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Abstract

We address the problem of 2D-3D pose estimation in dif-
ficult viewing conditions, such as low illumination, cluttered
background, and large highlights and shadows that appear
on the object of interest. In such challenging conditions
conventional features used for establishing correspondence
are unreliable. We show that under the assumption of a
dominant light source, specular highlights produced by a
known object can be used to establish correspondence be-
tween its image and the 3D model, and to verify the hypoth-
esized pose. These ideas are incorporated in an efficient
method for pose estimation from a monocular image of an
object using only highlights produced by the object as its in-
put. The proposed method uses no knowledge of lighting di-
rection and no calibration object for estimating the lighting
in the scene. The evaluation of the method shows good ac-
curacy on numerous synthetic images and good robustness
on real images of complex, shiny objects, with shadows and
difficult backgrounds'.

1. Introduction

The focus of this paper is 2D-3D pose estimation of
shiny objects. We assume that we have a 3D model of the
object and the task is to find the pose of the object relative to
a calibrated camera from a single monocular image. Deter-
mining the pose means finding the 6 parameters of the 3D
translation and rotation, which align the projection of the
model with the input image.

Much work has been done on this topic for Lambertian
objects with prominent texture or shape features under sim-
ple lighting conditions, in which all parts of the object are
well illuminated (e.g, [16, 9, 20, 17, 31]). The assump-
tions used in these methods do not hold for an image of a
smooth, glossy, textureless object with highlights and shad-
ows, which is placed against a cluttered scene. Figure 1
shows examples of such images. In this work we make use
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Figure 1. Examples of typical inputs to the proposed pose estima-
tion algorithm, which are very challenging for the existing meth-
ods.

Figure 2. Left — the frontal view of the object with the frontal
light(that we render), right — unknown view of the object with un-
known light (that we get as an input). In both the highlights are
produced by the same surface patches and thus highlights undergo
affine transformation and could be used for establishing correspon-
dence.

of such challenging conditions as specular highlights pro-
duced by a known object, to extract information that can
assist in pose estimation when other cues are unreliable.
Specularities have several advantages over the conventional
features used for pose estimation. Highlights are easy to
detect even by simply thresholding the image. They are ro-
bust to changes in background, texture variation, and oc-
clusion of non-highlighted parts. In addition, they can be
used with transparent objects, where extracting contours or
similar features is very hard.

Previous methods that used specular cues for pose es-

Ithe data base is available at http://www.cs.haifa.ac.il/ rita/specObj/main.html timation required additional information about the scene,
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such as environmental mapping obtained by a mirror ball
[8], known motion [8], polarization filters [3], and several
images of the scene with different camera settings [3]. If
such additional cues are unavailable, these methods cannot
be used.

We show that highlights produced by a surface patch in
images that differ by lighting and viewing directions, are re-
lated by an approximately affine transformation (Figure 2).
Based on this observation, we suggest to use specular high-
lights produced by a known, smooth, glossy object to estab-
lish correspondences between its image and the 3D model
without any knowledge of the scene except for the assump-
tion of the dominant light source (the direction of the light
is unknown). We use these correspondences to compute a
pose, and we verify it by measuring the similarity between
the specular highlights extracted from the input image and
the specularities predicted for the hypothesized pose using a
simple model of highlight formation proposed in [26]. Our
method allows to estimate pose from a monocular image
of an object using solely specular features if the image con-
tains at least three highlights. If the image contains only one
or two highlights, our approach can easily incorporate cor-
respondences obtained from other more conventional fea-
tures (contours, lines, etc.) for pose computation, while the
verification phase remains unchanged.

Our approach is advantageous over the previous work
on pose estimation of specular objects because it requires
only a single monocular image of the object and it can work
with shapes that are much more complex than those used
in previous works ([8, 3]). Also our method doesn’t re-
quire knowledge of the lighting direction in the scene, or
any calibration object (or procedure) for estimating it. The
proposed algorithm is based on correspondences, which is
much more efficient than a brute force search done by pre-
vious methods (e.g.,[8]).

