
Parametric Density Estimation:

Maximum Likelihood EstimationMaximum Likelihood Estimation



Introducton
� Bayesian Decision Theory in previous lectures 

tells us how to design an optimal classifier if we 
knew:
� P(c i) (priors)
� P(x | c i) (class-conditional densities)

� Unfortunately, we rarely have this complete � Unfortunately, we rarely have this complete 
information!



Probability density methods

� Parametric methods – assume we know 
the shape of the distribution, but not the 
parameters. Two types of parameter 
estimation:

� Maximum Likelihood Estimation
� Bayesian Estimation

� Non parametric methods – the form of the 
density is entirely determined by the data 
without any model.



Independence Across Classes

� We have training data for each class
salmon salmon salmonsea bass sea bass sea bass

� When estimating parameters for one class, will 
only use the data collected for that classonly use the data collected for that class
� reasonable assumption that data from class c i gives 

no information about distribution of class c j

estimate parameters for 
distribution of salmon from

estimate parameters for 
distribution of bass from



Independence Across Classes

� For each class c i we have a proposed density 
p i(x| c i) with unknown parameters θ θ θ θ i which we 
need to estimate

� Since we assumed independence of data 
across the classes, estimation is an identical 
procedure for all classesprocedure for all classes

� To simplify notation, we drop sub-indexes and 
say that we need to estimate parameters θθθθ for 
density p(x) 
� the fact that we need to do so for each class on the 

training data that came from that class is implied



Maximum Likelihood Parameter Estimation

� Parameters θθθθ are unknown but fixed (i.e. 
not random variables).

� Given the training data, choose the 
parameter value θ θ θ θ that  makes the data 
most probable (i.e., maximizes the most probable (i.e., maximizes the 
probability of obtaining the sample that has 
actually been observed)



� We have density p(x) which is completely 
specified by parameters θθθθ =[θθθθ1,…, θθθθk] 

� If p(x) is N(µ, σ µ, σ µ, σ µ, σ 2) then θθθθ =[µµµµ, σ σ σ σ 2]

Maximum Likelihood Parameter Estimation

� To highlight that p(x) depends on parameters 
θθθθ we will write p(x|θθθθ)

� Let D={x1, x2,…, xn } be the n independent 
training samples in our data
� If p(x) is N(µ, σ µ, σ µ, σ µ, σ 2) then x1, x2,…, xn are iid 

samples from N(µ, σ µ, σ µ, σ µ, σ 2)

θθθθ we will write p(x|θθθθ)
� Note overloaded notation, p(x|θθθθ) is not a 

conditional density



Maximum Likelihood Parameter Estimation

� Consider the following function, which is 
called likelihood of θθθθ with respect to the set 
of samples D
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� Maximum likelihood estimate (abbreviated 
MLE) of θθθθ is the value of θ θ θ θ that maximizes 
the likelihood function p(D|θθθθ) 
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ML Parameter Estimation vs. ML Classifier

decide class c i which maximizes p(x|c i)

� Recall ML classifier
fixed
data

� Compare with ML parameter estimation
fixed
data

choose θθθθ that maximizes p(D|θθθθ) 

data

� ML classifier and ML parameter estimation use 
the same principles applied to different 
problems



Maximum Likelihood Estimation (MLE)

� Instead of maximizing p(D|θθθθ), it is usually easier to 
maximize ln (p(D|θθθθ))

(((( ))))

(( ))

)|D(pmaxargˆ θθθθθθθθ
θθθθ

========

p(D|θθθθ)� Since log is monotonic
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� To simplify notation, ln (p(D|θθθθ))=L(θθθθ)
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� Let θθθθ = (θθθθ1, θθθθ2, …, θθθθp)t and let ∇∇∇∇θθθθ be the gradient 
operator
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MLE: Maximization Methods

� Maximizing L(θθθθ) can be solved using standard 
methods from Calculus
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� Set of necessary conditions for an optimum is:

∇∇∇∇θθθθ L = 0
� Also have to check that θθθθ that satisfies the above 

condition is maximum, not minimum or saddle point.  
Also check the boundary of range of θθθθ



� Let’s go through an example anyway

MLE Example: Gaussian with unknown µµµµ
� Fortunately for us, most of the ML estimates of any 

densities we would care about have been computed

� Let p(x| µµµµ) be N(µµµµ,σ σ σ σ 2) that is σ σ σ σ 2 is known, but µµµµ is 
unknown and needs to be estimated, so θθθθ = µµµµ
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MLE Example: Gaussian with unknown µµµµ
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� Thus the ML estimate of the mean is just the 
average value of the training data, very intuitive!
� average of the training data would be our guess for 

the mean even if we didn’t know about ML estimates
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MLE for Gaussian with unknown µµµµ, σ σ σ σ 2222

µµ ΣΣΣΣ

� Similarly it can be shown that if p(x| µµµµ,σ σ σ σ 2222) is    
N(µµµµ, σ σ σ σ 2222), that is both mean and variance are 
unknown, then again very intuitive result
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� Similarly it can be shown that if p(x| µµµµ,ΣΣΣΣ) is    
N(µµµµ, ΣΣΣΣ), that is x is a multivariate Gaussian with 
both mean and covariance matrix unknown, then
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� How good is a ML estimate    ?    
� or actually any other estimate of a parameter?

How to Measure Performance of MLE?

� The natural measure of error would be θθθθθθθθ ˆ−−−−

θθθθ̂

� But              is random, we cannot compute it  
before we carry out experiments

θθθθθθθθ ˆ−−−−

� We want to say something meaningful about our 
estimate as a function of θθθθestimate as a function of θθθθ

� A way to solve this difficulty is to average the 
error, i.e. compute the mean absolute error
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How to Measure Performance of MLE?s

( ) 



 −

2
θ̂θE

� It is usually much easier to compute an almost 
equivalent measure of performance, the mean 
squared error :

� Do a little algebra, and use Var(X)=E(X2)-(E(X))2
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variance
estimator should 
have low variance

bias
expectation should

be close to the true θθθθ



How to Measure Performance of MLE?
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variance bias
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� Let’s compute the bias for ML estimate of the mean

Bias and Variance for MLE  of the Mean

� How about variance of ML estimate of the mean?
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� Thus this estimate is unbiased!
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� Thus variance is very small for a large number of samples (the 
more samples, the smaller is variance)

� Thus the MLE of the mean is a very good estimator



� Suppose someone claims they have a new great 
estimator for the mean, just take the first sample! 

Bias and Variance for MLE  of the Mean

� However its variance is:
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MLE Bias for Mean and Variance
� How about ML estimate for the variance?
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� Thus this estimate is biased!
� This is because we used      instead of true µµµµµµµµ̂

See http://en.wikipedia.org/wiki/Bias_of_an_estimator for details.
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� This is because we used      instead of true µµµµ
� Bias �0  as  n� infinity, asymptotically unbiased

� Unbiased estimate

µµµµ̂

� Variance of MLE of  variance can be shown 
to go to 0 as n goes to infinity



� X is U[0,θ θ θ θ ] if its density is 1/θθθθ inside [0,θθθθ] and 0 
otherwise (uniform distribution on [0,θθθθ] )

MLE for Uniform distribution U[0, θθθθ]
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� This is not very pleasing since for sure θθθθ should be 
larger than any observed x!


