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Abstract. Server-Aided Verification (SAV) is a method that can be em-
ployed to speed up the process of verifying signatures by letting the ver-
ifier outsource part of its computation load to a third party. Achieving
fast and reliable verification under the presence of an untrusted server is
an attractive goal in cloud computing and internet of things scenarios. In
this paper, we describe a simple framework for SAV where the interaction
between a verifier and an untrusted server happens via a single-round
protocol. We propose a security model for SAV that refines existing ones
and includes the new notions of SAV-anonymity and extended unforge-
ability. In addition, we apply our definitional framework to provide the
first generic transformation from any signature scheme to a single-round
SAV scheme that incorporates verifiable computation. Our compiler iden-
tifies two independent ways to achieve SAV-anonymity: computationally,
through the privacy of the verifiable computation scheme, or uncondi-
tionally, through the adaptibility of the signature scheme. Finally, we
define three novel instantiations of SAV schemes obtained through our
compiler. Compared to previous works, our proposals are the only ones
which simultaneously achieve existential unforgeability and soundness
against collusion.

Keywords. Server-Aided Verification, Digital Signatures, Anonymity, Verifiable
Computation.

1 Introduction

The design of new efficient and secure signature schemes is often a challeng-
ing task, especially when the target devices on which the scheme should run
have limited resources, as it happens in the Internet of Things (IoT). Nowa-
days many IoT devices can perform quite expensive computations. For instance,
smartphones have gained significant computational power. Carrying out several
expensive tasks, however, leads to undesirable consequences as, e.g., draining the
battery of the device [11]. We consider signed auctions as a motivating example
in an IoT setting. In signed auctions, bidders sign their offers to guarantee that
the amount is correct and that the offer belongs to them. The auctioneer consid-
ers a bid valid only if its signature is verified. Imagine that the auctioneer checks
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the validity of the bids using a resource-limited device. In this case, running
the signature verification algorithm several times drastically affects the device’s
performance. In this setting one may wonder:

Can an auctioneer efficiently, securely and privately check the authen-
ticity of signed bids using a resource-limited device?

This paper addresses the above question in case the auctioneer has access to
a computationally powerful, yet untrusted, server. This is indeed the setting of
server-aided verification.

1.1 Previous Work

The concept of Server-Aided Verification (SAV) was introduced in the nineties in
two independent works [1,18], and refined for the case of signature and authen-
tication schemes by Girault and Lefranc [15]. The aim of SAV is to guarantee
security and reliability of the outcome of a verification procedure when part of
the computation is offloaded from a trusted device, called the verifier, to an
untrusted one, the server.

All existing security models for SAV consider existential forgery attacks,
where the adversary, i.e., the malicious server, tries to convince the verifier that
an invalid signature is valid [8,15,20,22,24,25]. Despite the fundamental theoret-
ical contributions, [15] did not consider attack scenarios in which the malicious
signer colludes with the server, e.g., by getting control over the server, in or-
der to tamper with the outcome of the server-aided verification of a signature.
The so-called collusion attack was defined by Wu et al. in [24,25] together with
two SAV schemes claimed to be collusion-resistant. Subsequent works revisited
the notion of signer-server collusion [8,21,22]. The most complete and rigorous
definition of collusion attack is due to Chow et al. [8], who also showed that
the protocols in [25] are no longer collusion resistant under the new definition
[7,8]. Recently, Cao et al. [7] rose new concerns about the artificiality and the
expensive communication costs of the SAV in [24].

Chow et al. [8] showed that the enabler of many attacks against SAV is the
absence of an integrity check on the results returned by the server. Integrity
however, is not the only concern when outsourcing computations. In this paper,
we address for the first time privacy concerns and we introduce the notion of
anonymity in the context of SAV of signatures.

1.2 Contributions

The main motivation of this work is the need for formal and realistic definitions
in the area of server-aided verification. To this purpose we:

- Introduce a formalism which allows for an intuitive description of single-
round SAV signature schemes (Section 3);

- Define a security model that includes three new security notions: SAV-
anonymity (Section 4.3), extended existential unforgeability and extended strong
unforgeability (Section 4.1);
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- Describe the first compiler to a SAV signature scheme from any signa-
ture and a verifiable computation scheme (Section 5). Besides its simplicity, our
generic composition identifies sufficient requirements on the underlying primi-
tives to achieve security. In particular, we prove that under mild assumptions
our compiler provides: extended (existential/strong) unforgeability (Theorem 1);
soundness against collusion (Theorem 2); and SAV-anonymity when either the
employed verifiable computation is private (Theorem 3) or the signature scheme
is adaptive (Theorem 4).

- Apply our generic composition to obtain new SAV schemes for the BLS
signature [3] (Section 6.1), Waters’ signature Wat [23] (Section 6.2) and the first
SAV for the CL signature by Camenisch and Lysyanskaya [5] (Section 6.3). While
preserving efficiency, our proposals achieve better security than previous works
(Table 1).

2 Preliminaries

Throughout the paper, x ← A(y) denotes the output x of an algorithm A run
with input y. If X is a finite set, by x ←R X we mean x is sampled from the
uniform distribution over the set X. The expression cost(A) refers to the compu-
tational cost of running algorithm A. For any positive integer n, [n] = {1, ... , n}
and Gn is a group of order n. A function f : N → R is said to be negligible
if f(n) < 1/poly(n) for any polynomial poly(·) and any n > n0, for suitable
n0 ∈ N. Finally, ε denotes a negligible function.