The main limitation of our approach is the assumption of
the dominant light source. In practice, however, it is a rea-
sonable assumption for outdoor scenes. For indoor scenes,
which are illuminated by many sources or extended lights,
the object is well illuminated and even if it has highlights,
existing methods (e.g., contour based methods) could work
fairly well. Images taken with a directional light are poorly
illuminated and have large shadows, which present a severe
difficulty for the existing methods.

The experiments presented in this paper are performed
on synthetic and real objects. We constructed a data base of
real, complex objects which includes CAD models and im-
ages of these objects under variation of pose, background,
and illumination direction (including indoor and outdoor il-
lumination). This data set is much more diverse than those
used in previous papers. The experiments (see Section 5)
show good performance considering that our method uses
very little information about the scene and only few per-
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cents of the input image — the highlights.

1.1. Related Work

Most of the work on specular objects has been concerned
with surface reconstruction [5, 6, 33, 25, 36]. Norman et.
al., [24] showed empirically that specular highlights provide
a significant aid in human perception of 3D shape. Never-
theless, due to the difficulty of the task, very little work has
been done on recognition of specular objects [32, 15, 26].
Recently, several methods have been proposed for detecting
specular surfaces in images [21, 12]. Specular highlights
reveal accurate local information about the shape of the ob-
ject. Thus a natural idea is to use them for alignment. This
idea was employed in [19], which showed very impressive
results. Only very recently specular highlights have been
used in pose estimation [8].

The literature concerned with 3D pose estimation is
extensive. One of the aspects that allows to distinguish
between various method for pose estimation is the type
of local image features they use to establish correspon-
dences, such as points, lines or segments (e.g.,[28, 2]),
curved shapes or their segments (e.g,[7]), and complete
contours (e.g.,[31]). A more recent development in pose
estimation uses regions in a global variational framework
(e.g.,[30, 11]). Fusion of several information channels was
suggested for pose estimation in [23, 3]. Using depth infor-
mation of the scene could greatly assist in solving the pose
problem, thus quite many methods use range images as an
input (e.g., [4], [14]).

Using specular cues for pose estimation was considered
in [3, 8]. The method presented in [3] incorporates differ-
ent channels of information. One of which is a polarization
angle of the light reflected from the object surface that pro-
vides information on the rotation of an object relative to
the camera. The data acquisition process for this method is
quite involved. It includes taking many images with differ-
ent shutter times to create a high dynamic range image, two
images for depth estimation, one with small aperture and
another with large, and it also needs a polarizer. Finally, all
parts in this method require calibration.

The work that is most relavant to ours [8] renders images
of highlights for every viewing direction using the environ-
mental mapping acquired by placing a mirror ball in the
scene. These images are used in a brute-force search for 5
pose parameters (distance to the camera is assumed known),
producing a rendering that most resembles the input image.
The pose is found by first searching for the best translation
for each orientation using a standard optimization with an
energy function based solely on highlights. The translation
is refined by removing the pixels with low elevation of in-
cident light (to reduce the effect of interreflections). The
rotation with minimal cost is chosen and then all 5 param-
eters are refined by maximizing the correlation of the input



and rendered intensity images (excluding pixels with low
elevation of light). The experiments presented in [8] are
done on simple objects with complex illumination, which
strongly constrains the appearance of highlights. The same
work [8] proposes to use specular flow instead of an envi-
ronment map but still using a brute-force search. In order
to compute the specular flow they require angular motion of
far-field environment, which is also a limiting requirement.

2. Basic Approach

First we introduce the basic idea on a simplified case and
then we show that the same concept can be applied to gen-
eral objects under certain assumptions.

Let P define a planar, mirror-like patch in a 3D space
with normal N. Assume that the patch is illuminated by a
single, distant, compact light source and the distance to the
camera is large enough to assume weak perspective projec-
tion.

Claim 1: For each combination of viewing direction V and
light direction L that produce specular reflection on P, there
exists another v1ew1ng direction V’ and light dlrectlon L
such that L' = V', for which P remains specular (N =
L' =V"). The proof follows immediately from the standard
models of specular reflection [10, 37, 27].

