
Parametric Density Estimation:

Bayesian Estimation.

Naïve Bayes Classifier



� Suppose we have some idea of the range 
where parameters θθθθ should be
� Shouldn’t we formalize such prior knowledge in 

hopes that it will lead to better parameter 
estimation?

Bayesian Parameter Estimation

� Let θθθθ be a random variable with prior 
distribution P(θθθθ)
� This is the key difference between ML and 

Bayesian parameter estimation
� This key assumption allows us to fully exploit the 

information provided by the data



Bayesian Parameter Estimation

� θθθθ is a random variable with prior p(θθθθ)
� Unlike MLE case,  p(x|θ) is a conditional density

� The training data D allow us to convert p(θ) to a 
posterior probability density p(θ|D) .
� After we observe the data D, using Bayes rule we 

can compute the posterior p(θ|D)

� Therefore a better thing to do is to maximize p(x|D), 
this is as close as we can come to the unknown p(x) !

� But θθθθ is not our final goal, our final goal is the 
unknown  p(x)



Bayesian Estimation: Formula for  p(x|D)
� From the definition of joint distribution:

(((( )))) (((( ))))∫∫∫∫==== θθθθθθθθ dDxpDxp |,|

(((( )))) (((( )))) (((( ))))∫∫∫∫==== θθθθθθθθθθθθ dDpDxpDxp |,||
� Using the definition of conditional probability:

� But p(x|θθθθ,D)=p(x|θθθθ) since p(x|θθθθ) is completely 
θθθθ unknownknown
(((( )))) (((( )))) (((( ))))∫∫∫∫==== θθθθθθθθθθθθ dDpxpDxp |||

� But p(x|θθθθ,D)=p(x|θθθθ) since p(x|θθθθ) is completely 
specified by θθθθ

� Using Bayes formula, 
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Bayesian Estimation vs. MLE

� So in principle p(x|D) can be computed
� In practice, it may be hard to do integration analytically, 

may have to resort to numerical methods
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� Contrast this with the MLE solution which requires 
differentiation of likelihood to get
� Differentiation is easy and can always be done analytically

(((( ))))θθθθ̂|xp



Bayesian Estimation vs. MLE

(((( )))) (((( )))) (((( ))))∫∫∫∫==== θθθθθθθθθθθθ dDpxpDxp |||

proposed model 
with certain θθθθ

support θ θ θ θ receives 
from the data

�� The above equation implies that if we are less The above equation implies that if we are less 

� Contrast this with the MLE solution which always 
gives us a single model:

(((( ))))θθθθ̂|xp

�� The above equation implies that if we are less The above equation implies that if we are less 
certain about the exact value of  certain about the exact value of  θθ, , we should we should 
consider a weighted average of consider a weighted average of p(p(xx ||θθ)) over the over the 
possible values of possible values of θθ..



Bayesian Estimation for Gaussian with 
unknown µµµµ
� Let p(x| µµµµ) be N(µµµµ, σ2) that is σ2 is known, but µµµµ is 

unknown and needs to be estimated, so θ = µµµµ

� Assume a prior over µµµµ : ),(~)( 2
00 σµµ Np

� encodes some prior knowledge about the true 
mean     , while        measures our prior uncertainty.
0µ

µ 2
0σ



Bayesian Estimation for Gaussian with unknown µµµµ
� The posterior distribution is:
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� Where factors that do not depend on µ have been absorbed into the � Where factors that do not depend on µ have been absorbed into the 
constants α’ and α” 

� is an exponent of a quadratic function of  µ i.e. it is a normal density; it            
remains normal for any number of training samples. 

� If we write

where
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Bayesian Estimation for Gaussian with 
unknown µµµµ

� Solving explicitly for       and        we obtain:nµ 2
nσ 
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� Each additional observation decreases our uncertainty 
about the true value of      .

