Parametric Density Estimation:
Bayesian Estimation.

Nailve Bayes Classifier



Bayesian Parameter Estimation

= Suppose we have some idea of the range

where parameters 8 shou

d be

= Shouldn’t we formalize such prior knowledge In

hopes that it will lead to bet
estimation?

ter parameter

= Let #be a random variable with prior

distribution P(6)

= This is the key difference between ML and
Bayesian parameter estimation

= This key assumption allows us to fully exploit the

Information provided by the

data



Bayesian Parameter Estimation

= @is a random variable with prior p(6
= Unlike MLE case, p(x|6) is a conditional density

= The training data D allow us to convert p(0) to a
posterior probability density p(6|D) .
= After we observe the data D, using Bayes rule we
can compute the posterior p(6|D)

= But @is not our final goal, our final goal is the
unknown p(x)

= Therefore a better thing to do Is to maximize p(x|D),
this Is as close as we can come to the unknown p(x) !



Bayesian Estimation: Formula for  p(x|D)

= From the definition of joint distribution:
p(x |D)=[p(x,0 D)o

= Using the definition of conditional probability:
p(x |D)=[p(x |6,D)p(0|D)6

= But p_(_x| 6,D)=p (x| O since p(x|H is completely
specified by 6 @ ke

o(x 10)= [ pECI@p(@1DX 0

= Using Bayes formula,
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Bayesian Estimation vs. MLE

= So In principle p(x|D) can be computed

= |n practice, it may be hard to do integration analytically,
may have to resort to numerical methods

[1p(x, 10)p ()
p(x |D)=[p(x |0)—= do

jgl p(x, [6)p(6)d6

= Contrast this with the MLE solution which requires
differentiation of likelihood to get p(x | 6

= Differentiation is easy and can always be done analytically



Bayesian Estimation vs. MLE

support @receives
from the data

p(x 1D)=[p(x 16)p(01D)d0

proposed model
with certain @

= The above equation implies that if we are less
certain about the exact value of 0, we should
consider a weighted average of p(x|8) over the
possible values of 0.

= Contrast this with the MLE solution which always
gives us a single model:

p(x 1)



Bayesian Estimation for Gaussian with
unknown U

= Let p(x| x) be N(x, ¢2) that is 0% is known, but g is
unknown and needs to be estimated, so 6 = u

= Assume a prior over u: P() ~ N(uy.04)

= #y encodes some prior knowledge about the true
mean u , while gg measures our prior uncertainty.



Bayesian Estimation for Gaussian with unknown U

= The posterior distribution is:
P(x|D )oc p(D |u)p)

oo s3] (2]

= Where factors that do not depend on y have been absorbed into the
constants o’ and o”

= p(1|D )is an exponent of a quadratic function of 4 i.e. it is a normal density; it
remains normal for any number of training samples.
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Bayesian Estimation for Gaussian with
unknown U

= Solving explicitly for #, and o, we obtain:

no; |- o’
U, = — 5 |Mn+———— I, Ourbestguess after
No, +o o, +o observing n samples

2__2
o-rf =909 uncertainty about the guess,

- 2 2 . .
No, +o decreases monotonically with n




Bayesian Estimation for Gaussian with
unknown u

= Each additional observation decreases our uncertainty
about the true value of (/.
= Asnincreases, p(u|D) becomes more and more

sharply peaked, approaching a Dirac delta function as n
approaches infinity. This behavior is known as Bayesian

Learning.




Bayesian Estimation for Gaussian with
unknown U

no: |- o
zun — /un + ILlO

no; +o° nol+o?’

= |n general, 4, is alinear combination of a sample mean ,fln
and a prior k,, with coefficients that are non-negative and

sum to 1.

= Thus 4, lies somewhere between [ln and o .

= If 0,20, u, > 4, as N—>x

= If 0,=0 , our a priori certainty that =4, isso
strong that no number of observations can change our
opinion.