Claim 2: Let p be an image of P corresponding to illumi-
nation direction L and viewing direction V, for which N is
a bisector of the angle between Land V. Let p’ be an image
of P corresponding to illumination direction L’ and view-
ing direction V', such that L = V' = N. Then pand p’ are
related by an affine transformation. (Under the assumption
of weak perspective projection the proof is trivial.)

Now consider a 3D smooth object with a specular but
non-mirror reflectance, which is illuminated by a single,
distant, compact light source. According to most models
of specular reflection [27, 10, 37, 22], a ray of light reach-
ing a shiny surface is reflected as a narrow beam of rays.
The brightest direction of reflection R will lay at the plane
formed by the original ray of light L and the normal at the
point of impact N and will form an angle defined by L-N
relative to N, on that plane. The intensity of the reflected
rays decays as they deviate from R. The rate of decay is de-
termined by the shininess of the surface. According to the
well known Phong model [27], the intensity of a reflected
ray in direction V is proportional to (V - B)®, where o de-
notes the shininess of the surface. We further simplify the
model by assigning only binary intensity values: the inten-
sity at a point with normal N'issetto 1if N-N > tand is
set to 0 otherwise. The threshold ¢ depends on the shininess
of the material and is clearly related to «.. For high values of
t the highlighted part of the surface can be approximated by
a planar patch with orientation corresponding to the normal
N. Under this assumption, we can extend Claims 1 and 2
to a 3D surface:
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Claim 3: Under the assumption of the dominant light
source, a 3D patch of a smooth, specular, non-mirror object
that appears highlighted in an image with unknown illumi-
nation and pose will also appear highlighted in an image for
which L =V = N (L and V are the light and the viewing
directions and NN is the central normal), and these highlights
are related by an approximately affine transformation.

Corollary:Knowing the specular properties of the object al-
lows us to render highlights for every surface normal such
that L = V = N. Given this set, we can relate a highlight
in an image with unknown pose and illumination direction
to the surface patch that produced it by applying an affine
invariant matching between the real highlight and the ren-
dered ones.

As we will soon elaborate, the matching between a high-
light from an unknown view to the patch that produced it,
can be done efficiently. We can then assume that the cen-
troid of the highlight in the image and the centroid of the
corresponding 3D patch is approximately the same point.
Consequently, we can use its 2D coordinates in the image
and its 3D coordinates in the model as a correspondence
pair. Having three such pairs is theoretically enough to com-
pute the pose parameters. Since we only use a single point
from a highlight for establishing the correspondence — the
centroid, we need at least three highlights in the image for
finding the pose solely from specularities. However, if other
cues are available (prominent shape or texture features), we
can easily integrate the correspondences obtained from dif-
ferent sources to find the candidate pose. We show later
that the verification of the pose uses only specularities and
it has no limitation on the number of highlights (even a sin-
gle highlight could suffice).

An efficient way of matching between a highlight in an
image with unknown lighting and pose and a 3D patch that
produced it, includes the following steps. During the offline
stage we first render highlights as viewed from each point
on the viewing sphere (according to some tessellation) for
the special case in which the lighting direction coincides
with the viewing direction. We then compute the affine in-
variant descriptors of the rendered highlights for every view
(affine invariants are computed for each highlight separately
since the highlights that have different depth do not lie in the
same plane) and store them indexed by the viewing direc-
tion. Given an input image, we compute the affine invariant
descriptors of the highlights in that image and search for
a candidate view by matching the invariants in the given
image to the pre-computed invariants of the rendered high-
lights (according to Claim 3).

Matching all highlights that appear in a view as a set,
as opposed to matching each highlight individually, has its
positive and negative sides. The positive side is that match-
ing a set of highlights has lower chance to false matches
compared to matching an individual highlight; and it’s com-



putationally more efficient. The negative side is that a ren-
dered view and an input image could have different number
of highlights due to self occlusions. To solve this problem,
our matching procedure allows for unmatched highlights
(See Section 4).

