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Abstract. Recently Gennaro et al. (ACNS ’16) presented a threshold-
optimal signature algorithm for DSA. Threshold-optimality means that
if security is set so that it is required to have t + 1 servers to cooper-
ate to sign, then it is sufficient to have n = t + 1 honest servers in the
network. Obviously threshold optimality compromises robustness since if
n = t+ 1, a single corrupted player can prevent the group from signing.
Still, in their protocol, up to t corrupted players cannot produce valid
signatures. Their protocol requires six rounds which is already an im-
provement over the eight rounds of the classic threshold DSA of Gennaro
et al. (Eurocrypt ’99) (which is not threshold optimal since n ≥ 3t+1 if
robust and n ≥ 2t+ 1 if not).

We present a new and improved threshold-optimal DSA signature scheme,
which cuts the round complexity to four rounds. Our protocol is based
on the observation that given an encryption of the secret key, the encryp-
tion of a DSA signature can be computed in only four rounds if using a
level-1 Fully Homomorphic Encryption scheme (i.e. a scheme that sup-
ports at least one multiplication), and we instantiate it with the very
efficient level-1 FHE scheme of Catalano and Fiore (CCS ’15).

As noted in Gennaro et al. (ACNS ’16), the schemes have very com-
pelling application in securing Bitcoin wallets from thefts happening due
to DSA secret key exposure. Given that network latency can be a major
bottleneck in an interactive protocol, a scheme with reduced round com-
plexity is highly desirable. We implement and benchmark our scheme
and find it to be very efficient in practice.

1 Introduction

In a threshold signature scheme, the ability to sign a message is shared among n
servers such that any group of size t+1 can sign, but t or less servers cannot. The
immediate consequence is that if a network adversary corrupts up to t servers
(we call this a t-adversary), it will still not be able to sign a message.
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A scheme is said to be threshold-optimal if we can set n = t + 1 and still
prevent a t-adversary from forging signatures. Note that if one sets n = t+ 1, a
t-adversary can always mount a denial-of-service attack by refusing to cooperate,
leaving the lone honest server unable to sign (actually for n = t + 1 even a
1-adversary can mount such an attack). A scheme is said to be robust if a t-
adversary cannot prevent the group from signing. Clearly robustness requires
n ≥ 2t+ 1 so that there always are at least t+ 1 honest servers in the network.

Much research has been devoted to building secure and efficient threshold
signature protocols for a variety of signature schemes. Threshold signatures pro-
vide increased security in the presence of break-ins that can compromise one’s
secret key. By sharing the key among n servers, a user forces the adversary to
compromise many of them (a security level parametrized by t) possibly even in
a short period of time (by using so-called proactive schemes [14]).

Threshold DSA. Threshold scheme for the Digital Signature Algorithm (DSA)
were presented in many works. We focus on the protocols described in [26, 27,
35, 36]. The “classic” protocol in [26, 27] requires 8 communication rounds to
complete and also n ≥ 3t + 1 if desiring robustness, and n ≥ 2t + 1 without.
Note that the protocol is not threshold-optimal.

In particular this protocol rules out the simple n = 2, t = 1 case (e.g. 2-out-
of-2, where two servers have to cooperate to sign). That case was discussed and
solved in [36] using techniques that inform much of the work in [25] and this
paper. Lindell recently presented an improved version of [36] that achieves much
faster speeds by eliminating many of the costly zero-knowledge proofs, but that
protocol is also exclusively for the 2-party case, whereas we are interested in the
general case.

The Threshold DSA Scheme in [25]. Gennaro et al. solve the above prob-
lem by presenting a threshold DSA scheme which is threshold optimal, with a
constant (6) number of rounds, and constant local long-term storage [25].

The main idea of the paper comes from [36]: to use a threshold cryptosystem
to provide players with shares of the DSA secret key. A threshold cryptosystem
achieves the same notion of threshold security but for encryption rather than
signatures. The ability to decrypt a ciphertext is shared among n servers in such
a way that any group of size t + 1 can decrypt, but t or less servers cannot. If
the servers are provided with α = E(x) for such a threshold cryptosystem E,
then this implicitly constitutes a secret sharing of the value x.

Following [36], Gennaro et al. show that if x = skDSA (i.e. the secret key
of a DSA signature scheme), and E is an additively homomorphic threshold
encryption scheme4 then we can build a threshold DSA scheme with the above
properties.

As shown by the implementation presented in [25] their scheme is reasonably
practical and efficient, and the response from the Bitcoin community to the work

4 i.e. a scheme where given c = E(m) and c′ = E(m′) it is possible to compute
ĉ = E(m +m′) where + is a group operation over the message space, e.g. [41] and
its threshold version in [31].
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was overwhelmingly positive. It seems however that the limiting factor in the
deployment of the [25] protocol is its round complexity, since network latency is
a big problem in practice that was not considered by [25]. This leaves open the
question if a better (ideally non-interactive) protocol can be found.

1.1 Our contribution

We present a new threshold signature protocol for DSA with only four rounds of
interaction. We make several improvements to the security proof of the best pre-
vious scheme, and also answer a previously open question about non-malleable
commitments. In particular:

– We present a new threshold-optimal DSA scheme with only four (4) rounds,
whereas the best protocol until now used six (6) rounds. The reduction in
the number of rounds will reduce the slowdown caused by network latency.

– We achieve a better reduction than the proof of [25], and thus our proof
enables the use shorter keys in practice.

– The proof of [25] requires, among other things, the use of independent com-
mitments [28], but we are able to reduce it to the more standard notion of
non-malleable commitments [20, 22]. In the process, we prove a result of gen-
eral interest – we answer the question that was left open by [28] and show
that non-malleability does indeed imply independence. We show that they
are equivalent, which may be useful in future works as the independence
definition is often easier to work with when writing security proofs.

– We implement our signature generation scheme and benchmark our results.
We find that our scheme is more parallelizable than that of [25] and will
have better runtimes in practice for sufficiently large threshold sets.

– Aside from the implementation of our own scheme, we also provide the only
public implementation of the L1FHE scheme of Catalano and Fiore [16].
We built our software modularly so that the two components are completely
decoupled, and the FHE software is fully re-usable for other applications.

While the scheme of [25] has received much positive press in the Bitcoin
community, it has yet to be adopted by any commercial Bitcoin wallet. Our
scheme is less interactive and less complex to code (as we significantly reduce
the number of zero knowledge proofs). We therefore believe that it will be our
scheme and not the one from [25] that will be adopted in practice.

1.2 Our solution in a nutshell

The protocol in [25] starts by encrypting the secret key x of the DSA scheme with
an additively homomorphic encryption scheme E. If the matching decryption key
is shared using a threshold cryptosystem for E then this is a secret sharing of
x and the protocols in [25, 36] show how to leverage this to obtain a threshold
DSA signature.
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Our starting observation is that if one uses a threshold fully homomorphic en-
cryption scheme then any signature scheme can be turned into a non-interactive
threshold one. Conceptually the idea is simple: if α = FHE(x) is an encryption of
the secret key for a signature scheme, then by using the homomorphic properties
of FHE the parties are able to locally compute

E(σ) where σ is the signature on any message M . This idea can be seen
actually as a special case of the non-interactive multiparty computation protocol
based on threshold FHE in [39].