= If a priori guess is very uncertain (%o Is large), we
take Hn = Hy



Bayesian Estimation: Example for U[0, 4

= Let X be U[0, 4. Recall p(x| &=1/6inside [0,4, else O

. P(x]6) . p(6)

1 1
S ¢

G 10
9 X 10 0
@ > 9 >

= Suppose we assume a U[0,10] prior on &

= good prior to use if we just know the range of @but don’t
know anything else



Bayesian Estimation: Example for U[0, 4

= We need to compute p(x |D)=jp(x |16)p(0 | D)o

+ using p(9|D)= PLIIRO)  gnq p(010)=T p(x, 10)

[p@6)p (o) 6
= When computing MLE of 8 we had

ifor6?>max{x X}
p(D]6)=1g" > e i . 201D)
O otherwise 1 . p(H)
10
= Thus o % x\ag 6
1
p(6?|D)={C‘9nf0r max{ X,,.., X,}<6<10
0 otherwise
= where c is the normalizing constant, i.e. ¢ = _ 1 -
j oo



Bayesian Estimation: Example for U[ 0,4

" We need to compute p(x |D)=[p(x [#)p(6 D)6

c;—nfor max{ X,,..., X,}<6<10

0 otherwise |
1] p(x |6) p(¢|D)
0 6
G X X, X3 X,\10
® >
= We have 2 cases:
1. case X < max{Xy, Xo,..., X, } constant
1 iIndependent of x
p(X |D) Imax{ X1 s 14

2. casex > max{xl, x2, , X }

C
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Bayesian Estimation: Example for U[0, 4

IML p(x|@)
b Bayes pixID)

X, X X 10
o

X

= Note that even after x >max {X4, X,,..., X,, }, Bayes
density Is not zero, which makes sense

= curious fact: Bayes density is not uniform, I.e. does
not have the functional form that we have assumed!



ML vs. Bayesian Estimation with Broad Prior

= Suppose p(H Is flat and broad (close to uniform prior)
= p(4D) tends to sharpen if there is a lot of data

p(@ID)
p(0)
(e . S .

0 0

= Thus p(D|8 <p(4D)p(6 will have the same sharp
peak as p(4D)

= But by definition, peak of p(D|6 Iis the ML estimate o
= The integral is dominated by the peak:

p(x D)= [p(x |8)p(6 D)6 ~p(x [8)[p(01D)6 =p(x | §)

* Thus as n goes to infinity, Bayesian estimate will
approach the density corresponding to the MLE!




ML vs. Bayesian Estimation

= Number of training data

= The two methods are equivalent assuming infinite
number of training data (and prior distributions that do
not exclude the true solution).

= For small training data sets, they give different results
IN Most cases.

= Computational complexity

= ML uses differential calculus or gradient search for
maximizing the likelihood.

= Bayesian estimation requires complex multidimensional
Integration techniques.



ML vs. Bayesian Estimation

= Solution complexity

= Easler to interpret ML solutions (i.e., must be of
the assumed parametric form).

= A Bayesian estimation solution might not be of
the parametric form assumed. Hard to interpret,
returns weighted average of models.

= Prior distribution

= If the prior distribution p(0O) is uniform, Bayesian
estimation solutions are equivalent to ML
solutions.



Naive Bayes Classifier



Unbiased Learning of Bayes
Classifiers Is Impractical

= Learn Bayes classifier by estimating P(X|Y) and P(Y).

= AssumeY Is boolean and X iIs a vector of n boolean
attributes. In this case, we need to estimate a set of

parameters g —p(x =x |Y =y, )
| take:on 2" possibltvalues j take:on 2 possibltvalues

= How many parameters?

= For any particular value y;, and the 2" possible values of x;,
we need compute 2"-1 independent parameters.

= Given the two possible values for Y, we must estimate a
total of 2(2"-1) such parameters.

Complex model —High variance with limited data!!!



Conditional Independence

= Definition: X is conditionally independent of Y
given Z, If the probability distribution governing X Is
iIndependent of the value of Y, given the value of Z

(Vi,j,k) P(X=x1Y=y,Z=2)=P(X=x|Z=2)
= Example:
P(Thunde | Rain Lighting) = P(Thunde | Lighting)

Note that in general Thunder is not independent of Rain,
but it is given Lighting.

