
Unsupervised Learning and 
Clustering



Supervised vs. Unsupervised Learning

� Up to now we considered supervised learning 
scenario, where we are given

1. samples x1,…, xn

2. class labels for all samples x1,…, xn

� This is also called learning with teacher, since correct 
answer (the true class) is provided

� Today we consider unsupervised learning
scenario, where we are only given

1. samples x1,…, xn 

� This is also called learning without teacher, since 
correct answer is not provided

� do not split data into training and test sets



Unsupervised Learning

� Data is not labeled a lot is 
known
”easier”

Parametric Approach
� assume parametric distribution of data 
� estimate parameters of this distribution

little is 
known
“harder”

� estimate parameters of this distribution
� much “harder” than supervised case

Non Parametric Approach
� group the data into clusters, each cluster (hopefully) 

says something about categories (classes) present in 
the data



Clustering
� Seek “natural” clusters in the data

� Clustering is a way to discover new 
categories (classes)

� What is a good clustering?
� internal (within the cluster) distances should be  small
� external (intra-cluster) should be large



What we Need for Clustering
1. Proximity measure, either 

� similarity measure s(xi,xk): large if xi,xk are similar
� dissimilarity(or distance) measure d(xi,xk): small if xi,xk are similar 

2. Criterion function to evaluate a clustering

large d, small s large s, small d

good clustering

3. Algorithm to compute clustering
� For example, by optimizing the criterion function

bad clustering



How Many Clusters?

3 clusters or 2 clusters?

� Possible approaches 
1. fix the number of clusters to k
2. find the best clustering according to the criterion 

function (number of clusters may vary)



Proximity Measures

� good proximity measure is VERY application 
dependent
� Clusters should be invariant under the transformations 

“natural” to the problem
� For example for object recognition, should have 

invariance to rotation

� For character recognition,  no invariance to rotation

distance 0
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Distance (dissimilarity) Measures

� Manhattan (city block) distance
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� approximation to Euclidean distance, 

� translation invariant

k 1

� approximation to Euclidean distance, 
cheaper to compute
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� Chebyshev distance

� approximation to Euclidean distance, 
cheapest to compute



Similarity Measures
� Cosine similarity:
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� the smaller the angle, the larger the 
similarity

� scale invariant measure
� popular in text retrieval

� Correlation coefficient
� popular in image processing

( )
( )( ) ( )( )

( )( ) ( )( )
2/1

1 1

22

1,









−−

−−
=

∑ ∑

∑

= =

=

d

k

d

k

j
k

ji
k

i

d

k

j
k

ji
k

i

ji

xxxx

xxxx
xxs



Feature Scale

� old problem: how to choose appropriate relative 
scale for features?

� [length (in meters or cms?), weight(in in grams or kgs?)]
� In supervised learning, can normalize to zero mean unit  

variance with no problems
� in clustering this is more problematic, if variance in 

data is due to cluster presence, then normalizing 
features is not a good thing

before normalization after normalization



Simplest Clustering Algorithm

� Having defined a proximity function, can develop a 
simple clustering algorithm

� go over all sample pairs, and put them in the same cluster 
if the distance between them is less then some threshold 
distance d0 (or if similarity is larger than s0)

� Pros: simple to understand and implement
� Cons: very dependent on d (or s ), automatic choice of d� Cons: very dependent on d0 (or s0), automatic choice of d0 

(or s0)is not an easily solved issue

d0   larger: 
reasonable clustering 

d0   too large: 
too few clusters

d0   too small: 
too many clusters 



Criterion Functions for Clustering

� Have samples x1,…,xn

� Suppose partitioned samples into c subsets D1,…,Dc

1D

2D

3D

� There are approximately cn/c! distinct partitions

� Can define a criterion function J(D1,…,Dc) which 
measures the quality of a partitioning D1,…,Dc

� Then the clustering problem is a well defined 
problem

� the optimal clustering is the partition which optimizes the 
criterion function

� There are approximately cn/c! distinct partitions



SSE Criterion Function

� Let ni be the number of samples in Di, and define 
the mean of samples in is Di
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� Then the sum-of-squared errors criterion function (to 
minimize) is: cminimize) is:
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� Note that the number of clusters, c, is fixed



SSE Criterion Function

� SSE criterion appropriate when data forms compact 
clouds that are relatively well separated
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� SSE criterion favors equally sized clusters, and may 
not be appropriate when “natural” groupings have 
very different sizes

large JSSE small JSSE



Failure Example for JSSE

larger JSSE
smaller JSSE

� The problem is that one of the “natural” clusters is 
not compact (the outer ring)



Other Minimum Variance Criterion Functions
� We can eliminate constant terms from
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di = average Euclidian 

EJ

� We get an equivalent criterion function:

di = average Euclidian 
distance between all pairs 
of samples in Di

� Can obtain other criterion functions by replacing      
||x - y||2 by any other measure of distance between 
points in Di