� As n increases,                 becomes more and more 
sharply peaked, approaching a Dirac delta function as n 
approaches infinity. This behavior is known as Bayesian 
Learning. 

µ
( | )p µ D

Bayesian Estimation for Gaussian with 
unknown µµµµ

Learning. 



Bayesian Estimation for Gaussian with 
unknown µµµµ

� In general,       is a linear combination of a sample mean
and a  prior , with coefficients that are non-negative and 
sum to 1.
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� Thus        lies somewhere between         and          .
� If              ,                  as  
� If               , our a priori certainty that                    is so    

strong that no number of observations can change our  
opinion.

� If  a priori guess is very uncertain (       is large), we    
take

nµ ˆnµ 0µ
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Bayesian Estimation: Example for U[0, θθθθ]
� Let X be U[0,θθθθ]. Recall p(x|θθθθ)=1/θθθθ inside [0,θθθθ], else 0

� Suppose we assume a U[0,10] prior on θθθθ

θθθθ
θθθθ
1

x 10
10
1

θθθθ

(((( ))))θθθθp(((( ))))θθθθ|xp

� Suppose we assume a U[0,10] prior on θθθθ
� good prior to use if we just know the range of θθθθ but don’t 

know anything else



Bayesian Estimation: Example for U[0, θθθθ]
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� We need to compute

� using  and

� When computing MLE of θθθθ, we had
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Bayesian Estimation: Example for U[ 0,θθθθ]
(((( )))) (((( )))) (((( ))))∫∫∫∫==== θθθθθθθθθθθθ dDpxpDxp |||� We need to compute
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� We have 2 cases:
1. case x < max{x1, x2,…, xn }

2. case x > max{x1, x2,…, xn }
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Bayesian Estimation: Example for U[0, θθθθ]

(((( ))))D|xpBayes

231 xxx
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� Note that even after x >max {x1, x2,…, xn }, Bayes 

10

αααα
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� Note that even after x >max {x1, x2,…, xn }, Bayes 
density is not zero, which makes sense

� curious fact:  Bayes density is not uniform, i.e. does 
not have the functional form that we have assumed!



ML vs. Bayesian Estimation with Broad Prior
� Suppose p(θθθθ)  is flat and broad (close to uniform prior)
� p(θθθθ|D) tends to sharpen  if there is a lot of data 

θθθθ θθθθ θθθθ

(((( ))))θθθθ|Dp

(((( ))))D|p θθθθ

θθθθ̂

(((( ))))θθθθp

θθθθ

� But by definition, peak of  p(D|θθθθ)  is the ML estimate θθθθ̂

� Thus p(D|θθθθ)   p(θθθθ|D)p(θθθθ) will have the same sharp 
peak as p(θθθθ|D) 

∝∝∝∝
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� The integral is dominated by the peak:

� Thus as n goes to infinity, Bayesian estimate will 
approach the density corresponding to the MLE!



ML vs. Bayesian Estimation

� Number of training data
� The two methods are equivalent assuming infinite 

number of training data (and prior distributions that do 
not exclude the true solution).

� For small training data sets, they give different results � For small training data sets, they give different results 
in most cases.

� Computational complexity
� ML uses differential calculus or gradient search for 

maximizing the likelihood.
� Bayesian estimation requires complex multidimensional 

integration techniques.



ML vs. Bayesian Estimation

� Solution complexity
� Easier to interpret ML solutions (i.e., must be of 

the assumed parametric form).
� A Bayesian estimation solution might not be of 

the parametric form assumed. Hard to interpret, the parametric form assumed. Hard to interpret, 
returns weighted average of models.

� Prior distribution
� If the prior distribution p(θ) is uniform, Bayesian 

estimation solutions are equivalent to ML 
solutions.



Naïve Bayes Classifier



Unbiased Learning of Bayes 
Classifiers is Impractical

� Learn Bayes classifier by estimating P(X|Y) and P(Y).

