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Non-Parametric Methods

� Neither probability distribution nor 
discriminant function is known
� Happens quite often

� All we have is labeled data

a lot is 
known
”easier”

salmon salmonsalmonbass

little is 
known
“harder”

� Estimate the probability distribution 
from the labeled data



NonParametric Techniques: Introduction

� In previous lectures we assumed that either 
1. someone gives us the density p(x|c j)

� In pattern recognition applications this never happens

2. someone gives us  p(x|θθθθc j)
� Does happen sometimes, but� Does happen sometimes, but

� we are likely to suspect whether the given  p(x|θθθθ) 
models the data well

� Most parametric densities are unimodal (have a 
single local maximum), whereas many practical 
problems involve multi-modal densities



NonParametric Techniques: Introduction

� Nonparametric procedures can be used with 
arbitrary distributions and without any 
assumption about the forms of the underlying 
densities 

� There are two types of nonparametric methods:� There are two types of nonparametric methods:
� Parzen windows

� Estimate likelihood p(x | c j )  

� Nearest Neighbors
� Bypass likelihood and go directly to posterior  estimation 

P(c j | x) 



NonParametric Techniques: Introduction
� Nonparametric techniques attempt to estimate the 

underlying density functions from the training data
� Idea: the more data in a region, the larger is the density 

function

p(x)

[[[[ ]]]] (((( ))))∫∫∫∫
ℜℜℜℜ

====ℜℜℜℜ∈∈∈∈ dxxfXPr

p(x)

salmon length x



NonParametric Techniques: Introduction

� How can we approximate                  and                  ?  [[[[ ]]]]1XPr ℜℜℜℜ∈∈∈∈

� and [[[[ ]]]]
20
6

XPr 1 ≈≈≈≈ℜℜℜℜ∈∈∈∈ [[[[ ]]]]
20
6

XPr 2 ≈≈≈≈ℜℜℜℜ∈∈∈∈

� Should the density curves above R R R R 1 and R R R R 2 be 
equally high?  
� No, since R R R R 1 is smaller than R R R R 2

[[[[ ]]]]2XPr ℜℜℜℜ∈∈∈∈
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� No, since R R R R 1 is smaller than R R R R 2

p(x)

salmon length x1ℜℜℜℜ
2ℜℜℜℜ
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� To get density, normalize by region size 



NonParametric Techniques: Introduction

� Assuming f(x) is basically flat inside R,R,R,R,

[[[[ ]]]] (((( ))))∫∫∫∫
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samplesof#total
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� Thus, density at a point x inside R,R,R,R, can be 
approximatedapproximated

(((( ))))
(((( ))))ℜℜℜℜ

ℜℜℜℜ
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Volume
1

samplesof#total
insamplesof#

xf

� Now let’s derive this formula more formally



Binomial Random Variable
� Let us flip a coin n times (each one is called “trial”)

� Probability of head ρρρρ, probability of tail is 1-ρρρρ
� Binomial random variable K counts the number of 

heads in n trials
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� Mean is (((( )))) ρρρρnKE ====

� Variance is (((( )))) (((( ))))ρρρρρρρρ −−−−==== 1var nK
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Density Estimation: Basic Issues
� From the definition of a density function, probability  

ρρρρ that a vector x will fall in region RRRR is:
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� Suppose we have samples x1, x2,…, xn  drawn from 
the distribution p(x). The probability that k points fall the distribution p(x). The probability that k points fall 
in RRRR is then given by binomial distribution:
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� Suppose that k points fall in RRRR, we can use MLE to 
estimate the value of ρρρρ . The likelihood function is
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Density Estimation: Basic Issues
(((( ))))   )1( |,...,1

knk
n k
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� This likelihood function is maximized at ρ ρ ρ ρ =  
n
k

� Thus the MLE is  ˆ
n
k

====ρρρρ

� Assume that p(x) is continuous and that the region RRRR
is so small that p(x) is approximately constant in RRRR

p(x)
∫∫∫∫
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≅≅≅≅ Vxpdxxp )(')'(

� Recall from the previous slide: ∫∫∫∫
ℜℜℜℜ

==== ')'( dxxpρρρρ

� x is in RRRR and V is the volume of RRRR

(((( ))))
V

n/k
xp ≈≈≈≈� Thus p(x) can be approximated:

p(x)

RRRR

x



Density Estimation: Basic Issues

(((( ))))
V

n/k
xp ≈≈≈≈

x is inside some region RRRR

V = volume of RRRR
n=total number of samples
k = number of samples inside RRRR

RRRR

 x

� This is exactly what we had before: 

� Our estimate will always be the average of true 
density over RRRR

RRRR
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V
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� Ideally, p(x) should be constant inside RRRR



Density Estimation: Histogram
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� If regions RRRR i‘s do not overlap, we have a histogram 



� We have made two approximations

Density Estimation: Accuracy
(((( ))))

V
n/k

xp ≈≈≈≈� How accurate is density approximation                  ?