We choose a portion of candidate views that best match
the invariants computed from the input image. For each can-
didate view we extract the correspondences and compute a
hypothesized pose. We choose the pose with highest verifi-
cation score (see step 5 in Section 4) among the candidate
poses. The exact number of candidate views needed for cor-
rect pose estimation depends on the object. If the object has
very complex shape and most of its local parts differ one
from another, the highlights are distinctive enough and the
number of candidates could be rather small. For more sym-
metric objects, the number of candidate matches could be
high. Nevertheless, our method remains efficient. First, be-
cause we match sets of highlights instead of individual high-
lights, which decreases the number of false matches. Sec-
ond, for every candidate view we apply polynomial match-
ing (See Section 4) in order to establish correspondence be-
tween the highlights in this view to the highlights in the im-
age, and compute a single hypothesized pose for the view
(which is much more efficient than computing pose for all
possible correspondences of the highlights).

2.1. Pose from correspondences

Since specular highlights are sparse, we need a method
that works with a minimal number of correspondences. We
therefore employ the method from [1], since it is compu-
tationally efficient and needs only 3 correspondences. In
practice, there are not many cases in which there are more
than 3 significant highlights. In such cases, we run this al-
gorithm on all possible triplets of correspondences, and take
the correspondence which gives the lowest error on the rest
of the points.

2.2. Affine invariants

Our method uses affine invariants for finding correspon-
dence between the highlights in the image and the set of
3D points that produced the highlight. Much work has been
done on affine invariants and their use in computer vision.
A survey of this work is beyond the scope of the paper.
We chose Affine Moment Invariants [13, 35] due to com-
putational efficiency and low storage requirements. Given
a binary image of a highlight, cropped from the image of
the object, we construct the 17 independent invariants up to
weight 8 as polynomials in the central moments of the im-
age. We then combine them into a single vector and use it
as an affine invariant descriptor of the highlight.
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3. Pose Estimation Algorithm

Computing and storing affine invariant descriptors for
every direction on the viewing sphere is the most compu-
tationally expensive part of the proposed method. Fortu-
nately, it can be done in a preprocessing phase.

3.1. Offline stage

Given a 3D model of an object, we define a set of unit
vectors {]\71} which is a subset of the object’s normals ac-
cording to a certain tessellation. For each N; we perform
the following steps:

Step 1. We set V =L = N; (Vis the viewing and L
is lighting directions), meaning that N; is the center of the
specular beam. We render a binary image B; of the object
from the viewing direction 1% according to the model intro-
duced in Section 2: the intensity of a pixel is set to one if
the dot product between its normal and ]\7Z is larger than a
predefined threshold ¢ , otherwise the intensity is set to zero.
Step 2. We locate significant highlights in B; by finding the
connected components and removing very small ones, since
their affine invariants are unstable due to discretization.
Step 3. We compute an affine invariant descriptor [13, 35]
for every significant highlight in B;, along with the 3D cen-
troid of the surface points that produced it. The descriptors
and 3D centroids are stored for each normal ]\7i.

4. Online stage

During the online stage we are presented with an image
denoted by 1.
Step 1. We extract specular highlights in . We do it by first
applying a high threshold on 7, and then a low threshold but
selecting only the highlights which intersect with those that
passed the high threshold (Figure 3). This method worked
well in all our tests because it extracted the entire highlight
and not only the saturated pixels®. It can be replaced, how-
ever, with any other method for highlight segmentation. Let
By denote the binary image of the highlights. Next we de-
termine the significant highlights in By as was explained in
Step 2 in Section 3.1.
Step 2. For each significant highlight in B; we calculate
the affine invariant descriptor [13, 35] and the 2D centroid.
Now [ is represented by a set of (centroid, descriptor) pairs.
The size of the set is equal to the number of significant high-
lights in Bj.
Step 3. In this step we find correspondences between the
highlights in [ and the 3D model. Specifically, we find a
set of candidate views that best match the highlights in I.

2If the dynamic range of the input image is low and there are parts of
the background that have the same intensities as the highlights, we could
apply the same heuristic but using two images of the scene with short and
long shutter speeds.