We then turned to optimize the above idea for the specific case of DSA.
Recall how (a generic form of) DSA works – given a cyclic group G of prime
order q generated by an element g, a hash function H defined from arbitrary
strings into Zq, and another hash function H ′ defined from G to Zq we define:

– Secret Key x chosen uniformly at random in Zq.
– Public Key y = gx computed in G.
– Signing Algorithm on input an arbitrary message M , we compute m =
H(M) ∈ Zq. Then the signer chooses k uniformly at random in Zq and
computes R = gk in G and r = H ′(R) ∈ Zq. Then she computes s =
k−1(m+ xr) mod q. The signature on M is the pair (r, s).

– Verification Algorithm On inputM, (r, s) and y, the receiver checks that r, s ∈
Zq and computes

R′ = gms
−1 mod qyrs

−1 mod q in G

and accepts if H ′(R′) = r.

A straightforward application of the above FHE-based approach would result
in a relatively inefficient protocol due to the current state of affairs for FHE.
Indeed we can see that a circuit computing a DSA signatures from encryptions
of x and k is quite deep since it must compute R = gk and k−1.

We use the same techniques as [25] for the computation of R: basically each
player reveals a “share” of R together with a zero-knowledge proof of its cor-
rectness (that can be checked against the encrypted values).

Where we diverge from [25] is in the computation of k−1 and s. We assume
that our encryption scheme E is level-1 HE. This means that given E(x) it is
possible to compute E(F (x)) for any function F that can be expressed by an
arithmetic circuit of multiplicative depth 1. In other words one can perform an
unlimited number of additions over encrypted values but only 1 multiplication.

Given ck = E(k) for such an encryption E, the parties use a variation of
Beaver’s inversion protocol [4]. First they generate an encryption cρ = E(ρ) for
a random value ρ, then using the level-1 property they compute cρk = E(ρk)
and decrypt it using the threshold decryption property. Now they have a public
value η = ρk which reveals no information about k, but allows them to compute
an encryption of k−1 as follows. First compute η−1 and then use the additive
homomorphism to compute ck−1 = η−1 × cρ = E(η−1ρ) = E(k−1).

Efficient Level-1 HE Instantiation. There are various possible choices to
instantiate the Level-1 HE in our protocol. We chose to use the construction
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recently presented in [16] where it is shown that any additively homomorphic
encryption scheme can be turned into a level-1 HE with small computational
overhead. By implementing the underlying additively homomorphic encryption
with Paillier’s scheme [41] we are able to “recycle” all the other components
of the [25] protocol: (i) all the zero-knowledge proofs that show some type of
consistency property for public values vs. encrypted values and (ii) the threshold
encryption based on [31].

1.3 Improvements to the proof of [25].

A tighter reduction. Aside from the improvements in the protocol, our security
proof is also significantly improved. In the proof of [25], if there exists an ad-
versary A that forges with probability Oϵ in the centralized DSA scheme, then
we can build a forger F that succeeds with probability Oϵ3 in the threshold
scheme. In terms of concrete security, this means that in order to get an equiva-
lent level of security, one would have to use keys three times as long when using
the threshold version of the scheme.

While our simulation of the distributed key generation protocol maintains the
Oϵ3 probability, we get a tighter reduction for the threshold signature generation
protocol: O(ϵ2). This leads to a smaller key size in practice when we use our
threshold signature protocol together with a centralized dealer. We note that
this use case is very practical in the Bitcoin application: when one wants to
add threshold security to an existing Bitcoin address (i.e. an address that was
generated using the centralized DSA key generation scheme), one will deal shares
of the existing secret to multiple servers only use the threshold protocol for
subsequent signature generation.
Non-malleable vs. Independent Commitments. The proof of [25] relies on in-
dependent commitments [28] rather than the more standard notion of non-
malleable commitments [22, 20]. While [28] showed that independence implies
non-malleability, the converse was hitherto unknown. Thus, the use of indepen-
dence of their paper was a stronger assumption than the use of non-malleability.

We improved their proof by using non-malleable commitments instead of
independent commitments, but in the process we were able to prove a more
general and interesting lemma: that independence implies non-malleability, and
that the two notions are therefore equivalent.

1.4 Results of implementation

We implemented the Level-1 FHE scheme from [16] as well as our signature
generation protocol. We also optimized the code from [25], and achieve much
better runtimes than reported in that paper.

We found that the runtime of our protocol was comparable but slightly slower
than that of [25]. However, when we parallelized the verification of the zero-
knowledge proofs of both protocols and ran it on a four-core machine, we found
that our protocol was more parallelizable and outperformed that of [25] for
thresholds greater than or equal to 13.
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Moreover, we argue that the raw-computation time metric only tells a partial
story as it does not account for network latency. In a real network setting,
the slightly slower runtime of the serial version of our protocol will be amply
compensated by the network savings due to the reduction of rounds.

1.5 Motivation: Bitcoin Wallet Security

Following [25] we now present the main motivation of our work: distributed
signing for Bitcoin transactions. Bitcoin is the most widely used electronic cur-
rency. In Bitcoin users are identified by addresses which can be thought simply
as DSA public keys5. A user with address pk1 transfers Bitcoins to another user
with address pk2 simply by digitally signing a statement to that extent using
sk1. Consensus on who owns what is achieved via a distributed public ledger
(with which we are not going to concern ourselves). We focus on the issue that
a user’s Bitcoins are as secure as the secret key of its address. If the secret key
is compromised, the adversary can easily steal all the Bitcoins associated with
the matching public key by simply transferring the coins to itself.

The suggestion to use the classic threshold DSA protocol in [26, 27] to achieve
transparent splitting of signature keys, was rejected by Bitcoin practitioners
for various reasons. First of all the protocol in [26, 27] was considered to be
too computationally heavy, particularly in the number of rounds. Even more
seriously, the lack of threshold optimality would force a user to put online a high
number of signing servers (e.g. for a security threshold of t = 3 a user would
have to deploy n = 7 or n = 10 servers depending if robustness is required or
not) with a substantial operating cost, and higher number of possible infection
targets. As discussed in [25] it was quite clear the the Bitcoin community would
much prefer a threshold optimal scheme with n = t + 1 even if that meant
compromising robustness and allowing denial-of-service attacks6.

While the protocol in [36] achieves threshold-optimality, it is limited to the
case of (n = 2, t = 1) and does not allow for flexible7 choices of n, t.

Bitcoin does have a built-in multisignature feature. See Appendix A for an
explanation of this feature and why it does not suffice for our application.