2.1 Signature schemes
Signature schemes [4,5,13] enable one to sign a message in such a way that
anyone can verify the signature and be convinced that the message was created
by the signer. Formally,

Definition 1 (Signature Scheme). A signature scheme Σ = (SetUp,KeyGen,
Sign,Verify) consists of four, possibly randomized, polynomial time algorithms
where:

SetUp(1λ): on input the security parameter λ ∈ N, the setup algorithm returns
the global parameters gp of the scheme, which include a description of the
message and the signature spaces M, S. The gp are input to all the following
algorithms, even when not specified.

KeyGen(): the key generation outputs public-secret key pairs (pk, sk).
Sign(sk,m): on input a secret key sk and a message m ∈M, the sign algorithm

outputs a signature σ ∈ S for m.
Verify(pk,m, σ): The verification algorithm is a deterministic algorithm that

given a public key pk, a message m ∈ M and a signature σ ∈ S, outputs
b = 1 for acceptance, or b = 0 for rejection.

Definition 2 ((In)Valid Signatures). Let Σ be a signature scheme. We say
that a signature σ ∈ S is valid for a message m ∈ M under the key pk if
Verify(pk,m, σ) = 1. Otherwise, we say that σ is invalid.

In this paper, we refer to (in)valid signatures also as (in)valid message-signature
pairs.
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2.2 Verifiable computation

Verifiable computation schemes enable a client to delegate computations to one
or more untrusted servers, in such a way that one can efficiently verify the cor-
rectness of the result returned by the server [2,12]. Gennaro et al. [14] formalised
private verification of outsourced computations as:

Definition 3 (Verifiable Computation [14]). A verifiable computation scheme
Γ = (KeyGen,ProbGen,Comp,Verify) consists of four possibly randomized algo-
rithms where:

KeyGen(λ, f): given the security parameter λ and a function f , the key genera-
tion algorithm produces a public key pk, that encodes the target function f ,
and a secret key sk.

ProbGen(sk, x): given the secret key sk and the input data x, the problem gener-
ation algorithm outputs a public value ωx and a private value τx.

Comp(pk, ωx): given the public key pk and the encoded input ωx, this algorithm
computes ωy, which is an encoding of y = f(x).

Verify(sk, τx, ωy): given sk, τx and the encoded result ωy, the verification algo-
rithm returns y if ωy is a valid encoding of f(x), and ⊥ otherwise.

A verifiable scheme is efficient if verifying the outsourced computation requires
less computational effort than computing the function f on the data x, i.e.,
cost(ProbGen) + cost(Verify) < cost(f(x)).

In the remainder of the paper, we often drop the indexes and write τx = τ ,
ωx = ω, ωy = ρ and denote by y the output of Verify(sk, τ, ρ).

3 Single-round server-aided verification

In the context of signatures, server-aided verification is a method to improve the
efficiency of a resource-limited verifier by outsourcing part of the computation
load required in the signature verification to a computationally powerful server.
Intuitively SAV equips a signature scheme with:

- An additional SAV.VSetup algorithm that sets up the server-aided verification
and outputs a public component pb (given to the server) and a private one pr
(held by the verifier only). 3

- An interactive protocol AidedVerify executed between the verifier and the
server that outputs: 0 if the input signature is invalid; 1 if the input sig-
nature is valid; and ⊥ otherwise, e.g., when the server returns values that do
not match the expected output of the outsourced computation.

In this work, we want to reduce the communication cost of AidedVerify and
restrict this to a single-round (two-message) interactive protocol. This choice
enables us to describe the AidedVerify protocol as a sequence of three algorithms:
SAV.ProbGen (run by the verifier), SAV.Comp (run by the server) and SAV.Verify

3 In [8,25] the output of SAV.VSetup is called Vstring.
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(run by the verifier). This limitation is less restrictive than it may appear: all
the instantiations of SAV signature schemes in [15,17,20,22,24,25,27] are actually
single-round SAV.

We define single-round server-aided verification signature schemes as:

Definition 4 (SAV). A single-round server-aided verification signature scheme
is defined by the following possible randomized algorithms:

SAV.Init(1λ): on input the security parameter λ ∈ N, the initialisation algorithm
returns the global parameters gp of the scheme, which are input to all the
following algorithms, even when not specified.

SAV.KeyGen(): the key generation algorithm outputs a secret key sk (used to sign
messages) and the corresponding public key pk.

SAV.VSetup(): the server-aided verification setup algorithm outputs a public ver-
ification-key pb and a private one pr.

SAV.Sign(sk,m): given a secret key sk and a message m the sign algorithm pro-
duces a signature σ.

SAV.ProbGen(pr, pk,m, σ) : on input the private verification key pr, the public
key pk, a message m and a signature σ, this algorithm outputs a public-
private data pair (ω, τ) for the server-aided verification.

SAV.Comp(pb, ω): on input the public verification key pb and ω the outsourced-
computation algorithm returns ρ.

SAV.Verify(pr, pk,m, σ, ρ, τ): the verification algorithm takes as input the private
verification-key pr, the public key pk, m, σ, ρ and τ . The output is ∆ ∈
{0, 1,⊥}.

Intuitively, the output ∆ of SAV.Verify has the following meanings:

- ∆ = 1: the pair (m, σ) is considered valid and we say that (m, σ) verifies
in the server-aided sense;

- ∆ = 0: the pair (m, σ) is considered invalid and we say that (m, σ) does
not verify in the server-aided sense;

- ∆ = ⊥: the server-aided verification has failed, ρ is rejected (not σ), and
nothing is inferred about the validity of (m, σ).

Unless stated otherwise, from now on SAV refers to a single-round server-aided
signature verification scheme as in Definition 4. Definition 4 implicitly allows to
delegate the computation of several inputs, as long as all inputs can be sent in
a single round, as a vector ω.

