 2 3 A o 3 &

.II 5



Parzen Windows: True f
density is Mixture of
Uniform and Triangle A

h=1 h=0.5 " h=0.2

I I i
n:256/\\ ﬂ ﬁ
& ! a = o & ! 3 3 o & ! 2 L o
gr 5 5
n= | /\ /\ /\
&l ! a 2 . &l ! 3 3 o &l ! 2 2 .

FIGURE 4.7. Parzen-window estimates of a bimodal distribution using different window
widths and numbers of samples. Note particularly that the n = oo estimates are the same
{and match the true distribution), regardless of window width. From: Richard O. Duda,
Peter E. Hart, and David C. Stork, Fattern Classification. Copyright © 2001 by John
Wiley & Sons, Inc.



Parzen Windows: Effect of Window Width h

= By choosing h we are guessing the region where
density Is approximately constant

= Without knowing anything about the distribution, it Is
really hard to guess were the density Is approximately
constant

p(x)




Parzen Windows: Effect of Window Width h

= If h I1s small, we superimpose n sharp pulses
centered at the data
= Each sample point x; influences too small range of x

= Smoothed too little: the result will look noisy and not smooth
enough
= If h Is large, we superimpose broad slowly changing

functions,
= Each sample point x; influences too large range of x

= Smoothed too much: the result looks oversmoothed or “out-
of-focus”

* Finding the best h Is challenging, and indeed no
single h may work well
= May need to adapt h for different sample points

= However we can try to learn the best h to use from
our labeled data



Learning window width  h From Labeled Data

= Divide labeled data into training set, validation set,
test set

= For a range of different values of h (possibly using
binary search), construct density estimate p(x) using
Parzen windows

= Test the classification performance on the validation
set for each value of h you tried

= For the final density estimate, choose h giving the
smallest error on the validation set

= Now you can test the performance of the classifier on
the test set

= Notice we need validation set to find best parameter h, we
can’'t use test set for this because test set cannot be used

for training

= |n general, need validation set if our classifier has some
tunable parameters



Parzen Windows: Classification Example

= |n classifiers based on Parzen-window
estimation:

= \We estimate the densities for each category
and classify a test point by the label
corresponding to the maximum posterior

* The decision region for a Parzen-window
classifier depends upon the choice of window
function as Iillustrated in the following figure



Parzen Windows: Classification Example

e L,

For small enough window size =
h the classification on training
data is perfect

However decision boundaries :
are complex and this solution

Is not likely to generalize well

to novel data

For larger window size h,
classification on training data
IS not perfect

However decision boundaries
are simpler and this solution is
more likely to generalize well
to novel data



Parzen Windows: Summary

= Advantages
= Can be applied to the data from any distribution
= |n theory can be shown to converge as the number of
samples goes to infinity
= Disadvantages

= Number of training data is limited in practice, and so
choosing the appropriate window size h is difficult

= May need large number of samples for accurate
estimates

= Computationally heavy, to classify one point we have to
compute a function which potentially depends on all

samples sz
p(x)-lzhd qo( . ]

= But we need a lot of samples for accurate density
estimation!