5 Bitcoin uses ECDSA, the DSA scheme implemented over a group of points of an
elliptic curve. As in [25] we ignore this fact since our results hold for a generic
version of DSA which is independent of the underlying group where the scheme is
implemented (provided the group is of prime order and DSA is obviously unforgeable
in this implementation.)

6 The rationale for that is that provided a bad server in a denial-of-service attack can
be easily identified – that is the case in both our protocol and the protocol of [25] –
then the corrupted server can be rebooted, restarted from a trusted basis, and the
adversary eliminated.

7 A preliminary version of [25] provided a simple extension of [36] to the n-out-of-n
case which however required O(n) rounds to complete. The same version also uses a
standard combinatorial construction to go from n-out-of-n to the generic n, t case,
but that requires O(nt) local long-term storage by each server.
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2 Model, Definitions and Tools

In this section we introduce our communication model and provide definitions
of secure threshold signature schemes.

Communication Model. We assume that our computation model is composed
of a set of n players P1, . . . , Pn connected by a complete network of point-to-point
channels and a broadcast channel.

The Adversary. We assume that an adversary, A, can corrupt up to t of the
n players in the network. A learns all the information stored at the corrupted
nodes, and hears all broadcasted messages. We consider two type of adversaries:

– honest-but-curious: the corrupted players follow the protocol but try to learn
information about secret values;

– malicious: corrupted players to divert from the specified protocol in any
(possibly malicious) way.

We assume the network is “partially synchronous”, meaning the adversary
speaks last in every communication round (also known as a rushing adversary.)
The adversary is modeled by a probabilistic polynomial time Turing machine.

Adversaries can also be categorized as static or adaptive. A static adversary
chooses the corrupted players at the beginning of the protocol, while an adaptive
one chooses them during the computation. In the following, for simplicity, we
assume the adversary to be static, though the techniques from [15, 32] can be
used to extend our result to the adaptive adversary case.

Given a protocol P, the view of the adversary, denoted by VIEWA(P), is
defined as the probability distribution (induced by the random coins of the play-
ers) on the knowledge of the adversary, namely, the computational and memory
history of all the corrupted players, and the public communications and output
of the protocol.

Signature scheme A signature scheme S is a triple of efficient randomized
algorithms (Key-Gen, Sig, Ver). Key-Gen is the key generator algorithm: on input
the security parameter 1λ, it outputs a pair (y, x), such that y is the public key
and x is the secret key of the signature scheme. Sig is the signing algorithm:
on input a message m and the secret key x, it outputs sig, a signature of the
messagem. Since Sig can be a randomized algorithm there might be several valid
signatures sig of a message m under the key x; with Sig(m,x) we will denote
the set of such signatures. Ver is the verification algorithm. On input a message
m, the public key y, and a string sig, it checks whether sig is a proper signature
of m, i.e. if sig ∈ Sig(m,x).

The notion of security for signature schemes was formally defined in [29] in
various flavors. The following definition captures the strongest of these notions:
existential unforgeability against adaptively chosen message attack.

Definition 1. We say that a signature scheme S =(Key-Gen,Sig,Ver) is unforge-
able if no adversary who is given the public key y generated by Key-Gen, and the
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signatures of k messages m1, . . . ,mk adaptively chosen, can produce the signa-
ture on a new message m (i.e., m /∈ {m1, . . . ,mk}) with non-negligible (in λ)
probability.

Threshold secret sharing. Given a secret value x we say that the values
(x1, . . . , xn) constitute a (t, n)-threshold secret sharing of x if t (or less) of these
values reveal no information about x, and if there is an efficient algorithm that
outputs x having t+ 1 of the values xi as inputs.

Threshold signature schemes. Let S=(Key-Gen, Sig, Ver) be a signature
scheme. A (t, n)-threshold signature scheme T S for S is a pair of protocols
(Thresh-Key-Gen, Thresh-Sig) for the set of players P1, . . . , Pn.

Thresh-Key-Gen is a distributed key generation protocol used to jointly gen-
erate a pair (y, x) of public/private keys on input a security parameter 1λ. At
the end of the protocol, the private output of Pi is a value xi such that the values
(x1, . . . , xn) form a (t, n)-threshold secret sharing of x. The public output of the
protocol contains the public key y. Public/private key pairs (y, x) are produced
by Thresh-Key-Gen with the same probability distribution as if they were gener-
ated by the Key-Gen protocol of the regular signature scheme S. In some cases
it is acceptable to have a centralized key generation protocol, in which a trusted
dealer runs Key-Gen to obtain (x, y) and the shares x among the n players.

Thresh-Sig is the distributed signature protocol. The private input of Pi is
the value xi. The public inputs consist of a message m and the public key y.
The output of the protocol is a value sig ∈ Sig(m,x).

The verification algorithm for a threshold signature scheme is, therefore, the
same as in the regular centralized signature scheme S.

Definition 2. We say that a (t, n)-threshold signature scheme T S =(Thresh-
Key-Gen,Thresh-Sig) is unforgeable, if no malicious adversary who corrupts at
most t players can produce, with non-negligible (in λ) probability, the signature
on any new (i.e., previously unsigned) message m, given the view of the protocol
Thresh-Key-Gen and of the protocol Thresh-Sig on input messages m1, . . . ,mk

which the adversary adaptively chose.

This is analogous to the notion of existential unforgeability under chosen message
attack as defined by Goldwasser, Micali, and Rivest [29]. Notice that now the
adversary does not just see the signatures of k messages adaptively chosen, but
also the internal state of the corrupted players and the public communication of
the protocols. Following [29] one can also define weaker notions of unforgeability.

In order to prove unforgeability, we use the concept of simulatable adversary
view [13, 30]. Intuitively, this means that the adversary who sees all the informa-
tion of the corrupted players and the signature of m, could generate by itself all
the other public information produced by the protocol Thresh-Sig. This ensures
that the run of the protocol provides no useful information to the adversary
other than the final signature on m.

Definition 3. A threshold signature scheme T S =(Thresh-Key-Gen,Thresh-Sig)
is simulatable if the following properties hold:
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1. The protocol Thresh-Key-Gen is simulatable. That is, there exists a simulator
SIM1 that, on input a public key y, can simulate the view of the adversary
on an execution of Thresh-Key-Gen that results in y as the public output.

2. The protocol Thresh-Sig is simulatable. That is, there exists a simulator
SIM2 that, on input the public input of Thresh-Sig (in particular the public
key y and the message m), t shares xi1 , . . . , xit , and a signature sig of m,
can simulate the view of the adversary on an execution of Thresh-Sig that
generates sig as an output.

Threshold Optimality. As in [25], we are interested in a threshold-optimal
scheme. Given a (t, n)-threshold signature scheme, obviously t+1 honest players
are necessary to generate signatures. A scheme is threshold-optimal if t+1 honest
players also suffice [25].