Figure 3. Step 1 and 5 of the online stage. Top row, left to right: a given image with unknown pose and lighting, high threshold binary
image, low threshold binary image, highlights from low threshold which intersect with those that passed the high threshold; Bottom row,
left to write: correct hypothesized pose, initial overlap for correct pose (threshold highlights are shown in red, rendered highlights are
shown in green, the overlap between the two are shown in yellow), refined overlap (using the Gaussian sphere), incorrect hypothesized
pose and the corresponding overlap. (This figure is best viewed in color.)

To this end for each viewing direction according to the tes-
sellation, we construct a full bi-partite graph in which one
side corresponds to the highlights in I and the other to the
highlights stored for that view. The weights on the edges
are the Euclidian distances between the descriptors. We use
Hungarian algorithm [18] to find the best maximum match.
Matching also relates between the 2D centroids of the high-
lights in I and the 3D centroids of the surface points, which
provides the 2D-3D correspondence needed for the pose es-
timation algorithm. Next we choose up to K views, with
matching score higher than a predefined threshold, as candi-
dates for the correct correspondence (the matching score is
computed as minus average distance between the descrip-
tors of the matched highlights). The threshold and K are
chosen empirically. The number of significant highlights in
every view is small, which makes the matching very fast.
Step 4. For each candidate correspondence, we find the
pose as shown in section 2.1.

Step 5. We run a verification process on each pose, obtained
by Step 4. The hypothesized pose allows us to match im-
age pixels to corresponding surface normals on the model.
We map each pixel in By to a point on a Gaussian sphere
having the same surface normal, while giving different col-
ors to specular and non-specular pixels. According to the
model introduced in [26], if the pose is correct, the normals
corresponding to the specular pixels must form a cap on a
Gaussian sphere and the size of the cap is determined by the
material properties of the object. Since these are known, we
could adjust the coloring on the sphere such that the spec-
ular normals form a cap of the correct size. The size of the
cap can be controlled by ¢, which is the threshold on the dot
product between the central normal and the most peripheral
normal within the cap. In practice, we search for a normal
v/, for which the set of specular normals {7 | 7- v/ > t} is
the largest. We choose v’ to be the center of the cap and set
all normals ' satisfying ¥ - v > tto be specular. The up-
dated coloring is then mapped back to the image plane and
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compared with By . This process relies on the fact that if the
hypothesized pose is correct, the updated highlights will be
similar to the original, but if the hypothesized pose is wrong
the updated highlights will be inconsistent with the original
(Figure 3). The overlap measure used in [26] is not robust to
small shifts, caused by the errors in pose. Thus we applied a
robust variant of Hausdorff measure [34] to compare the bi-
nary images: H(By, B}) = h(By, B}) +h(B}, Br), where
B is the binary image of highlights mapped back from the
Gaussian sphere and

h(A, B) Z min{a, mm lla — 0|}

acA

4]

where |A| is the number of non-zero pixels in A and « is
a constant, depending on the size of the image (choosen
empirically).

Step 6. (Optional) We found that running an optimization
of the verification function, with the hypothesized pose as
a starting point is helpful for refining the pose. We take S
hypothesized poses with the best verification score and run
a standard routine for constrained non-linear optimization
[29] using these poses as starting points. The pose that pro-
duces the best score (after optimization) is the output of the
algorithm?.

5. Experiments

We start by providing the implementation details and
then show the results on real and synthetic objects.

5.1. Implementation Details

In all our experiments we used 3D models available on
the Web . The 3D models were centered, bound to the unit

3due to running time constraints we do not run the optimization for
every hypothesized pose; in our experiments we set S = 3
“4See http://shapes.aim-at-shape.net/



: o= U TN
SNl S i1 12l
Av.Success 71 80 90 70 85 85 70 70 100 85 90
Rate Synth. (%)
Av. Transl. 0.028 0.013 0.015 0.010 0.012 | 0.017 | 0.026 | 0.016 | 0.012 | 0.020 | 0.011
Error Synth.
Av. Rotation 4.72 3.09 2.96 4.35 2.82 2.85 4.64 4.35 2.30 4.09 1.64
Error (deg.) Synth.
Av.Success 69 78 87 70 69 69 54 55 80 77 54
Rate Real (%)
Av. Transl. 0.077 0.073 0.039 0.051 0.032 | 0.036 | 0.067 | 0.104 | 0.078 | 0.060 | 0.037
Error Real
Av. Rotation 11.85 | 11.028 | 8.39 8.55 5.40 3.87 8.67 9.81 9.40 6.15 9.57
Error (deg.) Real

