Review: mostly probability and
some statistics

C2



Content

= Probabillity (should know already)
= Axioms and properties
= Conditional probability and independence
= Law of Total probability and Bayes theorem

= Random Variables
= Discrete
= Continuous

= Pairs of Random Variables
= Random Vectors
= Gaussian Random Variable



Basics

We are performing a random experiment (catching

one fish from the sea)

Sample space S: the
set of all possible
outcomes

An event A: a set of
possible outcomes of
experiment, i.e. a subset
of S

Probability law:a rule that
assigns probabilities to
events in an experiment

A — P(A)

S: all fish in the sea
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Axioms of Probabillity

1. P(A)>0
2. P(S)=1

3. If ANB=O then P(AUB)=P(A)+P(B)



Properties of Probability

P(@)=0

P(A)<1

P(A")=1-P(A)

AcB = P(A)<P(B)
P(AUB) =P(A)+P(B)-P(ANB)

{ANA =@,vﬁ,j}:P@A<j=i‘,P(A<)



Conditional Probability

= |f A and B are two events, and we know that event
B has occurred, then (if P(B)>0)

P(ANB)
P(B)

S

the “new” sample space is B, the “new” Ais old AN B

P(AB)=

= multiplication rule | P(ANB)=P(A|B)P(B)




Independence

= A and B are independent events If
P(ANB) = P(A) P(B)

= By the law of conditional probability, if A

and B are independent
P(A) P(B) _

PAIB) =~ g = P(A

= |[f two events are not independent, then they
are said to be dependent



Law of Total Probability

. sample space S

=B,B,....B_ partition S B o 3
1

]

= Consider an event A B, B,

U oBEEE U L

ANB, ANB, ANB,

= Thus P(A)=P(ANB,)+P(ANB,)+P(ANB,)+P(ANB,)

= Or using multiplication rule:
P(A)=P(A|B,P(B,)+...+P(A|B,)P(B,)
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Bayes Theorem

= LetB,, B, ..., B, be a partition of the
sample space S. Suppose event A occurs.
What Is the probability of event B, ?

= Answer: Bayes Rule

from conditional probability

P(B,NA)_ P(AIB)P(B)

"W Seaisre)

from the law of total probability

P(Bi |A)=

= One of the most useful tools we are going to use
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Random Variables

= A random variable X is a function from sample
space S to a real number. X: S—R

S + R # of fins)

- .
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= X Is random due to randomness of its argument

* P(X=a)=P(X(w)=a)=P(w| X(w)=a)



Two Types of Random Variables

= Discrete random variable has countable
number of values

= number of fish fins (0,1,2,....,30)

= Continuous random variable has
continuous number of values

= fish weight (any real number between 0 and
100)



Cumulative Distribution Function

= Glven a random variable X, CDF 1Is defined
as
F(a)=P(X < a)

fi 1
1 F(30)ll e

F(20)
1000

..... 20 30 fish weight




Properties of CDF F(a)=P(X <a)

CDF for continuous rv

1. F(a) Is non decreasing

el

1
2. lim__, _F(b)=1 F(30)1[

1000

3. lim,_F(b)=0 F‘2°’7(

20 30 fish weight

= Questions about X can be asked in terms of

CDF P (a< X <b)=F(b)-F(a)

Example :

P (fish weights between 20 and 30)=F(30)-F(20)



Discrete RV: Probability Mass Function

= Glven a discrete random variable X, we
define the probability mass function as

p@) =P(X =2

= Satisfies all axioms of probability

= CDF In discrete case satisfies

F@=P(X <a)=Y P(X=a)=> pla)

x<a X<a
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Continuous RV: Probability Density Function

= Glven a continuous RV X, we say f(X) Is Its
probability density function if

: F(a):p(xsa):_ff(x)dx

b
= and, more generally P(a< X <b)= [f(x)dx

a
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Properties of Probability Density Function

S F(x)=f(x)

dx

a

P(X =a)=jf(x)dx=0
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probability mass

& 1 1
o
(0 N Y—
P
ffins
1 2 3 4 5

= true probability

= P(fish has 2 or 3 fins)=
=p(2)+p(3)=0.3+0.4

= take sums

probability density

S A
[®)
Q -

0.6

fish weight

10 30 50

*———»

density, not probability

> (fiis
> (fiis
D (fiis

N welg
N welg

N welg

nts 30kg) = 0.6
nts 30kg)=0

Nts between 29

and 31kg)= Eglf (x)dx
Integrate



Expected Value

= Useful characterization of ar.v.

= Also known as mean, expectation, or first
moment

discrete case:  u=E(X)=>_ x p(x)

continuous case:  u= E(X)=r x f(x)dx

= Expectation can be thought of as the
average over many experiments
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Expected Value for Functions of X

= Let g(x) be a function of t

discrete case:

continuous case:

E
E

g(X).
9(X)]=

ne r.v. X. Then

[=>" a(x) p(x)

— j x) f(x)dx

= An important function of X: [X-E(X)]2
= Variance E[[X-E(X)]’]= var(X)=c
= Variance measures the spread around the

mean

= Standard deviation = [var(X)]*?, has the
same units as the r.v. X
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Properties of Expectation

= |[f X Is constant r.v. X=c, then E(X) =c

= |f a and b are constants, E(aX+b)=aE(X)+b

= More generally,
E (Zin=1(ai Xi +C, ))= Z:nzl(aiE(Xi )+c )