Completeness and efficiency of SAV are defined as follows.

Definition 5 (SAV completeness). A SAV is said to be complete if for all λ ∈
N, gp←SAV.Init(1λ), for any pair of keys (pk, sk) ← SAV.KeyGen(), (pb, pr) ←
SAV.VSetup() and message m ←R M; given σ ← SAV.Sign(sk,m), (ω, τ) ←
SAV.ProbGen(pr, pk,m, σ) and ρ← SAV.Comp(pb, ω), it holds:

Prob [SAV.Verify(pr, pk,m, σ, ρ, τ) = 1] > 1− ε

where the probability is taken over the coin tosses of SAV.Sign, SAV.ProbGen.
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Definition 6 (SAV efficiency). A SAV for a signature scheme Σ = (SetUpΣ ,
KeyGenΣ ,SignΣ ,VerifyΣ) is said to be efficient if the computational cost of the
whole server-aided verification is less than the cost of running the standard sig-
nature verification, i.e.,(

cost(SAV.ProbGen) + cost(SAV.Verify)
)
< cost(VerifyΣ) .

4 Security model

In server-aided verification there are two kinds of adversaries to be considered:
the one that solely controls the server used for the aided-verification, and the
one that additionally knows the secret key for signing (signer-server collusion).
In the first case, we are mostly concerned about forgeries against the signature
scheme, while in the second scenario we want to avoid some kind of repudiation
[7]. Existing security models for SAV consider existential unforgeability (EUF)
and soundness against collusion (SAC) [8,25]. In this section, we extend the
notion of EUF to capture new realistic attack scenarios and we consider for the
first time signer anonymity in server-aided verification.

In what follows, the adversary A is a probabilistic polynomial time algorithm.
We denote by qs (resp. qv) the upper bound on the number of signature (resp.
verification) queries in each query phase.

4.1 Unforgeability

Intuitively, a SAV signature scheme is unforgeable if a malicious server, taking
part to the server-aided verification process, is not able to tamper with the
output of the protocol. All the unforgeability notions presented in this section
are based on the unforgeability under chosen message and verification attack
(UF-ACMV) experiment:

Definition 7. The unforgeability under chosen message and verification exper-
iment (ExpUF-ACMV

A [λ]) goes as follows:
Setup. The challenger C runs the algorithms SAV.Init, SAV.KeyGen and

SAV.VSetup to obtain the system parameters gp, the key pair (pk, sk), and the
public-private verification keys (pb, pr). The adversary A is given pk, pb, while
sk and pr are withheld from A.

Query Phase I. The adversary can make a series of queries which may be
of the following two kinds:

- sign: A chooses a message m and sends it to C. The challenger behaves as
a signing oracle: it returns the value σ ← SAV.Sign(sk,m) and stores the pair
(m,σ) in an initially empty list L ⊂M × S.

- verify: A begins the interactive (single-round) protocol for server-aided ver-
ification by supplying a message-signature pair (m,σ) to its challenger. C sim-
ulates a verification oracle: it runs SAV.ProbGen(pr, pk,m, σ) → (ω, τ), returns
ω to A, and waits for a second input. Upon receiving an answer ρ from the
adversary, the challenger returns ∆← SAV.Verify(pr, pk,m, σ, ρ, τ).
The adversary can choose its queries adaptively based on the responses to previ-
ous queries, and can interact with both oracles at the same time.
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Challenge. A chooses a message-signature pair (m∗, σ∗) and sends it to C.
The challenger computes (ω̂, τ̂) ← SAV.ProbGen(pr, pk,m∗, σ∗). The value τ̂ is
stored and withheld from A, while ω̂ is sent to the adversary.

Query Phase II. In the second query phase the sign queries are as before,
while the verify queries are answered using the same τ̂ generated for the chal-
lenge, i.e., A submits only ρ and C replies with ∆← SAV.Verify(pr, pk,m∗, σ∗, ρ, τ̂).

Forgery. A outputs the tuple (m∗, σ∗, ρ∗). The experiment outputs 1 if
(m∗, σ∗, ρ∗) is a forgery (see Definition 8), and 0 otherwise.

Unlike unforgeability for digital signatures, in SAV the adversary can influence
the outcome of the signature verification through the value ρ∗. Moreover, A

can perform verification queries. This is a crucial requirement as the adversary
cannot run SAV.Verify on its own, since pr and τ are withheld from A. In practice,
whenever the output of the server-aided verification is ⊥ the verifier could abort
and stop interacting with the malicious server. In this work, we ignore this case
and follow the approach used in [8] and in verifiable computation [14] where the
adversary ‘keeps on querying’ independently of the outcome of the verification
queries.

Definition 8 (Forgery). Consider an execution of the UF-ACMV experiment
where (m∗, σ∗, ρ∗) is the tuple output by the adversary. We define three types of
forgery:

type-1a forgery: (m∗, ·) /∈ L and 1← SAV.Verify(pr, pk,m∗, σ∗, ρ∗, τ̂).

type-1b forgery: (m∗, σ∗) /∈ L and 1← SAV.Verify(pr, pk,m∗, σ∗, ρ∗, τ̂).

type-2 forgery (m∗, σ∗) ∈ L and 0← SAV.Verify(pr, pk,m∗, σ∗, ρ∗, τ̂),

Existential unforgeability for SAV signature schemes is defined for a quite weak
adversary: the second query phase is skipped and only type-1a forgeries are
considered:

Definition 9 (Existential Unforgeability (EUF) [8]). A SAV scheme is
(ε, qs, qv)-existentially unforgeable under adaptive chosen message and verifica-

tion attacks if Prob
[
ExpUF-ACMV

A [λ] = 1
]
< ε and the experiment ExpUF-ACMV

A [λ]

outputs 1 only on type-1a forgeries, and no query is performed in the Query
Phase II.