Table 1. Pose estimation results. The top three rows correspond to the synthetic set (total 220 poses). The bottom three rows correspond to
real outdoor set (total 156 poses). The units of the translation error are relative to the object size.

sphere in size, and remeshed to have between 50,000 and
100, 000 faces. Processing of the models was done using
MeshLab 3.

For the offline stage of the algorithm, the rendering of
highlights was done at a resolution of 1024 x 1024. Both
synthetic and real input images were of the same resolution.
For the verification step (see step 5 in Section 4), rendering
of mapped-back highlights was done at a resolution of 256 x
256.

The algorithm was implemented mostly in MATLAB

and partly in Java for the OpenGL renderings. The aver-
age (online) running time of the algorithm was around 60
seconds, which could be significantly improved by more ef-
ficient implementation and also by parallelization, which is
possible during most stages of the algorithm.
Determining ¢: In order to find ¢ for a given object we use
the 3D model of the object and its image in a known pose.
We segment the highlights by applying the method used in
the online stage (step 1, Section 4). We then map the pixels
within the highlights to the points on the Gaussian sphere
having the same surface normal. According to the model
from [26] the specular points of the sphere must form a cap,
which we find using the algorithm from [26]. We set ¢ to the
value of the dot product between the normal in the center of
the cap and the most peripheral normal within the cap.

5.2. Synthetic images

We have tested our algorithm on 11 complex objects,
with different levels of shininess. Table 1 shows the im-
ages of the objects with their selected levels of shininess.
For each object, we have generated 20 random poses, re-
stricting them to have at least three highlights.

The output of the algorithm was evaluated separately for

3See http://meshlab.sourceforge.net/
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translation error and rotation error. Denote the true transla-
tion vector as 7 and rotation matrix that corresponds to the
true rotation angles as R. Denote the corresponding output
of the algorithm as 7 and R. The translation error is de-
fined as ||7 — 7||. The rotation error is defined as the angle
that corresponds to the axis-angle representation of the ro-
tation matrix that brings from R to R. A successful output
pose was considered a pose whose translation error is less
than 0.08 (in units, relative to the object size) and rotation
error is less than 20 degrees (which is roughly equivalent
to 10 degrees error for all 3 Euler angles). Table 1 shows
the average success rates for each of the 11 objects and the
average translation and rotation errors for successful output
poses.

5.3. Real Images

We used 3D models from the synthetic experiment to
create real objects using 3D printing technology that allows
to produce objects from a CAD model with relatively high
accuracy. These objects were painted with a glossy paint,
which produces specular effects. We colored all the ob-
jects with the same uniform color, since textureless objects
are more challenging for pose estimation and recognition in
general. Our method gains no advantage from the uniform
color and doesn’t make any assumptions about the texture of
the objects. We constructed a data set from 225 real images,
divided into two subsets: outdoor and indoor. The number
of poses for each object corresponds to the number of im-
ages of that object. The outdoor set contains 157 images
of all 11 objects against black background. The variation
in light direction in these images are due to sun movement,
and thus is not very large. The indoor subset contains 68
images of 5 objects: cow, mouse, fertility, gargoyle, and
frog. The photos were taken against both plain and cluttered



Figure 4. Examples of the pose estimation results on real indoor
images. The white contour corresponds to the occluding contour
of the object in the estimated pose. The two images in the bottom

right corner show the failure cases.

—

Success(%) 81 63

Table 2. Average success rate of the pose estimation on the indoor
real subset.

backgrounds and include large variation in illumination di-
rection.