= Equivalent to:
P(X,Y|Z2)=P(X|Y,2)P(Y|Z2)=P(X|Z2)P(Y|2)



Derivation of Naive Bayes Algorithm

= Naive Bayes algorithm assumes that the attributes X,...,X,
are all conditionally independent of one another, given Y. This
dramatically simplifies

= the representation of P(X]Y)
= estimating P(X|Y) from the training data.
= Consider X=(X,,X,)
P(X[Y)=P(X;, X, Y)=P(X, |Y)P(X, [Y)

= For X containing n attributes n
$ P(X Y) =] P(X |Y)
=1

Given the boolean X and Y, now we need only 2n parameters to
define P(X]Y), which is dramatic reduction compared to the
2(2"-1) parameters if we make no conditional independence
assumption.



The Naive Bayes Classifier

= Glven:
= Prior P(Y)
= n conditionally independent features X, given the class Y
= For each X;, we have likelihood P(X|Y)

= The probabillity that Y will take on its kth possible
value, Is
P(Y =y, HP(X Y = yi)
ZP(Y yk)H P(X; 1Y =,)

= The Decision rule
y' =argmaxP(Y = y)[ TP(X; 1Y = yi)

Yk

P(Y =y, |

If assumption holds, NB Is optimal classifier!



Naive Bayes for the discrete inputs

= Given, n attributes Xi each taking on J possible
discrete values and Y a discrete variable taking
on K possible values.

= MLE for Likelihood P(X;=X; |Y=Y,) given a set
of training examples D:
#D{ X, =% AY =Y,}
#D{Y =y, }

where the #D{x} operator returns the number of
elements in the set D that satisfy property x.

= MLE for the prior
P(Y — Yk) —

Is(xi = X; Y=Yy,)=

#D{Y =y, }

‘D‘ ~—_ number of elements
In the training set D




NB Example

= Given, training data X Y
Day utlook  Temperature  Humidity — Wind § || PlayTennis
Dl Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 ercas Hot High Weak Yes
D4 ai Mild High Weak Yes
D5 il Cool Normal Weak Yes
D6 Cool Normal  Strong No
D7 vercast Cool Normal  Strong Yes
D8 Sunny Mild High Weak No
DY Sunny Cool Normal  Weak Yes
D10 Rain Mild Normal  Weak Yes
D11 Sunny Mild Normal  Strong Yes
D12 vercast Mild High Strong Yes
D13 vercasl Hot Normal ‘ Yes
Dil4 Rain Mild High S No

= Classify the following novel instance :
(Outlook=sunny, Temp=cool,Humidity=high,Wind=strong)



NB Example

Yye = argmaxP(y;)P(Outlook= sunnyj y,)P(Temp= cool| y;)

y;={ yesno}

P(Humidity=high|y,)P(Wind = strong]| y; )
Priors:

P(PlayTennis= yeg = 9/14= 064
P(PlayTennis=no) = 5/14= 036

Conditiond Probabilites,e.g.Wind = strong:
P(Wind = strong| PlayTennis= yeg = 3/9= 033
P(Wind = strong| PlayTennis=no) = 3/5= 0.6

P(yegP(sunny| yegP(cool| yegP(high| yegP(strong| ye9 = 0.0053
P(no)P(sunny no)P(cool|no)P(high|no)P(strong|no) = 060




Subtleties of NB classifier 1 —Violating
the NB assumption

= Usually, features are not conditionally
Independent.

= Nonetheless, NB often performs well, even when
assumption is violated

= [Domingosé& Pazzani’'96] discuss some conditions for
good performance



Subtleties of NB classifier 2 —
Insufficient training data

= What if you never see a training instance where
X,=a when Y=b?
» P(X,=a | Y=b) =0
= Thus, no matter what the values X,,..., X, take:
P(Y=b | X;=a,X,,...,X,) =0

= Solution?



Subtleties of NB classifier 2 —
Insufficient training data

= To avoid this, use a “smoothed” estimate

= effectively adds in a number of additional “hallucinated”
examples

= assumes these hallucinated examples are spread
evenly over the possible values of X.

= This smoothed estimate is given by
. #D{ X, =X AY =y} +l
P(Xi = X |YZY|<): . :

#DLY =y, } +13
= #D{Y =y, } +| The nurﬁ)er of
P(Y — yk) — ‘D‘ LK hallucinated examples

| determines the strength of the smoothing
If I=1 called Laplace smoothing



Naive Bayes for Continuous Inputs

= When the Xi are continuous we must choose
some other way to represent the distributions
PXTY).