� Alternatively can replace di by the median, 
maximum, etc. instead of the average distance



Maximum Distance Criterion 

� Consider ∑∑∑∑
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� Solves previous case � However Jmax is not robust to 
outliers

smallest Jmax smallest Jmax



Other Criterion Functions
� Recall definition of scatter matrices

� scatter matrix for ith cluster (((( ))))(((( ))))∑∑∑∑
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� within the cluster scatter matrix

� Determinant of Sw roughly measures the square of 
the volume

� Assuming Sw is nonsingular, define determinant 
criterion function:
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� Jd is invariant to scaling of the axis, and is useful if there 
are unknown irrelevant linear transformations of the data

the volume



Iterative Optimization Algorithms
� Now have both proximity measure and criterion 

function, need algorithm to find the optimal clustering
� Exhaustive search is impossible, since there are 

approximately  cn/c!  possible partitions
� Usually some iterative algorithm is used 

1. Find a reasonable initial partition1. Find a reasonable initial partition
2. Repeat: move samples from one group to another s.t. the 

objective function J is improved

J = 777,777

move 

samples to 
improve J

J =666,666



Iterative Optimization Algorithms
� Iterative optimization algorithms are similar to 

gradient descent
� move in the direction of descent (ascent), but not in the 

steepest descent direction since have no derivative of the 
objective function

� solution depends on the initial point
� cannot find global minimum� cannot find global minimum

� Main Issue
� How to move from current partitioning to the one which 

improves the objective function



K-means Clustering

� for a different objective function, we need a different 
optimization algorithm, of course

� We now consider an example of iterative 
optimization algorithm for the special case of JSSE
objective function
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optimization algorithm, of course

� k-means is probably the most famous clustering 
algorithm

� it has a smart way of moving from current partitioning to 
the next one

� Fix number of clusters to k (c = k)



K-means Clustering

1. Initialize
� pick k cluster centers arbitrary
� assign each example to closest 

center

x

xx

x

x

2. compute sample 
means for each cluster

k = 3

x x

x

x x

3. reassign all samples to the 
closest mean

4. if clusters changed at step 3, go to step 2



K-means Clustering

2. compute sample means for each cluster

� Consider steps 2 and 3 of the algorithm

µµµµ1
µµµµ2
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= sum of

3. reassign all samples to the closest mean

µµµµ1
µµµµ2

If we represent clusters 
by their old means, the 
error has gotten smaller



K-means Clustering
3. reassign all samples to the closest mean

µµµµ1
µµµµ2

If we represent clusters 
by their old means, the 
error has gotten smaller

� However we represent clusters by their new 
means, and mean is always the smallest 
representation of a cluster
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K-means Clustering

� We just proved that by doing steps 2 and 3, the 
objective function goes down
� in two step, we found a “smart “ move which decreases 

the objective function

� Thus the algorithm converges after a finite number 
of iterations of steps 2 and 3of iterations of steps 2 and 3

� However the algorithm is not guaranteed to find a 
global minimum
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x
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2-means gets stuck  here global minimum of JSSE



K-means Clustering

� Finding the optimum of JSSE is NP-hard
� In practice, k-means clustering performs usually 

well
� It is very efficient
� Its solution can be used as a starting point for 

other clustering algorithmsother clustering algorithms
� Still 100’s of papers on variants and improvements 

of k-means clustering every year



Hierarchical  Clustering

� For some data, hierarchical clustering is more 

?

� Up to now, considered “flat” clustering

� For some data, hierarchical clustering is more 
appropriate than “flat” clustering

� Hierarchical clustering



Hierarchical  Clustering: Biological Taxonomy

animal plant

seed
producing

spore
producing

moldmushroomroseapple

with spine no spine

jellyfishcatdog



Hierarchical  Clustering: Dendogram

� preferred way to represent a hierarchical clustering 
is a dendrogram
� Binary tree
� Level k corresponds to 

partitioning with n-k+1
clusters

� if need k clusters, take � if need k clusters, take 
clustering from level n-k+1

� If samples are in the same 
cluster at level k, they stay in the 
same cluster at higher levels

� dendrogram typically shows the similarity of 
grouped clusters



Example



Hierarchical  Clustering: Venn Diagram

� Can also use Venn diagram to show hierarchical 
clustering, but similarity is not represented 
quantitatively



Hierarchical  Clustering

� Algorithms for hierarchical clustering can be 
divided into two types:

1. Agglomerative (bottom up) procedures
� Start with n singleton  clusters
� Form hierarchy by merging most similar clusters

2. Divisive (top bottom) procedures
� Start with all samples in one cluster
� Form hierarchy by splitting the “worst” clusters

2
3

4 5 6



Divisive Hierarchical Clustering

� Any “flat” algorithm which produces a fixed number 
of clusters can be used 
� set c = 2



