Parametric Density Estimation:

Maximum Likelihood Estimation



Introducton

= Bayesian Decision Theory in previous lectures
tells us how to design an optimal classifier if we
knew:
= P(c;) (priors)
= P(x | c;) (class-conditional densities)

= Unfortunately, we rarely have this complete
Information!



Probability density methods

= Parametric methods — assume we know
the shape of the distribution, but not the
parameters. Two types of parameter
estimation:
= Maximum Likelihood Estimation
= Bayesian Estimation
= Non parametric methods — the form of the
density Is entirely determined by the data
without any model.



Independence Across Classes

= We have training data for each class

salmon sea bass salmon salmon sea bass sea bass

= When estimating parameters for one class, will
only use the data collected for that class

= reasonable assumption that data from class c; gives
no information about distribution of class c;

estimate parameters for estimate parameters for

distribution of salmon from | | distribution of bass from

ol $E




Independence Across Classes

= For each class c; we have a proposed density
p:(X| ¢;) with unknown parameters 8' which we
need to estimate

= Since we assumed independence of data
across the classes, estimation is an identical
procedure for all classes

= To simplify notation, we drop sub-indexes and
say that we need to estimate parameters @for
density p(x)

= the fact that we need to do so for each class on the
training data that came from that class is implied




Maximum Likelihood Parameter Estimation

= Parameters gare unknown but fixed (i.e.
not random variables).

= Glven the training data, choose the
parameter value 8 that makes the data
most probable (i.e., maximizes the
probabllity of obtaining the sample that has
actually been observed)



Maximum Likelihood Parameter Estimation

We have density p(x) which is completely
specified by parameters 6=[4,,..., 4]

= If p(X) IS N(y, o2) then @=[u, o2

To highlight that p(x) depends on parameters
gwe will write p(x| 6

= Note overloaded notation, p(x| 8 is not a
conditional density

Let D={X, X,,..., X, } be the n independent
training samples in our data

= If p(x) is N(&, 0?) then X4, X,,..., X,, are iid
samples from N(y, o?)



Maximum Likelihood Parameter Estimation

= Consider the following function, which is
called likelihood of @with respect to the set
of samples D

p(D10)=[T(x, 16)=F(6)

= Maximum likelihood estimate (abbreviated
MLE) of @is the value of 8 that maximizes
the likelihood function p(D| 6

6 = arg max (p(D | 9))

%




ML Parameter Estimation vs. ML Classifier

fixed

= Recall ML classifier data

|

decide class c; which maximizes p(X|c;)

= Compare with ML parameter estimation

fixed
data

l

choose @ that maximizes p(D| 6

= ML classifier and ML parameter estimation use
the same principles applied to different
problems



Maximum Likelihood Estimation (MLE)

= |Instead of maximizing p(D|6), it is usually easier to
maximize In(p(D]|8)

= Since log is monotonic p(D[ &
9 =arg max(p(D] )= o
=arg max(In p(D | 6))
0

= To simplify notation, In(p(D|8)=L(6

~ k=n n
6 = argmaxL (@)= argma{ln T p(x| 9)) = argma{z In p(x, | 9)]
0 k=1 0 k=1

0
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FIGURE 3.1. The top graph shows several training points in one dimension, known or
assumed to be drawn from a Gaussian of a particular variance, but unknown mean.
Four of the infinite number of candidate source distributions are shown in dashed
lines. The middle figure shows the likelihood p(D)#) as a function of the mean. If we
had a very large number of training points, this likelihood would be very narrow. The
value that maximizes the likelihood is marked #; it also maximizes the logarithm of
the likelihood—that is, the log-likelihood f(7), shown at the bottom. Note that even
though they look similar, the likelihood p(T|d) is shown as a function of & whereas the
conditional density p(x|#) is shown as a function of x. Furthermore, as a function of #,
the likelihood p{D)#) is not a probability density function and its area has no signifi-

cance. From: Richard O, Duda, Peter E. Hart, and David . Stork, Fattern Classification.
Copyright @ 2001 by John Wiley & Sons, Inc.