= One common approach is to assume that for

each possible discrete value y, of Y, the
distribution of each continuous X; is Gaussian.

= In order to train such a Naive Bayes classifier we
must estimate the mean and standard deviation of
each of these Gaussians



Naive Bayes for Continuous Inputs

= MLE for means 1

T

= where | refers to the jth training example, and where
o(Y=y,)is 1if Y =y, and O otherwise.

= Note the role of 0 is to select only those training
examples for which Y =y, .

= MLE for standard deviation




Learning Classify Text

= Applications:
= Learn which news article are of interest
= Learn to classify web pages by topic.

= Naive Bayes is among most effective algorithms

= Target concept Interesting?: Document->{+,-}

1 Represent each document by vector of words
= one attribute per word position in document

2 Learning: Use training examples to estimate
" P(+)
= P(-)
= P(doc|+)
= P(doc|-)



Text Classification-Example:

Text Text Representation

Text Classification, or the task of
automatically assigning semantic
categories to natural language text,
has become one of the key methods
for organizing online information. Since
hand-coding classification rules is
costly or even impractical, most
modern approaches employ machine
learning techniques to automatically
learn text classifiers from examples.

(a,='text’,a,=‘classification’,....
a,g='examples’)

The representation
The text contains 48 words contains 48 attributes

Note: Text size may vary, but it will not cause a problem



NB conditional independence Assumption

length(doc)
P(docly;) = H P(a =w,|y,) probability that word in
ya position i is w,, giveny,

Indicates the kth word in
English vocabulary

The NB assumption is that the word probabilities for one
text position are independent of the words in other

positions, given the document classification y;

| |

Healy weltiie Uae Necessary, without it the
probability of word “learning number of probability terms is
may be greater if the prohibitive

preceding word is “machine”

Performs remarkably well despite the
Incorrectness of the assumption



Text Classification-Example:

Text Text Representation

Text Classification, or the task of
automatically assigning semantic
categories to natural language text,
has become one of the key methods
for organizing online information. Since
hand-coding classification rules is
costly or even impractical, most
modern approaches employ machine
learning techniques to automatically
learn text classifiers from examples.

(a,='text’,a,=‘classification’,....
a,g='examples’)

| The representation

The text contains 48 words contains 48 attributes
Classification:
y = argej{ma}\xP(yj)P(a1 ="text]y,)...P(a,; ='example$y;, )
yiaat,—

= al;{gm}axP(yJ )H P(a =w|y,)
yje{+,-



Estimating Likelihood

= |s problematic because we need to estimate it for
each combination of text position, English word,
and target value: 48*50,000*2=5 million such
terms.

= Assumption that reduced the number of terms —

Bag of Words Model

= The probability of encountering a specific word w, IS
iIndependent of the specific word position.

P(a :Wklyj): P(am:Wklyj)1 Vi,m

= Instead of estimating P(a, =w, |y;), P(a, =w,|Y;),...
we estimate a single term  P(W, | y;)
= Now we have 50,000*2 distinct terms.



Estimating Likelihood

= The estimate for the likelihood Is
n +1
n+ y\/ocabularj/

P(Wk | yj) —

n -the total number of word positions in all
training examples whose target value Is y,
n, -the number times word w, Is found among

these n word positions.
|Vocabulary|-the total number of distinct
words found within the training data.



Learn_Naive Bayes Text(Examples,V)

1. collect all words and other tokens that occur in Examples
 Vocabulary<— all distinct words and other tokens in Examples

2. calculate the required P(Y;) and P(W|Y;)

 For each target value Yj inVdo

dOC§ <— subset of Examples for which the target value is Y,

|docy |
P(y;) <
| Example$

Texg <— a single document created by concatenating all members of dOC&}

N <— total number of words in TeXli (counting duplicate words multiple times)

For each word W; in the Vocabulary

* N <= number of times word W, occurs in T€X{
n +1
n+ [Vocabulary|

* P(w |y;) <



Classify _Naive Bayes Text(Doc)

» positions<— all word positions in Doc that
contain tokens found in Vocabulary

= Return y*:argmaxP(vj) HP(Q |Vj)

yjel+,-} i positions