This notion of unforgeability fails to capture some realistic attack scenarios. For
instance, consider the case of signed auctions. The adversary is a bidder and
wants to keep the price of the goods he is bidding on under a certain threshold.
A simple way to achieve this goal is to get control over the server used for
the SAV and prevent signatures of higher bids from verifying correctly. This
motivates us to extend the notion of EUF in [8,25] to also account for malicious
servers tampering with the verification outcome of honestly generated message-
signature pairs:
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Definition 10 (Extended Existential Unforgeability (ExEUF)). A SAV
scheme is (ε, qs, qv)-extended existentially unforgeable under adaptive chosen

message and verification attacks if Prob
[
ExpUF-ACMV

A [λ] = 1
]
< ε and the ex-

periment ExpUF-ACMV
A [λ] outputs 1 on type-1a and type-2 forgeries.

Extended existential unforgeablility deals with a stronger adversary than the one
considered in EUF: in ExEUF the adversary can perform two different types of
forgeries and has access to an additional query phase (after setting the challenge).
Resembling the notion of the strongly unforgeable signatures [4], we introduce
extended strong unforgeability for SAV:

Definition 11 (Extended Strong Unforgeability (ExSUF)). A SAV scheme
is (ε, qs, qv)-extended strong unforgeable under adaptive chosen message and ver-

ification attacks if Prob
[
ExpUF-ACMV

A [λ] = 1
]
< ε and ExpUF-ACMV

A [λ] outputs 1

on type-1a, type-1b and type-2 forgeries.

In ExSUF there is no restriction on the pair (m∗, σ∗) chosen by the adversary:
it can be a new message (type-1a), a new signature on a previously-queried
message (type-1b) or an honestly generated pair obtained in the first Query
Phase (type-2).

4.2 Soundness against collusion

In collusion attacks, the adversary controls the server used for the aided veri-
fication and holds the signer’s secret key. This may happen when a malicious
signer hacks the server and wants to tamper with the outcome of a signature
verification. As a motivating example consider signed auctions. The owner of
a good could take part to the auction (as the malicious signer) and influence
its price. For instance, in order to increase the cost of the good, the malicious
signer can produce an invalid signature for a high bid (message) and make other
bidders overpay for it. To tamper with the verification of the invalid signature,
the malicious signer can use the server and make his (invalid) signature verify
when the bid is stated. However, in case no one outbids him, the malicious signer
can repudiate the signature as it is actually invalid.

We define collusion as in [8], with two minor adaptations: (i) we use our
single-round framework, that allows us to clearly state the information flow
between A and C; and (ii) we introduce a second query phase, after the challenge
phase (to strengthen the adversary).

Definition 12 (Soundness Against Collusion (SAC)). Define the experi-
ment ExpACVAuC

A [λ] to be ExpUF-ACMV
A [λ] where:

- in the Setup phase, C gives to A all keys except pr, and
- no sign query is performed, and
- the tuple (m∗, σ∗, ρ∗) output by A at the end of the experiment is consid-

ered forgery if ∆ ← SAV.Verify(pr, pk,m∗, σ∗, ρ∗, τ̂) is such that ∆ 6= ⊥ and
∆ 6= SAV.Verify(pr, pk,m∗, σ∗, ρ, τ̂), where ρ ← SAV.Comp(pb, ω̂) is generated
honestly. A SAV signature scheme is (ε, qv)-sound against adaptive chosen veri-

fication attacks under collusion if Prob
[
ExpACVAuC

A [λ] = 1
]
< ε.
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Definition 12 highlights connections between the notions of extended existential
unforgeability and soundness against collusion. In particular, it is possible to
think of collusion attacks as unforgeability attacks where A possesses the signing
secret key sk (and thus no sign query is needed), and a forgery is a tuple for which
the output of the server-aided verification does not coincide with the correct one,
e.g., if σ∗←SAV.Sign(sk, m∗) then SAV.Verify(pr, pk, m∗, σ∗, ρ∗, τ̂) returns 0.

4.3 Anonymity

We initiate the study of anonymity in the context of server-aided verification of
signatures and provide the first definition of SAV-anonymity.

Consider the running setting of signed auctions. If a malicious server can
distinguish whose signature it is performing the aided-verification of, it can easily
‘keep out’ target bidders from the auction by preventing their signatures from
verifying (in the server aided sense). To prevent such an attack, bidders may
want to hide their identity from the untrusted server. SAV-anonymity guarantees
precisely this: the auctioneer (trusted verifier) learns the identities of the bidders
(signers), while the untrusted server is not able to determine whose signature
was involved in the SAV.

Definition 13 (SAV-anonymity). A SAV scheme is (ε, qv)-SAV-anonymous if

Prob
[
ExpSAV-anon

A [λ] = 1
]
< 1

2 + ε and ExpSAV-anon
A [λ] is:

Setup. The challenger runs the algorithms SAV.Init, SAV.VSetup to obtain
the system parameters and the verification keys (pb, pr). Then it runs SAV.KeyGen
twice to generate (sk0, pk0), (sk1, pk1) and draws b←R {0, 1}. C gives pb, pk0, pk1
to A and retains the secret values pr, sk0, sk1.