We manually labeled 2D-3D correspondences for the
outdoor set, and used them to compute poses. Since the
objects are smooth and textureless our manual correspon-
dences are not exact, and thus the pose computed using
these correspondences cannot be considered as the ground
truth. However, they are accurate enough for evaluating the
automatic algorithm for pose estimation. Table 1 reports the
results in the same format as in Section 5.2 using the man-
ual poses as true poses. We do not have manual labeling for
the indoor set. Thus we classified the output of the proposed
method as success of failure by visually comparing an im-
age, rendered with the computed pose to the corresponding
real images. Table 2 shows the success rates for the in-
door set. The average recognition rate over all real images
is 67.5%. Note that according to our definition of success
(See Section 5.2) the probability of a randomly chosen pose
to be considered correct is much less than 1%.
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6. Conclusions

In this work we addressed a challenging task of pose es-
timation in difficult viewing conditions, in which conven-
tional features for establishing 2D-3D correspondence are
unreliable. We showed that for shiny objects under the as-
sumption of a dominant lights source, specular highlights
could be used as a pose invariant features. We developed
a pose estimation algorithm that relies solely on highlights
and doesn’t require the knowledge of lighting. The pro-
posed method showed good results in evaluation that in-
cluded synthetic and real images.

There are parts of the algorithm that could be further op-
timized, for instance, the search of the best matching views
is linear in the number of samples on the viewing sphere.
Reducing the number of viewing directions could results in
errors in pose estimation. A possible solution is to use non-
uniform tessellation, which is sparser on smooth parts of the
object and denser in areas of high curvature. We plan to ex-
plore this and other optimizations in future work in order to
use the proposed method for recognition. We also plan to
extend the proposed approach to more general illumination
and integrate other cues for correspondence such as promi-
nent texture and shape features.

References

[1] Alter. 3d pose from 3 corresponding points under weak-
perspective projection. Massachusetts Institute of Technol-
ogy, Artificial Intelligence Laboratory, 1992.

[2] A. Ansar and K. Daniilidis. Linear pose estimation from

points or lines. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 25(5):578-589, 2003.

B. Barrois and C. Wohler. 3d pose estimation based on mul-

tiple monocular cues. In BenC0OS07, pages 1-8, 2007.

P. J. Besl and H. D. Mckay. A method for registration of 3-d

shapes. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 14(2):239-256, 1992.

A. Blake and G. Brelstaff. Geometry from specularities. In

Second International Conference on Computer Vision, pages

394-403, 1988.

A. Blake and H. Bulthoff. Shape from specularities: Compu-

tation and psychophysics. Philosophical Transactions of the

Royal Society B: Biological Sciences, 331(1260):237-252,

1991.

C. Bregler and J. Malik. Tracking people with twists and

exponential maps. IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, pages 8—15, 1998.

J. Y. Chang, R. Raskar, and A. K. Agrawal. 3d pose estima-

tion and segmentation using specular cues. In CVPR, pages

1706-1713, 2009.

J. Chen and G. Stockman. Matching curved 3D object mod-

els to 2D images. In CAD-Based Vision Workshop, 1994.,

Proceedings of the 1994 Second, pages 210-218, 1994.

R. L. Cook and K. E. Torrance. A reflectance model for

computer graphics. In SIGGRAPH, pages 307-316, 1981.

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]



Figure 5. Variation of poses for one of the objects from the outdoor subset.

with the original images.

(1]

[12]

[13]

(14]

[15]

[16]

(17]

[18]

[19]

(20]

(21]

(22]

(23]

S. Dambreville, R. Sandhu, A. J. Yezzi, and A. Tannenbaum.
Robust 3d pose estimation and efficient 2d region-based seg-
mentation from a 3d shape prior. In ECCV (2), pages 169—
182, 2008.

A. DelPozo and S. Savarese. Detecting specular surfaces
on natural images. In Proceedings of IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition
(Volume 2), 2007.

J. Flusser and T. Suk. Pattern recognition by affine moment
invariants. Pattern recognition, 26(1):167-174, 1993.

M. Germann, M. D. Breitenstein, I. K. Park, and H. Pfister.
Automatic pose estimation for range images on the gpu. In
3DIM °07: Proceedings of the Sixth International Confer-
ence on 3-D Digital Imaging and Modeling, pages 8§1-90,
2007.