� AssumeY is boolean and X is a vector of n boolean 
attributes. In this case, we need to estimate a set of 
parameters ( )jiij yYxXP ==≡ |θ

 values.possible 2on   takes  values;possible 2on    takes ji n

� How many parameters?
� For any particular value yj, and the 2n possible values of xi, 

we need compute 2n-1 independent parameters.
� Given the two possible values for Y, we must estimate a 

total of 2(2n-1) such parameters.

 values.possible 2on   takes  values;possible 2on    takes ji

Complex model →High variance with limited data!!!



Conditional Independence
� Definition: X is conditionally independent of Y

given Z, if the probability distribution governing X is 
independent of the value of Y, given the value of Z

� Example:

( ) ( ) ( )kikii zZxXPzZyYxXPkji ======∀ |,|  ,,

( ) ( )Lighting |ThunderLighting Rain,|Thunder PP =
Note that in general Thunder is not independent of Rain, 
but it is given Lighting.

� Equivalent to:

( ) ( )Lighting |ThunderLighting Rain,|Thunder PP =

)|()|()|(),|()|,( ZYPZXPZYPZYXPZYXP ==



Derivation of Naive Bayes Algorithm
� Naive Bayes algorithm assumes that the attributes X1,…,Xn

are all conditionally independent of one another, given Y. This 
dramatically simplifies 
� the representation of P(X|Y)

� estimating  P(X|Y) from the training data.
� Consider X=(X1,X2)

)|()|()|,()|( YXPYXPYXXPYXP ==

� For X containing n attributes
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Given the boolean X and Y, now we need only 2n parameters to 
define  P(X|Y), which is  dramatic reduction compared to the 
2(2n-1) parameters if we make no conditional independence 
assumption.



The Naïve Bayes Classifier
� Given:

� Prior P(Y)

� n conditionally independent features X, given the class Y
� For each X i, we have likelihood P(Xi|Y)

� The probability that Y will take on its kth possible 
value, is

∏ == kik yYXPyYP )|()(

� The Decision rule:
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If assumption holds, NB is optimal classifier!



Naïve Bayes for the discrete inputs
� Given, n attributes X i each taking on J possible 

discrete values and Y a discrete variable taking 
on K possible values.

� MLE for Likelihood given a set 
of training examples D:
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� MLE for the prior
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NB Example
� Given, training data X                              Y

� Classify the following novel instance :
(Outlook=sunny, Temp=cool,Humidity=high,Wind=strong)



NB Example
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Subtleties of NB classifier 1 –Violating 
the NB assumption

� Usually, features are not conditionally 
independent.

� Nonetheless, NB often performs well, even when 
assumption is violated
� [Domingos& Pazzani’96] discuss some conditions for � [Domingos& Pazzani’96] discuss some conditions for 

good performance



Subtleties of NB classifier 2 –
Insufficient training data
� What if you never see a training instance where 

X1=a when Y=b?
� P(X1=a | Y=b) = 0

� Thus, no matter what the values X2,…,Xn take:

P(Y=b | X1=a,X2,…,Xn) = 0P(Y=b | X1=a,X2,…,Xn) = 0

� Solution?



Subtleties of NB classifier 2 –
Insufficient training data
� To avoid this, use a “smoothed” estimate

� effectively adds in a number of additional “hallucinated” 
examples

� assumes these hallucinated examples are spread 
evenly over the possible values of Xi. 

� This smoothed estimate is given by� This smoothed estimate is given by
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l determines the strength of the smoothing
If l= 1 called Laplace smoothing

The number of 
hallucinated examples



Naive Bayes for Continuous Inputs

� When the Xi are continuous we must choose 
some other way to represent the distributions 
P(Xi|Y).

� One common approach is to assume that for 
each possible discrete value yk of Y, the 
distribution of each continuous Xi is Gaussian. 