Query I. A can adaptively perform up to qv partial-verification queries as
follows. The adversary sends a pair (m, i), i ∈ {0, 1} to C. The challenger com-
putes σ ← SAV.Sign(ski,m), runs SAV.ProbGen(pr, pki,m, σ) → (ω, τ) and re-
turns ω to A.

Challenge. The adversary chooses a message m∗ to be challenged on, and
sends it to C. The challenger computes σ ← SAV.Sign(skb,m

∗) and (ω, τ) ←
SAV.ProbGen(pr, pkb,m

∗, σ); and sends ω to the adversary.

Query II. A can perform another query phase, as in Query I.

Output. The adversary outputs a guess b∗ ∈ {0, 1} for the identity b chosen
by C. The experiment outputs 1 if b∗ = b and 0 otherwise.

The fundamental difference between anonymity for signatures schemes [13,26]
and SAV-anonymity lies in the choice of the challenge message m∗. In the former
case, it is chosen by the challenger at random, while in SAV we let the adversary
select it. This change increases the adversary’s power and reflects several ap-
plication scenarios where A learns the messages (e.g., bids in signed auctions).
We remark that in SAV-anonymity the adversary does not have access to the
verification outcome ∆, as this would correspond to having a verification oracle,
which is not allowed in the anonymity game for signature schemes [13,26].
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5 A compiler for SAV

We present here the first generic compiler for server-aided verification of signa-
tures. Our generic composition method allows to combine any signature scheme
Σ with an efficient verifiable computation scheme Γ for a function f involved in
the signature verification algorithm, and outputs SAVΓΣ , a single-round server-
aided verification scheme for Σ.

The idea to employ verifiable computation in SAV comes from the following
observation. All the attacks presented in [8] succeed because in the target SAV
schemes the verifier never checks the validity of the values returned by the server.
We leverage the efficiency and security properties of verifiable computation to
mitigate such attacks.

5.1 Description of our compiler

Let Σ = (SetUpΣ ,KeyGenΣ ,SignΣ ,VerifyΣ) be a signature scheme and Γ =
(KeyGenΓ , ProbGenΓ , CompΓ , VerifyΓ ) be a verifiable computation scheme.4 In
our generic composition, we identify a computationally-expensive sub-routine of
VerifyΣ that we refer to as VerH (the heavy part of the signature verification);
and we outsource f = VerH using the verifiable computation scheme Γ . To ease
the presentation, we introduce:

ProbGenPRE: This algorithm prepares the input to ProbGenΓ .
VerL: This algorithm is the computationally light part of the signature verifica-

tion. More precisely, VerL is VerifyΣ where VerH is replaced by the output y
of VerifyΓ . It satisfies: cost(VerL) < cost(VerifyΣ) and VerL(pkΣ ,m, σ, y) =
VerifyΣ(pk,m, σ) whenever y 6= ⊥.

Definition 14 (SAVΓΣ). Let Σ, Γ and f be as above. Our generic composition

method for single-round server-aided verification signature scheme SAVΓΣ is de-
fined by the following possibly randomized algorithms:

SAV.Init(1λ): the initialisation algorithm outputs the global parameters gp ←
SetUpΣ(1λ), which are implicitly input to all the algorithms.

SAV.KeyGen(): this algorithm outputs (pkΣ , skΣ)← KeyGenΣ().
SAV.Sign(skΣ ,m): the sign algorithm outputs σ ← SignΣ(skΣ ,m).
SAV.VSetup(): the verification setup algorithm outputs a pair of verification

keys (pkΓ , skΓ )← KeyGenΓ (λ, f), where the function f is described in gp.
SAV.ProbGen(skΓ , pkΣ ,m, σ): this algorithm first runs ProbGenPRE(pkΣ ,m, σ)→
x to produce an encoding of pkΣ, m, σ. Then x is used to compute the output
(ω, τ)← ProbGenΓ (skΓ , x).

SAV.Comp(pkΓ , ω): this algorithm returns ρ← CompΓ (pkΓ , ω).
SAV.Verify(skΓ , pkΣ ,m, σ, ρ, τ): the verification algorithm executes VerifyΓ (skΓ ,
ρ, τ) → y; if y = ⊥, it sets ∆ = ⊥ and returns. Otherwise, it returns the
output of VerL(pkΣ ,m, σ, y)→ ∆ ∈ {0, 1}.

4 To improve readability, we put the subscript Σ (resp. superscript Γ ) to each algo-
rithm related to the signature (resp. verifiable computation) scheme.
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Intuitively, the SAV.ProbGen algorithm prepares the inputs for the delegated
computations (ω) and the private values for the verification of computations
(τ). The SAV.Comp algorithm performs the verifiable delegation of the bilinear
pairing computation, and returns ρ, which includes the encoding of the bilinear
pairing and some additional values to prove the correctness of the performed
operations. Finally, SAV.Verify checks the correctness of the values received by
the server, and proceed with the (light-weight) verification of the signature, only
if the server has behaved according to the protocol.

Completeness of SAVΓΣ. The correctness of SAVΓΣ is a straight-forward com-
putation assuming that Σ is complete and Γ is correct (see the Appendix A for
a detailed proof).

Efficiency of SAVΓΣ. It is immediate to check that cost(VerifyΣ) = cost(VerL) +

cost(VerH). The ProbGenPRE algorithm is just performing encodings of its inputs
(usually projections), and does not involve computationally expensive opera-
tions.5 By the efficiency of verifiable computation schemes we have: cost(VerH) >
cost(ProbGenΓ ) + cost(VerifyΓ ) and thus cost(VerifyΣ) > cost(ProbGenPRE) +
cost(ProbGenΓ ) + cost(VerifyΓ ) + cost(VerL), which proves the last claim.