= |f a and b are constants, then
var(aX+h)= a var(X)
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Pairs of Random Variables

= Say we have 2 random variables:
= Fish weight X
= Fish lightness Y

= Can define joint CDF
Fa,b)=P(X <aY <b)=P(weS| X(w)<a,Y(a)<b)
= Similar to single variable case, can define
= discrete: joint probability mass function
pla,b)=P(X =aY =b)
= continuous: joint density function f(x,y)
Pla<X<bc<Y <d)= ”fxydxdy

a<x<b
c<y<d
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Marginal Distributions

= given joint mass function py(X,y), marginal,
l.e. probability mass function for r.v. X can
be obtained from py \(X,y)

px(X)=vax,Y(x, y) pv(y)=§px,v(x, y)

= marginal densities f, (x) and f, (y) are obtained
from joint density fy (X,y) by Integrating

T (X) — jt_i f X,Y(X’ y) dy fY(y) - j::jo f X,Y(X’ y) ax
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Independence of Random Variables

= r.v. Xand Y are independent If
P(X<xY <y)=P(X <x)P(Y <y)

= Theorem: r.v. X and Y are independent If
and only If

Py (6Y)=p,(Y)p(x) (discrete)
f.,(xy)=f(y)fi(x)  (continuous)
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More on Independent RV’s

= [f X and Y are independent, then

= E(XY)=E(X)E(Y)
= Var(X+Y)=Var(X)+Var(Y)
= G(X) and H(Y) are independent
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Covariance

= Givenr.v. Xand Y, covariance Is defined as:
cov(X,Y)=E[(X =E(X))Y —E(Y))|=E(XY)-E(X)E(Y)

= Covariance is useful for checking if features X
and Y give similar information

= Covariance (from co-vary) indicates tendency
of X and Y to vary together

= |If Xand Y tend to increase together, Cov(X,Y) >0

= |f X tends to decrease when Y increases, Cov(X,Y)
<0

= If decrease (increase) in X does not predict
behavior of Y, Cov(X,Y) Is close to O 25



Covariance Correlation

= |[f cov(X,Y) =0, then X and Y are said to be
uncorrelated (think unrelated). However X
and Y are not necessarily independent.

= [f Xand Y are iIndependent, cov(X,Y) =0

= Can normalize covariance to get correlation
cov(X,Y)

Jvar(X)var(Y)

<1

~1<cor(X,Y)=

26



Random Vectors

= Generalize from pairs of r.v. to vector of r.v.
X= [X; X,... X5 ] (think multiple features)

= Joint CDF, PDF, PMF are defined similarly to
the case of pair of r.v.’s

Example:
F(xl, x2,...,xn)

P(X, <%, X, <X,,.... X <X )

= All the properties of expectation, variance,
covariance transfer with suitable modifications
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Covariance Matrix

= characteristics summary of random vector
= cov(X)=cov[X X ... X]=X=E[(X- p)(X- n)']=

E(X]__ “1)(X 1 “1) "t E(Xn_ Mn)(x 1 M]_)
EX - 1) X)) - EXX=p )X )
EX e )K=y - B )X = 1)
. v
/-;12 Cio Gy \
variances C,, 022 C,, | covariances
_ Ca1 Ca 532 28




Normal or Gaussian Random Variable

A x=pY
= Has density f(x)= 1 o 2( ")

o2

= Mean p, and variance ¢*

29



Multivariate Gaussian

1
: x—u) X7 (x—p
= has density f(X)=———-—7¢€°

= mean vector U= Utl,...,un
= covariance matrix Y.
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Conditional Mass Function: Bayes Rule

= Define conditional mass fur(lctlo)n of X given Y=y by
P(x,y

PO =)

y is fixed

= The law of Total Probability:

=;P(X,y)=;P(le)P(y)

= The Bayes Rule:
_Ply,x)_ P(x]y)P(y)

PO )= 50 TSP [y PO)

vy




Conditional Density Function: Continuous RV

= Does it make sense to talk about conditional density
pP(X|y) If Y Is a continuous random variable? After
all, Pr[Y=y]=0, so we will never see Y=y In practice

= Measurements have limited accuracy. Can interpret
observation y as observation in interval [y-¢, y+¢&], and
observation x as observation in interval [X-g, X+&]
y-¢& Yyt¢& X-& Xtg
o) S
Yy X




Conditional Density Function: Continuous RV

X
= Let B(X) denote interval [X-&X+4] P

Pr[X eB(x)]= jp(x)dx ~2¢& p(x)

X—& X-€ X X+g

= Similarly Prly eB(y)]~2¢ p(y)
PriX eB(x)NY eB(y)]~4&® p(x,y)

Pr[X eB(x)|Y eB(y)]
2&

= Thus we should have p(X IY)z

= Which can be simplified to:

PriX eB(x)NY eBly)] _p(x.y)
2¢ PrlY eB(y)] p(y )

p(x |y)~



Conditional Density Function: Continuous RV

= Define conditional density function of X given Y=y
by (x.y)

P
p(x/ly)_ p(y)

y is fixed

= This Is a probability density function because:

_ fr y)X__[op(X IR )
[pOciydax = [P ax = = 2

= The law of Total Probabillity:

= jp(x,y)dy =_[I0(X |y )p(y )dy



Conditional Density Function: Bayes Rule

= The Bayes Rule:

p(y | x)= p(y.x) __ p(xly)p(y)

p(x) ¢

[p(x y)p(y)dy

— o0