Agglomerative Hierarchical Clustering

initialize with each example in
singleton cluster
while there is more than 1 cluster

1. find 2 nearest clusters
2. merge them

� Four common ways to measure cluster distance
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Single Linkage or Nearest Neighbor
� Agglomerative clustering with minimum distance
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� generates minimum spanning tree
� encourages growth of elongated clusters
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3

45

� disadvantage: very sensitive to noise� disadvantage: very sensitive to noise

noisy sample

what we want at level with c=3 what we get at level with c=3



Complete Linkage or Farthest Neighbor

� Agglomerative clustering with maximum distance
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� Does not work well if elongated clusters present
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� thus D1 and D2 are merged instead of D2 and D3
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Average and Mean Agglomerative Clustering

� Agglomerative clustering is more robust under the 
average or the mean cluster distance
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� mean distance is cheaper to compute than the 
average distance 

� unfortunately, there is not much to say about 
agglomerative clustering theoretically, but it does 
work reasonably well in practice



Agglomerative vs. Divisive

� Agglomerative is faster to compute, in general
� Divisive may be less “blind” to the global structure 

of the data

Divisive

when taking the first step 
(split), have access to all 

Agglomerative

when taking the first step 
merging, do not consider (split), have access to all 

the data; can find the best 
possible split in 2 parts

merging, do not consider 
the global structure of the 
data, only look at pairwise 
structure



First (?) Application of Clustering
� John Snow, a London physician plotted the 

location of cholera deaths on a map during an 
outbreak in the 1850s.

� The locations indicated that cases were 
clustered around certain intersections where 
there were polluted wells -- thus exposing both 
the problem and the solution.

From: Nina Mishra HP Labs



Application of Clustering
� Astronomy

� SkyCat: Clustered 2x109 sky objects into stars, galaxies, 
quasars, etc based on radiation emitted in different 
spectrum bands.

From: Nina Mishra HP Labs



Applications of Clustering
� Image segmentation

� Find interesting “objects” in images to focus attention at

From: Image Segmentation by Nested Cuts, O. Veksler, CVPR2000



Applications of Clustering
� Image Database Organization

� for efficient search



Applications of Clustering
� Data Mining

� Technology watch 
� Derwent Database, contains all patents filed in the 

last 10 years worldwide 
� Searching by keywords leads to thousands of 

documents
� Find clusters in the database and find if there are any  

emerging technologies and what competition is up toemerging technologies and what competition is up to
� Marketing

� Customer database
� Find clusters of customers and tailor marketing 

schemes to them



Applications of Clustering
� gene expression profile clustering

� similar expressions , expect similar function
U18675 4CL -0.151 -0.207 0.126 0.359 0.208 0.091 -0.083 -0.209 
M84697 a-TUB 0.188 0.030 0.111 0.094 -0.009 -0.173 -0.119 -0.136 
M95595 ACC2 0.000 0.041 0.000 0.000 0.000 0.000 0.000 0.000 
X66719 ACO1 0.058 0.155 0.082 0.284 0.240 0.065 -0.159 -0.010 
U41998 ACT 0.096 -0.019 0.070 0.137 0.089 0.038 0.096 -0.070 
AF057044 ACX1 0.268 0.403 0.679 0.785 0.565 0.260 0.203 0.252 
AF057043 ACX2 0.415 0.000 -0.053 0.114 0.296 0.242 0.090 0.230 
U40856 AIG1 0.096 -0.106 -0.027 -0.026 -0.005 -0.052 0.054 0.006 
U40857 AIG2 0.311 0.140 0.257 0.261 0.158 0.056 -0.049 0.058 
AF123253 AIM1 -0.040 0.002 -0.202 -0.040 0.077 0.081 0.088 0.224AF123253 AIM1 -0.040 0.002 -0.202 -0.040 0.077 0.081 0.088 0.224
X92510 AOS 0.473 0.560 0.914 0.625 0.375 0.387 0.019 0.141

From:De Smet F., Mathys J., Marchal K., Thijs G., De Moor B. & Moreau Y. 2002. 
Adaptive Quality-based clustering of gene expression profiles, Bioinformatics, 18(6), 735-746. 



Applications of Clustering

� Profiling Web Users
� Use web access  logs to generate a feature vector for 

each user
� Cluster users based on their feature vectors
� Identify common goals for users

� Shopping� Shopping
� Job Seekers
� Product Seekers
� Tutorials Seekers

� Can use clustering results to improving web content and 
design



Summary

� Clustering (nonparametric unsupervised learning) 
is useful for discovering inherent structure in data

� Clustering is immensely useful in different fields
� Clustering comes naturally to humans (in up to 3 

dimensions), but not so to computers 
� It is very easy to design a clustering algorithm, but � It is very easy to design a clustering algorithm, but 

it is very hard to say if it does anything good
� General purpose clustering does not exist, for best 

results, clustering should be tuned to application at 
hand