Our generic composition enjoys two additional features: it applies to any
signature scheme and it allows to reduce the security of SAVΓΣ to the security of its
building blocks, Σ and Γ . To demonstrate the first claim, let us set f = VerH =
VerifyΣ and ProbGenPRE(pkΣ ,m, σ) → x = (pkΣ ,m, σ). The correctness of Γ
implies that y = VerH(x) = VerifyΣ(pkΣ ,m, σ). In this case, VerL(pkΣ ,m, σ, y) is
the function that returns 1 if y = 1 and 0 otherwise. We defer the proof of the
second claim to the following section.

5.2 Security of our generic composition

The following theorems state the security of the compiler presented in Definition
14. Our approach is to identify sufficient requirements on Σ and Γ to guarantee
specific security properties in the resulting SAVΓΣ scheme. To improve readability,
all proofs are collected in the Appendix A. We highlight that the results below
apply to all our instantiations of the SAV signature schemes presented in Section
6, since these are obtained via our generic composition method.

Theorem 1 (Extended Unforgeability of SAVΓΣ). Let Σ be an (εΣ , qs)-
existentially (resp. strong) unforgeable signature scheme, and Γ an (εΓ , qv)-

secure verifiable computation scheme. Then SAVΓΣ is ( εΣ+εΓ

2 , qs, qv)-extended
existential (resp. strong) unforgeable.

The proof proceeds by reduction transforming type-1a (resp. type-1b) forgeries
into existential (resp. strong) forgeries against Σ; and type-2 forgeries, into forg-
eries against the security of Γ .

5 This claim will become clear after seeing examples of SAV signature schemes.
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Theorem 2 (Soundness Against Collusion of SAVΓΣ). Let Σ be a correct
signature scheme and Γ an (εΓ , qv)-secure verifiable computation scheme. Then
SAVΓΣ is (εΓ , qv)-sound against collusion.

The intuition behind the proof of Theorem 2 is the same as in Theorem 1 for
the case of type-2 forgeries.

We present now two independent ways to achieve SAV-anonymity for schemes
obtained with our compiler: leveraging either the privacy of the verifiable com-
putation scheme or the adaptibility of the signature scheme.

Theorem 3 (Anonymity of SAVΓΣ from Private Verification). Let Σ be
a correct signature scheme and Γ an (εΓ , qv)-private verifiable computation
scheme. Then SAVΓΣ is (εΓ , qv)-SAV-anonymous.

Theorem 3 does not require Σ to be anonymous and SAV-anonymity comes
directly from the privacy of the verifiable computation scheme.

Key-homomorphic signatures have been recently introduced by Derler and
Slamanig [10]. In a nutshell, a signature scheme provides adaptibility of signa-
tures [10] if given a signature σ for a message m under a public key pk, it is
possible to publicly create a valid σ′ for the same message m under a new public
key pk′. In particular, there exists an algorithm Adapt that, given pk, m, σ and
a shift amount h, returns a pair (pk′, σ′) for which Verify(pk′,m, σ′) = 1 (cf.
Definition 16 in [10] for a formal statement). 6

Theorem 4 (Anonymity of SAVΓΣ from Perfect Adaption). Let Σ be a
signature scheme with perfect adaption and Γ a correct verifiable computation
scheme. If the output of ProbGenPRE depends only on the adapted values, i.e.,
for all pr, pk,m, σ there is a function G such that:

ProbGenPRE(pr, pk,m, σ) = G(Adapt(pk,m, σ, h),m)

for a randomly chosen shift amount h, then SAVΓΣ is unconditionally SAV-anon-
ymous.

Theorem 4 provides a new application of key-homomorphic signatures to anonymity.
The proof is inspired to the tricks used in [10], intuitively SAV-anonymity follows
from the indistinguishability of the output of Adapt from (pk′′, σ′′ ← Sign(sk′′,m))
for a freshly generated key pair (pk′′, sk′′). Many signatures based on the discrete
logarithm problem enjoy this property, e.g., BLS [3] and Wat [23].

6 New instantiations of SAV schemes

Our generic composition requires the existence of a verifiable computation scheme
for a function f = VerH used in the signature verification algorithm. To the best

6 To provide an example, consider the BLS signature scheme [3]. Given pk = gsk,
m ∈ {0, 1}∗, σ ∈ Gp and h ∈ Zp, the output of Adapt can be defined as: pk′ = pk · gh
and σ′ = σ ·H(m)h. It is immediate to check that (σ′,m) is a valid pair under pk′.
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of the authors’ knowledge, there are verifiable computation schemes for arith-
metic circuits [9,19] and bilinear pairings [6], but no result is yet known for sim-
pler computations such as hash functions and group exponentiations. Following
previous works’ approach, we consider only SAV for pairing-based signatures
[8,20,25,27], since bilinear pairings are bottle-neck computations for resource-
limited devices.7

All our instantiations of SAV schemes are obtained using the compiler in
Definition 14. Their security therefore follows from the results of Section 5.2, once
shown that that the chosen schemes satisfy the hypothesis of the theorems. For
conciseness, we only define the two algorithms ProbGenPRE and VerL. Appendix
B contains thorough descriptions.

6.1 A secure SAV for BLS (SAVCDS1

BLS )

The BLS signature by Boneh et al. [3] has been widely used for constructing
server-aided verification schemes, e.g., Protocols I and II in [25]. Cao et al. [7]
and Chow et al. [8] have shown that all the existing SAV for BLS are neither exis-
tentially unforgeable, nor sound against collusion. This motivates us to propose
SAVCDS1

BLS (described in Figure 1). As a verifiable scheme for the pairing compu-
tation, we employ ‘a protocol for public variable A and B’ by Canard et al. [6],
which we refer to as CDS1.