MLE: Maximization Methods

= Maximizing L(& can be solved using standard
methods from Calculus

" Let 9=(6,, 6, ..., 8,)' and let V), be the gradient

operator
t
v,-| -2 2 9
06,86, " 66,

= Set of necessary conditions for an optimum Is:
V,L =0

= Also have to check that #that satisfies the above
condition iIs maximum, not minimum or saddle point.
Also check the boundary of range of @




MLE Example: Gaussian with unknown  u

= Fortunately for us, most of the ML estimates of any
densities we would care about have been computed

= Let’s go through an example anyway

= Let p(x| x) be N(i,0°) that is g2 is known, but uis
unknown and needs to be estimated, so 6= u

it =argmaxL(u)= argma{zn: In p(x, | ﬂ)j —

iz H k=1

—argma{ZInL ex o) DJ:

H k=1



MLE Example: Gaussian with unknown  u

iz k=1 o

argya%L(u)) - argmaxi[— In+/270 - (sz‘ g‘)zJ

-3 5 -u)=0 = Xxom=0 =

= U= Xy

i n

N =1

= Thus the ML estimate of the mean Is just the
average value of the training data, very Iintuitive!

= average of the training data would be our guess for
the mean even if we didn’t know about ML estimates



MLE for Gaussian with unknown  u, o<

= Similarly it can be shown that if p(X| x,09) is
N(u, 7)), that is both mean and variance are
unknown, then again very intuitive result

n R 1 ~
a=—Yx, &= (x - af

= Similarly it can be shown that if p(x| &, 2) Is
N(z, 2), that is x Is a multivariate Gaussian with
both mean and covariance matrix unknown, then



How to Measure Performance of MLE?

= How good is a ML estimate ¢ ?

= or actually any other estimate of a parameter?
= The natural measure of error would be |¢9-4

= But \e—é\ IS random, we cannot compute It
before we carry out experiments

= We want to say something meaningful about our
estimate as a function of &

= A way to solve this difficulty is to average the
error, I.e. compute the mean absolute error

= H—él]:jlé’—&ﬂ P(X,, Xy .. X, JOX,OX, .. OX_



How to Measure Performance of MLE?s

= |tis usually much easier to compute an almost
equivalent measure of performance, the mean

squared error : o
e (o-6f |

» Do a little algebra, and use Var(X)=E(X?)-(E(X))?

lo-if|-val)) =+ (Elo)-of

Y \ 2
variance Tgias
estimator should expectation should

have low variance  pq ¢jose to the true &



How to Measure Performance of MLE?

E[(H—éﬂ =Var (é}) + (E6)-of

(¢ J
i Y
Ideal case bad case bad case
A\t olo v
p(e)f\ (o) o(0)
R o
A E@N x
0 ” @ ® > —®
=(6)=0 o E(8)=0
no bias large bias no bias
low variance low variance high variance




Bias and Variance for MLE of the Mean

= Let’'s compute the bias for ML estlmate of the mean
_ Ex J==>u =p
SR RN
= Thus this estimate is unbiased!
= How about variance of ML estimate of the mean?

El(a - ) )= EEZX —#T = EEZH‘,(K —ﬂ)T
=n—12 {ZZ(X 1)(X, —ﬂ)} ZZZ El(x - 2)(%; - 12)]

i=1 j=1 i=1 j=1

1 o°
_2 0-2 —_
N N

= Thus variance is very small for a large number of samples (the
more samples, the smaller is variance)

= Thus the MLE of the mean is a very good estimator



Bias and Variance for MLE of the Mean

= Suppose someone claims they have a new great
estimator for the mean, just take the first sample!

H =X,
= Thus this estimator is unbiased: E(,Zz) = E(x1)= U
= However its variance is: “p(A)
E|(i- 1) |=E(x, - uf |= o7
O~

= Thus variance can be very large .

and does not improve as we E(@)= 0

Increase the number of samples

no bias

high variance




MLE Bias for Mean and Variance

= How about ML estimate for the variance?

ef6°]- E[ j(xk_;,)z}_”_la .07

n &t n

See for detalls.

= Thus this estimate is biased!
= This Is because we used £ Instead of true u
= Bias =20 as n— Iinfinity, asymptotically unbiased

. . ) 1 Q ]
= Unbiased estimate &° = — (x, — i)
— +k=1

= Variance of MLE of variance can be shown
to go to 0 as n goes to infinity



MLE for Uniform distribution U[0, &

= Xis U[0,@8] if its density Is 1/8inside [0,4 and O
otherwise (uniform distribution on [0,4 )

 p(x | 0) 1F ()
i.— ®
0

X X3 X, O X X, Xy

k=n

1 .
= The likelihood is F(6)= p(xk|e>={en T 62 Max Xy,.... X }
k=1 0 if d<max{ X;,...X,}

N

k=n
= Thus ¢ = arg max (H P(X, |9)]= max{ X,..., X, }
0 k=1

= This is not very pleasing since for sure @ should be
larger than any observed x!