If we consider an honest-but-curious adversary, then it will suffice to have
n = t + 1 players in the network to generate signatures (since all players will
behave honestly, even the corrupted ones). But in the presence of a malicious
adversary one needs at least n = 2t+1 players in total to guarantee robustness,
i.e. the ability to generate signatures even in the presence of malicious faults.
But as we discussed in the introduction, we want to minimize the number of
servers, and keep it at n = t+ 1 even in the presence of malicious faults. In this
case we give up on robustness, meaning that we cannot guarantee anymore that
signatures will be provided. But we can still prove that our scheme is unforgeable.
In other words an adversary that corrupts almost all the players in the network
can only create a denial-of-service attack, but not forge signatures.

2.1 Level-1 Homomorphic Encryption

We now define the notion of a Level-1 Homomorphic Encryption scheme. An
encryption scheme E defined as usual by a key generation, encryption and de-
cryption algorithms is Level-1 Homomorphic if the following conditions hold:

– The message space is integers modulo a given (large) integer N ;
– The ciphertext space C is partitioned into two disjoint sets C0, C1. We say

that a ciphertext that belongs to Ci is a ciphertext at level i;
– The encryption algorithm for E always outputs ciphertexts at level 0;
– There is an efficiently computable operation +E over the ciphertext space

such that, if α = Enc(a), β = Enc(b) ∈ Ci, where a, b ∈ ZN , then

γ = α+E β = E(a+ b mod N) ∈ Ci

– There is an efficiently computable operation ×E over the ciphertext space
such that, if α = Enc(a), β = Enc(b) ∈ C0, where a, b ∈ ZN , then

γ = α×E β = E(ab mod N) ∈ C1

Instantiation. We use the level-1 homomorphic encryption scheme from [16]
which is built in a “black-box” manner from any additively homomorphic en-
cryption scheme (i.e. a scheme for which only the +E operation exists). For
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the latter we follow [25] and use Paillier’s encryption scheme (described below).
This choice allows us to use unchanged many of the other components of the [25]
protocol: (i) all the zero-knowledge proofs that show some type of consistency
property for public values vs. encrypted values and (ii) the threshold Paillier’s
cryptosystem from [31].

Paillier’s Cryptosystem.

– Key Generation: generate two large primes P,Q of equal length. and set N =
PQ. Let λ(N) = lcm(P −1, Q−1) be the Carmichael function of N . Finally
choose Γ ∈ Z∗

N2 such that its order is a multiple of N . The public key is
(N,Γ ) and the secret key is λ(N).

– Encryption: to encrypt a message m ∈ ZN , select x ∈R Z∗
N and return

c = ΓmxN mod N2.
– Decryption: to decrypt a ciphertext c ∈ ZN2 , let L be a function defined over

the set {u ∈ ZN2 : u = 1 mod N} computed as L(u) = (u− 1)/N . Then the
decryption of c is computed as L(cλ(N))/L(Γλ(N)) mod N .

– Homomorphic Properties:Given two ciphertexts c1, c2 ∈ ZN2 define c1+Ec2 =
c1c2 mod N2. If ci = E(mi) then c1 +E c2 = E(m1 +m2 mod N). Similarly,
given a ciphertext c = E(m) ∈ ZN2 and a number a ∈ Zn we have that
a×E c = ca mod N2 = E(am mod N).

Catalano-Fiore Level 1 Homomorphic Encryption.Here we briefly recall
the level-1 homomorphic encryption in [16]. Let E be any additively homomor-
phic encryption scheme. Level-0 ciphertexts are then constructed as follows

Enc(m) = [m− b, E(b)] for b ∈R ZN

Obviously, component-wise addition of these ciphertexts results in the encryption
of the addition of the messages. If [αi, βi] = Enc(mi) then

[α1, β1] +Enc [α2, β2] = [α1 + α2 mod N, β1 +E β2] = Enc(m1 +m2 mod N)

Level-1 ciphertexts are created by the multiplication homomorphism

[α1, β1]×Enc [α2, β2] = [α, β1, β2]

where
α = E(α1α2 mod N) +E α2 ⊙E β1 +E α1 ⊙E β2

where with ⊙E we denote the operation of multiplication of a ciphertext by a
scalar: if ψ is an integer and β = E(b) is a ciphertext, then

ψ ⊙E β = E(ψb mod N)

Addition of level-1 ciphertexts is done by using the +E operator on the first
component and concatenating all the other components (notice that addition of
level-1 ciphertexts is not length-preserving).

[α, β1, β2] +Enc [α̂, β̂1, β̂2] = [α+E α̂, β1, β2, β̂1, β̂2]
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2.2 Threshold Cryptosystems

In a (t, n)-threshold cryptosystem, there is a public key pk with a matching
secret key sk which is shared among n players with a (t, n)-secret sharing. When a
messagem is encrypted under pk, t+1 players can decrypt it via a communication
protocol that does not expose the secret key.

More formally, a public key cryptosystem E is defined by three efficient al-
gorithms:

– key generation Enc-Key-Gen that takes as input a security parameter λ, and
outputs a public key pk and a secret key sk.

– An encryption algorithm Enc that takes as input the public key pk and a
message m, and outputs a ciphertext c. Since Enc is a randomized algorithm,
there will be several valid encryptions of a message m under the key pk; with
Enc(m, pk) we will denote the set of such ciphertexts.

– and a decryption algorithm Dec which is run on input c, sk and outputs m,
such that c ∈ Enc(m, pk).

We say that E is semantically secure if for any two messages m0,m1 we have
that the probability distributions Enc(m0) and Enc(m1) are computationally
indistinguishable.

A (t, n) threshold cryptosystem T E , consists of the following protocols for n
players P1, . . . , Pn.

– A key generation protocol TEnc-Key-Gen that takes as input a security pa-
rameter λ, and the parameter t, n, and it outputs a public key pk and a
vector of secret keys (sk1, . . . , skn) where ski is private to player Pi. This
protocol could be obtained by having a trusted party run Enc-Key-Gen and
sharing sk among the players.

– A threshold decryption protocol TDec, which is run on public input a ci-
phertext c and private input the share ski. The output is m, such that
c ∈ Enc(m, pk).

We point out that threshold variations of Paillier’s scheme have been pre-
sented in the literature [2, 18, 19, 31]. In order to instantiate our dealerless pro-
tocol, we use the scheme from [31] as it includes a dealerless key generation
protocol that does not require n ≥ 2t+ 1.

2.3 Non-Malleable Trapdoor Commitments

Trapdoor Commitments. A trapdoor commitment scheme allows a sender to
commit to a message with information-theoretic privacy. i.e., given the transcript
of the commitment phase, the receiver, even with infinite computing power, can-
not guess the committed message better than at random. On the other hand
when it comes to opening the message, the sender is only computationally bound
to the committed message. Indeed the scheme admits a trapdoor whose knowl-
edge allows opening a commitment in any possible way (we will refer to this as
equivocate the commitment). The trapdoor should be hard to compute efficiently.
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Formally a (non-interactive) trapdoor commitment scheme consists of four
algorithms KG, Com, Ver, Equiv with the following properties:

– KG is the key generation algorithm, on input the security parameter it out-
puts a pair pk, tk where pk is the public key associated with the commitment
scheme, and tk is called the trapdoor.