� In order to train such a Naïve Bayes classifier we � In order to train such a Naïve Bayes classifier we 
must estimate the mean and standard deviation of 
each of these Gaussians



Naive Bayes for Continuous Inputs

� MLE for means

� where  j refers to the jth training example, and where 
δ(Y=yk) is 1 if Y = yk and 0 otherwise. 

� Note the role of δ is to select only those training 
examples for which Y = yk .
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� MLE for standard deviation
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Learning Classify Text

� Applications:
� Learn which news article are of interest
� Learn to classify web pages by topic.

� Naïve Bayes is among most effective algorithms

� Target concept Interesting?: Document->{+,-}� Target concept Interesting?: Document->{+,-}
1 Represent each document by vector of words

� one attribute per word position in document

2  Learning: Use training examples to estimate
� P(+)
� P(-)
� P(doc|+)
� P(doc|-)



Text Classification-Example: 

Text Classification, or the task of 
automatically assigning semantic 
categories to natural language text, 
has become one of the key methods 
for organizing online information. Since 
hand-coding classification rules is 
costly or even impractical, most 
modern approaches employ machine 

Text Text Representation

(a1=‘text’,a2=‘classification’,….
a48=‘examples’)

modern approaches employ machine 
learning techniques to automatically 
learn text classifiers from examples. 

The text contains 48 words
The representation 
contains 48 attributes

Note: Text size may vary, but it will not cause a problem



NB conditional independence Assumption

The NB assumption is that the word probabilities for one 
text position are independent of the words in other 
positions, given the document classification yj

∏
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)|()|(
doclength

i
jkij ywaPydocP probability that word in 

position i is wk, given yj

Indicates the kth word in 
English vocabulary

Clearly not true: The 
probability of word “learning” 
may be greater if the 
preceding word  is “machine”

Necessary, without it the 
number of probability terms is 
prohibitive 

Performs remarkably well despite the 
incorrectness of the assumption



Text Classification-Example: 

Text Classification, or the task of 
automatically assigning semantic 
categories to natural language text, 
has become one of the key methods 
for organizing online information. Since 
hand-coding classification rules is 
costly or even impractical, most 
modern approaches employ machine 

Text Text Representation

(a1=‘text’,a2=‘classification’,….
a48=‘examples’)

modern approaches employ machine 
learning techniques to automatically 
learn text classifiers from examples. 

The text contains 48 words
The representation 
contains 48 attributes
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Classification:



Estimating Likelihood
� Is problematic because we need to estimate it for 

each combination of text position, English word, 
and target value: 48*50,000*2≈5 million such 
terms.

� Assumption that reduced the number of terms –
Bag of Words ModelBag of Words Model
� The probability of encountering a specific word wk is 

independent of the specific word position.

� Instead of estimating
we estimate a single term 

� Now we have 50,000*2 distinct terms. 

miywaPywaP jkmjki ,    ),|()|( ∀===

... ),|(  ),|( 1 jkkjk ywaPywaP ==
)|( jk ywP



� The estimate for the likelihood is 

Estimating Likelihood

Vocabularyn

n
ywP k

jk +
+

=
1

)|(

n -the total number of word positions in all n -the total number of word positions in all 
training examples whose target value is yj

nk -the number times word wk is found among 
these n word positions. 

|Vocabulary|-the total number of  distinct 
words found within the training data. 



Learn_Naive_Bayes_Text(Examples,V)

1. collect all words and other tokens that occur in Examples

• Vocabulary all distinct words and other tokens in Examples

2. calculate the required               and                     

• For each target value in V do

- subset of Examples for which the target value is        
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←
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←jdocs jy
||
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docs

yP j←-

- a single document created by concatenating all members of  

- total number of words in              (counting duplicate words multiple times) 

- For each word          in the Vocabulary 

* number of times word        occurs in  

*
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Classify_Naive_Bayes_Text(Doc)
� positions← all word positions in Doc that 

contain tokens found in Vocabulary
� Return ∏
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