 ˆ
n
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� as n increases, this estimate becomes more accurate 

� as RRRR grows smaller, the estimate becomes more accurate � as RRRR grows smaller, the estimate becomes more accurate 

� As we shrink RRRR we have to make sure 
it contains samples, otherwise our 
estimated  p(x) = 0 for all x in RRRR

� Thus in theory, if we have an unlimited number of 
samples, we get convergence as we 
simultaneously increase the number of samples n, 
and shrink region R R R R , but not too much so that R  R  R  R  still 
contains a lot of samples



� In practice, the number of samples is always fixed

Density Estimation: Accuracy
(((( ))))

V
n/k

xp ≈≈≈≈

� Thus the only available option to increase the 
accuracy is by decreasing the size of R R R R (V gets 
smaller)smaller)
� If V is too small, p(x)=0 for most x, because most 

regions will have no samples
� Thus have to find a compromise for V

� not too small so that it has enough samples
� but also not too large so that p(x) is 

approximately constant inside V



Density Estimation: Two Approaches

(((( ))))
V

n/k
xp ≈≈≈≈

1.
2. k-Nearest Neighbors

1. Parzen Windows: 
� Choose a fixed value for volume V

and determine the corresponding k
from the data

2. k-Nearest Neighbors
� Choose a fixed value for k and 

determine the corresponding 
volume V from the data

� Under appropriate conditions and as number 
of samples goes to infinity, both methods can 
be shown to converge to the true p(x)



Parzen Windows

� To estimate the density at point x, simply center the 
region RRRR at x, count the number of samples in RRRR , 

(((( ))))
V

n/k
xp ≈≈≈≈

x is inside some region RRRR

V = volume of RRRR
n=total number of samples
k = number of samples inside RRRR

region RRRR at x, count the number of samples in RRRR , 
and substitute everything in our formula

RRRR

x (((( ))))
10

6/3
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Parzen Windows

� Let us assume that the region R R R R is a  d-dimensional 
hypercube with side length h thus it’s volume is hd

� In Parzen-window approach to estimate densities we 
fix the size and shape of region R R R R 

RRRRRRRR

2 dimensions

h

RRRR

3 dimensions

hRRRR

1 dimension

h



Parzen Windows

� Let u=[u1, u2,…, ud] and define a window function


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Parzen Windows

RRRR
x

� Recall we have d-dimensional samples x1, x2,…, xn . 
Let xij be the jth coordinate of sample xi .Then
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1 if x i is inside the hypercube with 
width h and centered at x

h
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x

x i
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h
ϕϕϕϕ



Parzen Windows

� How do we count the total number of sample points 
x1, x2,…, xn  which are inside the hypercube with 
side h and centered at x?
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� Thus we get the desired analytical expression for 
the estimate of density pϕϕϕϕ(x)
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Parzen Windows

� Let’s make sure  pϕϕϕϕ(x)  is in fact a density








 −−−−
==== ∑∑∑∑

====

==== h
xx

hn
xp i

ni

i
d ϕϕϕϕϕϕϕϕ

1

 
11

)(

� xxp ∀∀∀∀≥≥≥≥ 0)(ϕϕϕϕ volume of hypercube
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Parzen Windows: Example in 1D

� Suppose we have 7 samples D={2,3,4,8,10,11,12}
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� Let  window width h=3, estimate density at x=1

x

pϕϕϕϕ(x)

1

21
1

� Let  window width h=3, estimate density at x=1
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Parzen Windows: Sum of Functions

� Now let’s look at our density estimate pϕϕϕϕ(x) again:
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Parzen Windows: Example in 1D
� Let’s come back to our example

� 7 samples D={2,3,4,8,10,11,12}, h=3

x

pϕϕϕϕ(x)

21
1

x

� To see what the function looks like, we need to 
generate 7 boxes and add them up

� The width is h=3 and the height is 

21
1

nh
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d ====



Parzen Windows: Interpolation

� In essence, window function ϕϕϕϕ is used for interpolation: 
each sample x i contributes to the resulting density at x
if x is close enough to x i

pϕϕϕϕ(x)

1

x
21
1



Parzen Windows: Drawbacks of Hypercube ϕϕϕϕ
� As long as sample point x i and x are in the same 

hypercube, the contribution of x i to the density at x is 
constant, regardless of how close x i is to x
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� The resulting density pϕϕϕϕ(x) is not smooth, it has 
discontinuities
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pϕϕϕϕ(x)



Parzen Windows: general ϕϕϕϕ

� We can use a general window  ϕϕϕϕ as long as the 
resulting pϕϕϕϕ(x) is a legitimate density, i.e.