– Com is the commitment algorithm. On input pk and a messageM it outputs
[C(M), D(M)] = Com(pk,M,R) where r are the coin tosses. C(M) is the
commitment string, while D(M) is the decommitment string which is kept
secret until opening time.

– Ver is the verification algorithm. On input C,D and pk it either outputs a
message M or ⊥.

– Equiv is the algorithm that opens a commitment in any possible way given the
trapdoor information. It takes as input pk, stringsM,R with [C(M), D(M)] =
Com(pk,M,R), a message M ′ ̸= M and a string T . If T = tk then Equiv
outputs D′ such that Ver(pk, C(M), D′) =M ′.

We note that if the sender refuses to open a commitment we can set D = ⊥ and
Ver(pk, C,⊥) = ⊥. Trapdoor commitments must satisfy the following properties

Correctness If [C(M), D(M)] = Com(pk,M,R) then Ver(pk, C(M), D(M)) =
M .

Information Theoretic Security For every message pairM,M ′ the distribu-
tions C(M) and C(M ′) are statistically close.

Secure Binding We say that an adversary A wins if it outputs C,D,D′ such
that Ver(pk, C,D) =M , Ver(pk, C,D′) =M ′ and M ̸=M ′. We require that
for all efficient algorithms A, the probability that A wins is negligible in the
security parameter.

Non-malleable Trapdoor Commitments. To define non-malleability [22],
think of the following game. The adversary, after seeing a tuple of commitments
produced by honest parties, outputs his own tuple of committed values. At this
point the honest parties decommit their values and now the adversary tries
to decommit his values in a way that his messages are related to the honest
parties’ ones8. Intuitively, we say that a commitment scheme is non-malleable if
the adversary fails at this game.

However the adversary could succeed by pure chance, or because he has
some a priori information on the distribution of the messages committed by the

8 We are considering non-malleability with respect to opening [20] in which the adver-
sary is allowed to see the decommitted values, and is required to produce a related
decommitment. A stronger security definition (non-malleability with respect to com-
mitment) simply requires that the adversary cannot produce a commitment to a
related message after being given just the committed values of the honest parties.
However for information-theoretic commitments (like the ones considered in this pa-
per) the latter definition does not make sense. Indeed information-theoretic secrecy
implies that given a commitment, any message could be a potential decommitment.
What specifies the meaning of the commitment is a valid opening of it.
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honest parties. So when we formally define non-malleability for commitments
we need to focus on ruling out that the adversary receives any help from seeing
the committed values. This can be achieved by comparing the behavior of the
adversary in the above game, to the one of an adversary in a game in which the
honest parties’ messages are not committed to and the adversary must try to
output related messages without any information about them.

We now give the formal definition of non-malleability from [17]. We have a
publicly known distribution M on the message space and a randomly chosen
public key pk (chosen according to the distribution induced by KG).

Define Game 1 (the real game) as follows. We think of the adversary A as
two separate efficient algorithms A1,A2. We choose t messages according to the
distributionM, compute the corresponding commitments and feed them to the
adversary A1. The adversary A1 outputs a vector of u commitments, with the
only restriction that he cannot copy any of the commitments presented to him.
A1 also transfers some internal state to A2. We now open our commitments
and run A2, who will open the u commitments prepared by A (if A2 refuses
to open some commitment we replace the opening with ⊥). We then invoke a
distinguisher D on the two vectors of messages. D will decide if the two vectors
are related or not (i.e. D outputs 1 if the messages are indeed related). We denote
with Succ1D,A,M the probability that D outputs 1 in this game, i.e.

Succ1D,A,M(k) = Prob



pk, tk← KG(1k) ; m1, . . . ,mt ←M ;
r1, . . . , rt ← {0, 1}k ; [ci, di]← Com(pk,mi, ri) ;

(ω, ĉ1, . . . , ĉu)← A1(pk, c1, . . . , ct) with ĉj ̸= ci∀i, j ;
(d̂1, . . . , d̂u)← A2(pk, ω, d1, . . . , dt) ;

m̂i ← Ver(pk,ĉi, d̂i) :
D(m1, . . . ,mt, m̂1, . . . , m̂u) = 1


Define now Game 2 as follows. We still select t messages according toM but

this time feed nothing to the adversary A. The adversary now has to come up
with u messages on its own. Again we feed the two vectors of messages to D and
look at the output. We denote with Succ2D,A the probability that D outputs 1
in this game, i.e.

Succ2D,A,M(k) = Prob


pk, tk← KG(1k) ; m1, . . . ,mt ←M ;

(m̂1, . . . , m̂u)← A(pk) ;
s.t. m̂i ∈M∪ {⊥} :

D(m1, . . . ,mt, m̂1, . . . , m̂u) = 1


Finally we say that a distinguisherD is admissible, if for any input (m1, . . . ,mt,

m̂1, . . . , m̂u), its probability of outputting 1 does not increase if we change any
message m̂i into ⊥. This prevents the adversary from artificially “winning” the
game by refusing to open its commitments.

We say that the commitment scheme is (t, u) ϵ-non-malleable if for every
message space distributionM, every efficient admissible distinguisher D, every
0 < ϵ < 1, and for every efficient adversary A, there is an efficient adversary A′
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(whose running time is polynomial in ϵ−1) such that

|Succ1D,A,M(k)− Succ2D,A′,M(k)| ≤ ϵ

In other words A′ fares almost as well as A in outputting related messages.

2.4 Independent Trapdoor Commitments

Following [25], our proof uses independent commitments as introduced in [28].
Consider the following scenario: an honest party produces a commitment C and
the adversary, after seeing C, will produce another commitment C ′ (which we
to require to be different from C in order to prevent the adversary from simply
copying the behavior of the honest party and outputting an identical committed
value). At this point the value committed by the adversary should be fixed, i.e.
no matter how the honest party opens his commitment, the adversary will always
open in a unique way.

A formal definition is presented below. In [28] the authors proved that inde-
pendence implies non-malleability, therefore establishing it as a stronger prop-
erty. Here, however, we show that the two notions are actually equivalent, and
therefore we show that both our proof and the one in [25] hold under the more
standard (and natural) definition of non-malleability.

The following definition takes into account that the adversary may see and
output many commitments ([17]).