K. Gremban and K. Ikeuchi. Planning multiple observations
for object recognition. International Journal of Computer
Vision, 12(2):137-172, 1994.

D. Huttenlocher and S. Ullman. Object recognition using
alignment. In Proc. ICCV, pages 102-111, 1987.

D. Jacobs and R. Basri. 3-d to 2-d pose determination
with regions. [International Journal of Computer Vision,
34(2):123-145, 1999.

H. W. Kuhn. The Hungarian method for the assignment prob-
lem. Naval Research Logistic Quarterly, 2:83-97, 1955.

P. Lagger, M. Salzmann, V. Lepetit, and P. Fua. 3d pose
refinement from reflections. In CVPR, 2008.

D. Lowe. Fitting parameterized three-dimensional models to
images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 13(5):441-450, 1991.

K. McHenry, J. Ponce, and D. Forsyth. Finding glass. In
Proceedings of IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (Volume 2), pages 973—
979, 2005.

S. Nayar, K.Ikeuchi, and T. Kanade. Surface reflection:
Physical and geometrical perspectives. [EEE Transactions
on Pattern Analysis and Machine Intelligence, 13(7):611-
634, Jul 1991.

Y. Nomura, D. Zhang, Y. Sakaida, and S. Fujii. 3-d object
pose estimation base on iterative image matching: Shading
and edge data fusion. International Conference on Pattern
Recognition, 1:513, 1996.

728

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

The pose estimations shown by white contours are overlaid

J. Norman, J. Todd, and G. Orban. Perception of three-
dimensional shape from specular highlights, deformations of
shading, and other types of visual information. Psychologi-
cal Science, 15(8):565-570, 2004.

M. Oren and S. Nayar. A theory of specular surface geom-
etry. International Journal of Computer Vision, 24(2):105—
124, 1997.

M. Osadchy, D. Jacobs, R. Ramamoorthi, and D. Tucker. Us-
ing specularities in comparing 3D models and 2D images.
Computer Vision and Image Understanding, 111(3):275-
294, 2008.

B. Phong. Illumination for computer generated pictures.
Communications of the ACM, 18(6):311-317, 1975.

T. Q. Phong, R. Horaud, A. Yassine, and P. D. Tao. Object
pose from 2-d to 3-d point and line correspondences. Int. J.
Comput. Vision, 15(3):225-243, 1995.

M. Powell. A fast algorithm for nonlinearly constrained opti-
mization calculations. Numerical Analysis, G.A.Watson ed.,
Lecture Notes in Mathematics, 630, 1978.

B. Rosenhahn, T. Brox, and J. Weickert. Three-dimensional
shape knowledge for joint image segmentation and pose
tracking. Int. J. Comput. Vision, 73(3):243-262, 2007.

B. Rosenhahn, C. Perwass, and G. Sommer. Pose estimation
of 3d free-form contours. Int. J. Comput. Vision, 62(3):267—
289, 2005.

K. Sato, K. Ikeuchi, and T. Kanade. Model based recognition
of specular objects using sensor models. In Automated CAD-
Based Vision, 1991., Workshop on Directions in, pages 2—10,
1991.

H. Schultz. Retrieving shape information from multiple im-
ages of a specular surface. [IEEE Transactions on Pattern
Analysis and Machine Intelligence, 16(2):195-201, 1994.
D. Sim, O. Kwon, and R. Park. Object matching algorithms
using robust Hausdorff distance measures. [lmage Process-
ing, IEEE Transactions on, 8(3):425-429, 2002.

T. Suk and J. Flusser. Graph method for generating affine
moment invariants. In Proceedings of the 17th International
Conference on Pattern Recognition, volume 2, 2004.

J. Wang and K. J. Dana. A novel approach for texture shape
recovery. In Proceedings of the Ninth International Confer-
ence on Computer Vision, page 1374, 2003.

G. J. Ward. Measuring and modeling anisotropic reflection.
SIGGRAPH, 26(2):265-272, 1992.