ProbGenPRE(pkΣ ,m, σ) : on input pkΣ ∈ G1, m ∈ {0, 1}∗ and σ ∈ G1, the
algorithm returns x =

(
(pkΣ , H(m)), (σ, g)

)
.

VerL(pkΣ ,m, σ, y) : this algorithm is VerifyBLS where the computation of the
two pairings is replaced with the output y = (y1, y2) of VerifyCDS2 . For-
mally, VerL checks whether y1 = y2, in which case it outputs ∆ = 1,
otherwise it returns ∆ = 0.

Fig. 1. The core algorithms of SAVCDS1
BLS .

By the correctness of the CDS1 scheme y2 = e(pkΣ , H(m)) and y2 = e(σ, g), thus
VerL has the same output as VerifyBLS. Given that BLS is strongly unforgeable in
the random oracle model [3] and that CDS1 is secure in the generic group model
[6], SAVCDS1

BLS is extended strongly unforgeable and sound against collusion. Our
SAV scheme for the BLS is not SAV-anonymous: the signer’s public key is given
to the server for the aided verification. However, SAV-anonymity can be simply
gained via the adaptability of BLS [10].

In SAVCDS1

BLS the verifier does not need to perform any pairing computation.
This is a very essential feature, especially if the verifying device has very limited
computational power, e.g., an RFID tag.

7 To give benchmarks, let Mp denote the computational cost of a base field multipli-
cation in Fp with log p = 256, then computing za for any z ∈ Fp and a ∈ [p] costs
about 256Mp, while computing the Optimal Ate pairing on the bn curve requires
about 16000Mp (results extrapolated from Table 1 in [16]).
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6.2 A secure SAV for Wat (SAVCDS1

Wat )

Wu et al. [25] proposed a SAV for Waters’ signature Wat [23], which is neither
existentially unforgeable nor sound against collusion. Here we propose SAVCDS1

Wat

(described in Figure 2), which is similar to Protocol III in [25], but has strong
security guarantees thanks to the verifiable computation scheme for ‘public A
and B’ CDS1 [6].

ProbGenPRE(pkΣ ,m, σ) : given pkΣ ∈ G1, m ∈ {0, 1}∗ and σ ∈ G1, select h←R Zp,
compute (pk′Σ , σ

′)← Adapt(pkΣ ,m, σ, h), return x = (pk′Σ ,m, σ
′).

VerL(pk′Σ ,m, σ, y) : this is VerifyWat where the computation of the two pairings
is replaced with the outputs y1, y2 of VerifyCDS1 . Formally, VerL checks if
y1 = pk′Σ · y2, in which case it outputs ∆ = 1, otherwise it returns ∆ = 0.

Fig. 2. The core algorithms of SAVCDS1
Wat .

By the correctness of the CDS1 scheme y1 = e(σ1, g), and y2 = e(H(m), σ2).
Thus, VerL has the same output as VerifyWat. Given that CDS1 is secure in the
generic group model [6], and that Wat is existentially unforgeable in the standard
model [23] our SAVCDS1

Wat is extended existential unforgeable and sound against

collusion. Similarly to Protocol III in [25], SAVCDS1

Wat achieves SAV-anonymity
thanks to the perfect adaption of Wat [10].

6.3 The first SAV for CL (SAVCDS2

CL )

The verification of the BLS and the Wat signatures only requires the computation
of two bilinear pairings. We want to move the focus to more complex signature
schemes that would benefit more of server-aided verification. To this end, we
consider scheme A by Camenish and Lysyanskaya [5], which we refer to as CL,
where VerifyCL involves the computation of five bilinear pairings. For verifiability
we employ CDS2, ‘a protocol with public constant B and variable secret A’ by
Canard et al. [6]. Our SAVCDS2

CL scheme is reported in Figure 3.

ProbGenPRE(pkΣ ,m, σ) : this algorithm simply returns the first two entries of
the signature σ = (σ1, σ2, σ3), i.e., x = (σ1, σ2).

VerL(pkΣ ,m, σ, y) : this algorithm is VerifyCL, except for two pairing computa-
tions which are replaced with the outcome y = (β1, β2) of VerifyCDS2 . More
precisely, the VerL algorithm computes α1 = e(σ1, Y ), α2 = e(X,σ1) and
α3 = e(X,σ2)m. It then checks whether α1 = β1 and α2 ·α3 = β2. If both
of the conditions hold, the algorithm returns ∆ = 1, otherwise ∆ = 0.

Fig. 3. The core algorithms of SAVCDS2
CL .

By the correctness of CDS2 we have: y1 = β1 = e(σ, g), and y2 = β2 =
e(H(m), pkΣ). Therefore VerL performs the same checks as VerifyCL and the
two algorithms have the same output. Given that CL is existential unforgeable
in the standard model [5] and CDS2 is secure and private in the generic group
model [6], SAVCDS2

CL is extended-existential unforgeable, sound against collusion
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and SAV-anonymous. Therefore SAVCDS2

CL is an example of a scheme which is SAV-
anonymous although the base signature scheme is not anonymous (cf. Lemma 1
in Appendix D).

6.4 Comparison with previous work

Table 1 gives a compact overview of how our SAV schemes compare to previ-
ous proposals in terms of unforgeability, soundness under collusion and SAV-
anonymity. We report only the highest level of unforgeability that the scheme
provides. A yes (resp. no) in the table states that the scheme does (resp. does
not) achieve the property written at the beginning of the row, e.g., Protocol III
does not employ a verifiable computation scheme and provides SAV-anonymity.
Every scheme or property is followed by a reference paper or the section where
the claim is proven.