Independence For any adversary A = (A1,A2) the following probability is
negligible in k:

Prob



pk, tk← KG(1k) ; m1, . . . ,mt ←M
r1, . . . , rt ← {0, 1}k ; [ci, di]← Com(pk,mi, ri)

(ω, ĉ1, . . . , ĉu)← A1(pk, c1, . . . , ct) with ĉj ̸= ci∀i, j
m′

1, . . . ,m
′
t ←M ; d′i ← Equiv(pk, tk,mi, ri,m

′
i)

(d̂1, . . . , d̂u)← A2(pk, ω, d1, . . . , dt)

(d̂′1, . . . , d̂
′
u)← A2(pk, ω, d

′
1, . . . , d

′
t)

∃i : ⊥ ̸= m̂i = Ver(pk,m̂i, ĉi, d̂i) ̸= Ver(pk,m̂′
i, ĉi, d̂

′
i) = m̂′

i ̸= ⊥


In other words even if the honest parties open their commitments in different
ways using the trapdoor, the adversary cannot change the way he opens his
commitments Ĉj based on the honest parties’ opening.

Equivalence of Non-malleability and Independence. In [28] it was shown
that independence implies non-malleability, therefore establishing it as a stronger
property. Here, however, we show that the two notions are actually equivalent,
and therefore we show that both our proof and the one in [25] hold under the
more standard (and natural) definition of non-malleability.

Lemma 1. Let KG, Com, Ver, Equiv be a non-malleable commitment. Then KG,
Com, Ver, Equiv s also an independent commitment.
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Proof. Assume by contradiction that the commitment is not independent, that
is there exists an adversary A that is able to open its commitment in different
ways depending on the opening of its input commitments. Then construct the
following distinguisher D in the definition of non-malleable commitments: given
the messages m1, . . . ,mt and the messages µ1, . . . , µu output by A, we have that
D(m1, . . . ,mt, µ1, . . . , µu) = 1 if the µi are indeed the messages that A reveals
when the mi are opened. So D always outputs 1 with adversary A.

Now another adversary A′ who does not see any information about the mi

except for the message distribution M, will only be able to guess the correct
µi with probability substantially bounded away from 1 (the probability that mi

appears as the message tuple inM, which is definitely bounded away from 1 by
a non-negligible quantity – at least the probability that m′

i is selected).

2.5 Candidate Non-Malleable/Independent Trapdoor Commitments

The non-malleable commitment schemes in [20, 21] are not suitable for our pur-
pose because they are not “concurrently” secure, in the sense that the security
definition holds only for t = 1 (i.e. the adversary sees only 1 commitment).

The stronger concurrent security notion of non-malleability for t > 1 is
achieved by the schemes presented in [17, 24, 37]). Therefore for the purpose
of our threshold DSA scheme, we can use any of the schemes in [17, 24, 37]).

3 The new scheme

We start by giving an informal description of the initialization phase and the key
generation protocol which are identical to the ones in [25]. Readers are referred to
[25] for details. We will then get into the details of our new signature generation
protocol and how it differs from the one in [25].

Initialization phase. As in [25] a common reference string containing the
public information pk for a non-malleable9 trapdoor commitment KG, Com, Ver,
Equiv is selected and published. This could be accomplished by a trusted third
party, who can be assumed to erase any secret information (i.e. the trapdoor
of the commitment) after selection or via some publicly verifiable method that
generates the public information, without the trapdoor being known.

Key Generation. The parties run the key generation protocol from [31] to
generate a public key E for the Paillier’s encryption scheme, together with a
sharing of its matching secret key. The value N for Paillier’s scheme is chosen
such that

N > q8. Then as in [25] a value x is generated, and encrypted with E, with
the value α = E(x) made public.This is an implicit (t, n) secret sharing of x,
since the decryption key of E is shared among the players. We use non-malleable

9 In [25] they require an independent commitment scheme, but following our Lemma1
it suffices that the scheme is non-malleable.
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commitments KG, Com, Ver, Equiv to enforce the independence of the values con-
tributed by each player to the selection of x. Note that the resulting distribution
of public DSA keys generated by the protocol is not necessarily uniform, but as
proven in [25] it has sufficiently high entropy to guarantee unforgeability.

3.1 Signature Generation

We now describe our new signature generation protocol, which is run on input
m (the hash of the message M being signed).

In the following with
⊕t+1

i=1 αi we denote the summation over the addition

operation +E of the encryption scheme: i.e.
⊕t+1

i=1 αi = α1 +E . . . +E αt+1.
Similarly with ⊙E we denote the operation of multiplication of a ciphertext by
a scalar: if ψ is an integer and α = E(a) is a ciphertext, then

ψ ⊙E α =

ψ⊕
i=1

α = E(ψa mod N)

Moreover in the protocol below we assume that if any commitment opens to
⊥ or if any of the ZK proofs fails, the protocol outputs ⊥.

– Round 1
Each player Pi
• chooses ρi, ki ∈R Zq and ci ∈R [−q6, q6]
• computes ri = gki

• computes ui = E(ρi), vi = E(ki) and wi = E(ci)
• computes [Ci, Di] = Com([ri, ui, vi, wi]) and broadcasts Ci

– Round 2
Each player Pi broadcasts
• Di. This allows everybody to compute [ri, ui, vi, wi] = Ver(Ci, Di)
• a zero-knowledge argument Π(i) which states
∃ν1, ν2 ∈ [−q3, q3] and ν3 ∈ [−q6, q6]:

∗ gν1 = ri
∗ D(vi) = ν1
∗ D(ui) = ν2
∗ D(wi) = ν3

– Round 3
Each player Pi
• verifies the ZKPs of all other players
• computes R = Πt+1

1 ri = gk and r = H ′(R) ∈ Zq
• computes u =

⊕t+1
i=1 ui = E(ρ), v =

⊕t+1
i=1 vi = E(k) and w =

⊕t+1
i=1 wi =

E(c) where ρ =
∑t+1
i=1 ρi, k =

∑t+1
i=1 ki and c =

∑t+1
i=1 ci (all over the in-

tegers)
• computes z = E(kρ+ cq) = (v ×E u) +E (q ⊙E w)
• jointly decrypt z using TDec to learn the value η = D(z) mod q =
kρ mod q
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– Round 4
Each player Pi
• computes ψ = η−1 mod q
• computes v̂ = E(k−1) = ψ ⊙E u
• computes

σ = v̂ ×E [(E(m) +E (r ⊙ α)]
= E(k−1(m+ xr))

= E(s)

The players invoke distributed decryption protocol TDec over the ciphertext
σ. Let s = D(σ) mod q. The players output (r, s) as the signature for m.

The size of the modulus N . We note that since N > q8 all the plaintext op-
erations induced by the ciphertext operations +E ,×E ,⊙E are over the integers.
In turns this implies that the reduction modulo q are correct.

The Zero-knowledge arguments. The ZK arguments invoked by our pro-
tocol are nearly identical to the ones in [25] due to the fact that we are using
Paillier’s scheme to implement our level-1 homomorphic encryption (and we only
require a subset of the proofs needed in that protocol). As in [25, 36] the proofs
require an auxiliary RSA modulus Ñ to construct the “range proofs” via [23].
Moreover the security of the arguments require the strong RSA assumption on
the modulus Ñ . For details readers are referred to [25, 36].