 −−−−
==== ∑∑∑∑

====

==== h
xx

hn
xp i

ni

i
d ϕϕϕϕϕϕϕϕ

1

 
11

)(

1. 0)u(p ≥≥≥≥ϕϕϕϕ

� satisfied if (((( )))) 0u ≥≥≥≥ϕϕϕϕ

ϕϕϕϕ1111(u)
1

ϕϕϕϕ2222(u)

� satisfied if (((( )))) 0u ≥≥≥≥ϕϕϕϕ

2. 1)( ====∫∫∫∫ dxxpϕϕϕϕ

� satisfied if (((( )))) 1====∫∫∫∫ duuϕϕϕϕ

u

(((( ))))∑∑∑∑∫∫∫∫
====

====
n

1i

d
d duuh

nh
1 ϕϕϕϕ∫∫∫∫∑∑∑∑∫∫∫∫ 







 −−−−
====

====

====

dx
h

xx
nh

1
dx)x(p i

ni

1i
d ϕϕϕϕϕϕϕϕ  1====

h
dxduthus,

h
xx

utoscoordinatechange i ====
−−−−

====



Parzen Windows: general ϕϕϕϕ

� Notice that with the  general window  ϕϕϕϕ we are no 
longer counting the number of samples inside R R R R .
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� We are counting the weighted average of potentially 
every single sample point (although only those within 
distance h have any significant weight) ϕϕϕϕdistance h have any significant weight)

� With infinite number of samples, and appropriate 
conditions, it can still be shown that 
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Parzen Windows: Gaussian ϕϕϕϕ
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� A popular choice for ϕϕϕϕ is N(0,1) density
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2ππππ
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� Solves both drawbacks of the “box” window
� Points x which are close to the sample point x i

receive higher weight
� Resulting density pϕϕϕϕ(x) is smooth



Parzen Windows: Example with General ϕϕϕϕ
� Let’s come back to our example

� 7 samples D={2,3,4,8,10,11,12}, h=1

(((( ))))∑∑∑∑
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ixx

7
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)x(p ϕϕϕϕϕϕϕϕ

� pϕϕϕϕ(x) is the sum of of 7 Gaussians, each centered at 
one of the sample points, and each scaled by 1/7



Parzen Windows: Did We Solve the Problem?

� We will vary the number of samples n and 
the window size h

� Let’s test if we solved the problem
1. Draw samples from a known distribution
2. Use our density approximation method and 

compare with the true density

the window size h
� We will play with 2 distributions

N(0,1) triangle and 
uniform mixture



Parzen Windows: True 
Density N(0,1)

h=1 h=0.5 h=0.1

n=1

n=10



h=1 h=0.5 h=0.1

n=100

Parzen Windows: True 
Density N(0,1)

n=∞∞∞∞



Parzen Windows: True 
density is Mixture of 
Uniform and Triangle

h=1 h=0.5 h=0.2

n=1

n=16



h=1 h=0.5

n=256

Parzen Windows: True 
density is Mixture of 
Uniform and Triangle

h=0.2

n=16n=∞∞∞∞



Parzen Windows: Effect of Window Width h

� By choosing h we are guessing the region where 
density is approximately constant

� Without knowing anything about the distribution, it is 
really hard to guess were the density is approximately 
constant

p(x)p(x)

x
h h



Parzen Windows: Effect of Window Width h

� If h is small, we superimpose n sharp pulses 
centered at the data
� Each sample point x i  influences too small range of x
� Smoothed too little: the result will look noisy and not smooth 

enough
� If h is large, we superimpose broad slowly changing 

functions, functions, 
� Each sample point x i  influences too large range of x
� Smoothed too much: the result looks oversmoothed or “out-

of-focus”
� Finding the best h is challenging, and indeed no 

single h may work well
� May need to adapt h for different sample points

� However we can try to learn the best h to use from 
our labeled data



Learning window width h From Labeled Data
� Divide labeled data into training set, validation set, 

test set
� For a range of different values of h (possibly using 

binary search), construct density estimate p(x) using 
Parzen windows

� Test the classification performance on the validation
set for each value of h you triedset for each value of h you tried

� For the final density estimate, choose h giving the 
smallest error on the validation set

� Now you can test the performance of the classifier on 
the test set
� Notice we need validation set to find best parameter h, we 

can’t use test set for this because test set cannot be used 
for training

� In general, need validation set if our classifier has some 
tunable parameters



� In classifiers based on Parzen-window 
estimation:

�We estimate the densities for each category 
and classify a test point by the label 
corresponding to the maximum posterior

Parzen Windows: Classification Example

corresponding to the maximum posterior

� The decision region for a Parzen-window 
classifier depends upon the choice of window 
function as illustrated in the following figure



Parzen Windows: Classification Example

� For small enough window size 
h the classification on training 
data is perfect  

� However decision boundaries 
are complex and this solution 
is not likely to generalize well 
to novel data

� For larger window size h, 
classification on training data 
is not perfect 

� However decision boundaries 
are simpler and this solution is 
more likely to generalize well 
to novel data



Parzen Windows: Summary
� Advantages

� Can be applied to the data from any distribution
� In theory can be shown to converge as the number of 

samples goes to infinity

� Disadvantages
� Number of training data is limited in practice, and so 

choosing the appropriate window size h is difficult
� May need large number of samples for accurate 

estimates
� Computationally heavy, to classify one point we have to 

compute a function which potentially depends on all 
samples
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� But we need a lot of samples for accurate density 
estimation!