Our protocol only requires zero-knowledge proofs on level-0 ciphertexts. Since
the proofs that we use are a subset of the ones used in [25], we can recycle their
proofs with one simple modification. Recall that when we instantiate the cryp-
tosystem of [16] using Paillier as the underlying scheme, the level-0 ciphertexts
are of the form

Enc(m) = [m− b, E(b)] for b ∈R ZN
where E(b) is a Paillier encryption of b. In order to directly utilize the proofs
of [25], however, we need E(m), a Paillier encryption of m. We can obtain a
Paillier encryption of m by deterministically encrypting m − b, and computing
the sum of these ciphertexts using the addition operator of Paillier. In particular,
let E(b) = Γ bxN mod N2 for some x ∈ Z∗

N . Then

E(m) = E(b)× [Γm−b1N mod N2] mod N2 = ΓmxN mod N2

The prover now has an encryption ofm and can use the zero knowledge proofs
from [25] directly. Moreover, because the encryption of m − b is deterministic,
the verifier can perform the operation himself, and thus be convinced that the
ciphertexts being used for the proofs is a Pallier encryption of the same value as
the original level-0 ciphertext.

The homomorphism of the encryption E. Note that the scheme performs
two multiplications of ciphertexts, but in each case the ciphertexts are of level
0. So level-1 homomorphism suffices.
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4 Security Proof

We prove the following Theorem:

Theorem 1. Assuming that

– The DSA signature scheme is unforgeable;
– E is a semantically secure, additively homomorphic encryption scheme;
– KG, Com, Ver, Equiv is a non-malleable trapdoor commitment;
– the Strong RSA Assumption holds;

then our threshold DSA scheme in the previous section is unforgeable.

The proof follows from a standard simulation: if there is an adversary A that
forges in the threshold scheme with a significant probability, then there exists
a forger F that forges in the centralized DSA scheme also with a significant
probability. The adversary A will be run in a simulated environment by the
forger F which will use the forgery produced by A as its own forgery.

The forger F runs on input a public key y for DSA. Its first task is to run a
simulation for A that terminates with y as the public key of the threshold signa-
ture scheme. We refer to [25] for a simulation of the key generation protocol10.

As discussed in [25] we cannot simulate an exact distribution for the public
keys generated by the key generation protocol, but we can only generate keys at
random over a sufficiently large subset of all possible keys. This is still enough
to prove unforgeability (in other words our F will only work on a polynomially
large fraction of public keys which is still a contradiction to the unforgeability of
DSA). For those subset of keys, the view of the adversary during the simulated
protocol is indistinguishable from its view during a real execution.

Now whenever A requests the signature of a message mi, the forger F can
obtain the real signature (ri, si) from its signature oracle. It will then simulate
an execution of the threshold signature protocol which is indistinguishable from
the real one (in particular on input mi it will output ⊥ or a correct signature
with essentially the same probability as in the real case – when the protocol
terminates with a signature, the output will be (ri, si).).

Because these simulations are indistinguishable from the real protocol for A,
the adversary will output a forgery with the same probability as in real life. Such
a forgery m, r, s is a signature on a message that was never queried by F to its
signature oracle and therefore a valid forgery for F as well.

We now present some more details about the simulation of the signature
generation protocol.

4.1 Signature generation simulation

During this simulation the forger F will handle signature queries issued by the
adversary A. We recall that during the simulation we assume that

10 Again, in [25] the proof requires independent commitments but thanks to our
Lemma 1 we can relax that assumption to non-malleable commitments.
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– F controls the lone honest player, and that without loss of generality this
player is P1 and it always speaks first at each round;

– F can equivocate any of the commitment produced by P1 during the simu-
lation, since F sets up the CRS for the adversary during the initialization
phase, and can do so with knowledge of the trapdoor for the commitment
scheme.

During the simulation F has access to a signing oracle that produces DSA sig-
natures under the public key y = gx issued earlier to F . However the ciphertext
α that in the real execution contains an encryption of x, during the simulation
contains the encryption of a different value τ known to F .

As in the real case in the simulation below, we assume that if any commitment
opens to ⊥ or if any of the ZK proofs fails, the simulation aborts.

When A requests to sign a message M , such that m = H(M), the forger
F obtains a signature (r, s) from its signature oracle. F first computes R =

gms
−1 mod qyrs

−1 mod q ∈ G. Note that H ′(R) = r ∈ Zq due to the fact that
the signature is valid. Also F chooses a random value η ∈R [−q7, q7] such that
η−1(m+ rτ) = s mod q

The simulation then proceeds as follows:

– Round 1
Each player Pi
• chooses ρi, ki ∈R Zq and ci ∈R [−q6, q6]
• computes ri = gki

• computes ui = E(ρi), vi = E(ki) and wi = E(ci)
• computes [Ci, Di] = Com([ri, ui, vi, wi]) and broadcasts Ci

– Round 2
Each player Pi broadcasts
• Di. This allows everybody to compute [ri, ui, vi, wi] = Ver(Ci, Di)
• the zero-knowledge argument Π(i)

At this point F rewinds the adversary to the beginning of the round and
changes the opening of P1 to [r′1, u

′
1, v

′
1, w

′
1] such that:

• r′1 = R ·Πt+1
j=2rj

• u′1 = E(ρ′1), such that ρ′1 +
∑t+1
i=2 ρi = 1;

• v′1 = E(k′1) such that

(k′1 +

t+1∑
i=2

ki) + q

t+1∑
i=1

ci = η

and simulates the appropriate ZK proof for P1. If after the rewinding any
player Pi changes the opening of its commitment to D′

i ̸= Di then the forger
F aborts.

– Round 3
Each player Pi
• verifies the ZKPs of all other players
• computes R = Πt+1

1 ri = gk and r = H ′(R) ∈ Zq
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• computes u =
⊕t+1

i=1 ui = E(1), v =
⊕t+1

i=1 vi and w =
⊕t+1

i=1 wi
• computes z = (v ×E u) +E (q ⊙E w) = E(η)
• jointly decrypt z using TDec to learn the value η

– Round 4
Each player Pi
• computes ψ = η−1 mod q
• computes v̂ = E(η−1) = ψ ⊙E u since u = E(1)
• computes

σ = v̂ ×E [(E(m) +E (r ⊙ α)]
= E(η−1(m+ rτ))

= E(s)

The players invoke distributed decryption protocol TDec over the ciphertext
σ. Let s = D(σ) mod q. The players output (r, s) as the signature for m.

Lemma 2. On any input M the simulation terminates with F aborting only
with negligible probability.

Proof (of Lemma 2). F aborts only if the adversary changes its opening of the
commitments after the rewinding in Round 2. This is obviously ruled out by the
independence property of the commitment scheme that we use in the protocol.
More precisely, due to Lemma 1 the non-malleable commitment scheme that we
use in the protocol is also independent. The independence property guarantees
that the adversary can change its opening only with negligible probability.

Lemma 3. The simulation terminates in polynomial time and is indistinguish-
able from the real protocol.

Proof (of Lemma 3). The only differences between the real and the simulated
views are

– in the simulated view the forger F might abort, but as proven in Lemma 2,
this only happens with negligible probability;

– in the simulated view, the plaintexts encrypted in the ciphertexts published
by F do not satisfy the same properties that they would in the protocol
when they were produced by a real player P1. It is not hard to see that in
order to distinguish between the two views one must be able to break the
semantic security of the encryption scheme.

– F runs simulated ZK proofs instead of real ones that would prove those
properties. But the simulations are statistically indistinguishable from the
real proofs.

– The distribution of the value η. In the real protocol, η is a fixed value kρ
(which we know is bounded by q6 at most because of the ZK proofs), masked
by a random value in the range of q7. In our protocol, η is a random value in
the range of q7. It is not hard to see that the two distributions are statistically
indistinguishable.
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Fig. 1: Runtime comparison between our
scheme and that of [25] on a four core ma-
chine when we parallelize the ZKP verifi-
cation.

Fig. 2: Runtime comparison between our
scheme and that of [25] running on a single
core.

4.2 Concrete Analysis

Assuming the our adversary A forges with probability ϵ, the concrete analysis
in [25] shows that F has a roughly ϵ3 probability of forging. In [25] this bound
applies to both the simulation of the key generation and signature protocol.
When simulating both protocols, our proof achieves the same bound, since our
simulation of the key generation protocol is basically identical to the one in [25].

However, our simulation of the signature generation protocol is substantially
different than the one in [25] since we do not require every single protocol to
successfully complete with a correct signature. Indeed in order to guarantee
that F forges, it is not necessary that every single message M queried by the
adversary is correctly signed. It is sufficient that the protocol execution on input
M is indistinguishable from the real one, even if the input is ⊥11. This results
in a better reduction, where the success probability of F is approximately ϵ2.

The practical implication is that in application where the key generation does
not have to be simulated (e.g. where the key has already been chosen and it is
then shared, or the key generation and sharing is done by a trusted party), our
proof yields a reduction with better parameters.

5 Implementation Report

We provide an open-source Java implemented of our signature scheme, and com-
pare it to the runtimes of [25]. All benchmarks were done on an Ubuntu desktop
with an Intel® quad-core i7-6700 CPU @ 3.40GHz and 64GB of RAM.

We implemented our code in Java to be consistent with the implementation
in [25] so that we could get an accurate comparison of the runtime. We re-used
the code from their paper when possible, and thus also used the independent
trapdoor commitment scheme from [24] using the Jpair library.

11 This is not possible in the key generation part, since F must ”hit” the target public
key y in order to subsequently forge.
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We were able to make improvements to the code of [25] that sped up the
runtime significantly. Firstly, rather than using Java’s built-in BigInteger class
for modular exponentiation and inversion, we used Square’s jna-gmp12 instead.
In Figure 3, we show the effects of making this switch. Secondly, considering that
for sufficiently large thresholds, the signature generation time is dominating by
verifying other players’ proofs, we added some parallelization support for the
zero-knowledge proof verification. In order to make sure that the benchmark
comparison was accurate, we made all improvements both to our code as well
as to the code from [25].

Fig. 3: Comparison between the runtime reported in GGN16 and the runtime that we
achieved by using jna-gmp. We note that the benchmark machine was not the same
and worse in their case, and thus this speedup is mostly but not entirely due to our
optimizations. All benchmarks were done on a single core.

For the underlying Paillier scheme, we modified the Java implementation of
threshold Paillier in [42]. We fixed an undocumented overflow error in the library
that caused decryption to fail for threshold values greater than or equal to 15.

We did not know of any Java implementation (or any open source implemen-
tation) of the Level-1 FHE scheme from [16], so we implemented that as well,
and this may be of independent interest.

As is the case with the scheme of [25], the cost of verifying commitments and
zero-knowledge proofs will dominate the base proving time for most threshold
parameters. As the proof verification contains multiple checks that are highly
parallelizable, we added parallelization support to both our implementation as
well as that of [25].

In Figure 1, we compare the performance of our scheme to the scheme of [25]
for threshold sets of up to size 20. We found that for thresholds of 13 players
or more, our scheme outperformed the one of [25] when run on our four-core
benchmark machine. In all of these parameter sets, our scheme is highly efficient
and finished in under 2 seconds. We stress that the benchmarks only depend on
t, the threshold, and not on n, the total number of players in the scheme.

12 https://github.com/square/jna-gmp
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In Figure 2, we compare the runtime of our scheme to that of [25] when we
turn off parallelization. The runtimes are comparable, but ours are somewhat
slower. It emerges that while our scheme is slower on a single thread, it is more
parallelizable. Intuitively, this makes sense as we are condensing the computation
into fewer rounds, and thus there is more room for parallelization.

We stress that both Figure 1 and Figure 2 reflect the computation time of a
single player, which will be the computation time of the protocol as all players can
run in parallel. However these benchmarks do not take network communication
time into effect. Even for the serial implementation, in a real network setting,
the slight loss of performance of our protocol will be amply compensated for by
the reduction of two rounds of communication. This is particularly true when
the number of players increases as we cannot proceed to the next round until
all players have received the output from every player in the previous round and
posted their output for the current round.
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A Multisignatures vs. Threshold Signatures

A simple way to achieve the above protection against break-ins for any signature
scheme, is to give each server Pi in the network an independent secret key ski.
The public key for the group is the collection pk = (pk1, . . . , pkn) of public keys
of each individual players. To sign a messageM the group has to produce at least
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t+1 valid signatures for the appropriate subset of public keys. This approach is
called multisignature schemes.

Threshold signatures on the other hand are transparent in the sense that
there is a unique public key pk and signatures are verified against this key. No
outside user is aware of how the matching secret key sk is stored by the user:
i.e. on how many servers n and with what threshold t.

Bitcoin’s protocol allows users to employ multisignatures to split the signing
power among many clients. There are obvious efficiency reasons to prefer thresh-
old signatures to multisignatures since the bandwidth and verification cost grow
linearly in t in the latter. But as discussed in [25] there is also a more serious
side effect to the use of multisignatures. Anonymity In Bitcoin is predicated on
the use by a single party of many different random addresses and the hope that
addresses belonging to the same users cannot be linked together by looking at
the set of transactions in the public ledger. We already know that this a pretty
weak notion of anonymity (see e.g. [38]) but multisignatures weakens it further
by providing evidence of common ownership for addresses that use the same
(n, t) multisignature security policy (see [25] for details). Threshold signatures
do not suffer from these problems as the splitting of the key is done completely
on the client side. As in [25], our threshold signatures the adversary can intro-
duce some bias into the distribution of the signatures, but it is far superior to
multisignatures which leak the entire access policy onto the public blockchain.