Protocol
I [25]

Protocol
II [25]

SAVCDS1
BLS

Protocol
III [25]

SAVCDS1
Wat

SAV-
ZSS [15]

SAVCDS2
CL

signature BLS [3] BLS [3] BLS [3] Wat [23] Wat [23] ZSS [27] CL [5]

verifiability no no CDS1 [6] no CDS1 [6] no CDS2 [6]

unforgeability EUF [25] no [8]
ExSUF
(6.1)

no (C.1)
ExEUF
(6.2)

EUF [15]
ExEUF
(6.3)

collusion
resistance

no [8] no (C.3) yes (6.1) no (C.3) yes (6.2) no (C.3) yes (6.3)

anonymity no (C.4) no (C.4) no (6.1) yes (C.4) yes (6.2) no (C.4) yes (6.3)

Table 1. Comparison among our SAV schemes and previous works: Protocol I (Figure
3 in [25]), Protocol II (Figure 5 in [25]), Protocol III (Figure 4 in [25]), SAV-ZSS [15]
(depicted in Figure 1 in [25]).

Regarding efficiency, the computational cost of pairing-based algorithms is influ-
enced by three main parameters: (i) the elliptic curve, (ii) the field size, and (iii)
the bilinear pairing. As a result, it is impossible to state that a given algorithm
is efficient for all pairings and for all curves, since even the computational cost
of the most basic operations (e.g., point addition) variates significantly with the
above parameters. For example, CDS2 provides a 70% efficiency gain8 for the
delegator (verifier) when the employed pairing is the Optimal Ate pairing on the
kss-18 curve [6], but is nearly inefficient when computed on the bn curve [16].

7 Conclusions

In this paper, we provided a framework for single-round server-aided verifica-
tion signature schemes and introduced a security model which extends previous
proposals towards more realistic attack scenarios and stronger adversaries. In
addition, we defined the first generic composition method to obtain a SAV for
any signature scheme using an appropriate verifiable computation scheme. Our
compiler identifies for the first time sufficient requirements on the underlying

8 Efficiency gain is the ratio
(
cost(SAV.ProbGen) + cost(SAV.Verify)

)
/cost(VerifyΣ).
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primitives to ensure the security and anonymity of the resulting SAV scheme.
In particular, we showed sufficient conditions to achieve both computational
and unconditional SAV-anonymity. Finally, we introduced three new SAV signa-
ture schemes obtained via our generic composition method, that simultaneously
achieve existential unforgeability and soundness against collusion.

Currently, Canard et al.’s is the only verifiable computation scheme for pair-
ings available in the literature. Considering the wide applicability of bilinear
pairings in cryptography, a more efficient verifiable computation scheme for these
functions would render pairings a server-aided accessible computation to a large
variety of resource-limited devices, such as the ones involved in IoT and cloud
computing settings.
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A Collected proofs

This Appendix collects the proofs of the results stated in Section 5.

Correctness of the proposedcompiler for single-round SAV signature
schemes (Definition 14).
According to Definition 5, a single-round SAV signature scheme is correct if
SAV.Verify outputs 1 with all but negligible probability when all the other al-
gorithms of the scheme are run honestly. This property should hold for any
key-tuple and for any message m ∈ M. Let (pkΣ , skΣ) ← SAV.KeyGen() and
(pkΓ , skΓ )← SAV.VSetup() be the keys used in the scheme. Let σ ← SAV.Sign(skΣ ,
m) = Sign(skΣ ,m), and (ω, τ) ← SAV.ProbGen(skΓ , pkΣ ,m, σ). By the com-
pleteness of the VC scheme Γ , VerifyΓ (skΓ , τ,CompΓ (pkΓ , ω)) = y 6= ⊥. Finally,
by the properties of VerL we have that VerL(pkΣ ,m, σ, y, τ) = VerifyΣ(pk,m, σ)→
1, since the signature scheme Σ is complete.

Proof of Theorem 1 (Extended Unforgeability of SAVΓΣ).

Proof. Let A be an adversary attacking the extended existential unforgeability
of the SAVΓΣ scheme. In what follows, we construct a reduction that uses a
forgery output by A to break either the existential unforgeability of Σ (AΣ) or
the security of Γ (AΓ ). Finally, we give an upper bound for the advantage of
A in terms of the advantages of the other two adversaries.

The reduction begins by choosing a value c ∈ {1, 2}. If c = 1, the reduction
(AΣ) starts the EUF game for Σ; if c = 2, the reduction (AΓ ) starts the verif
(security) game for Γ (Experiment 4). This step corresponds to guessing what
kind of forgery A will output (type-1a, or type-2).
Let c = 1. The reduction AΣ starts the EUF game for Σ (described in Experi-
ment 2), and receives pkΣ from its challenger. AΣ also generates (pkΓ , skΓ ) ←
SAV.VSetup(), and sends to A the keys pkΓ and pkΣ . In the query phase,
AΣ forwards to its challenger all the signature queries received by A, and
also stores the transcript in a list L of pairs (mi, σi). AΣ replies to the veri-
fication queries using skΓ . Let (m∗, σ∗) be the output of A in the challenge
phase. If (m∗, σ∗) ∈ L, AΣ aborts, as A is making a type-2 forgery. Other-
wise, AΣ outputs (m∗, σ∗) as an existential forgery to its challenger (and then
aborts its interaction with A). By the correctness of the VC scheme Γ , the pair
(m∗, σ∗) is part of an extended-existential type-1a forgery against SAVΓΣ . Thus,
Adv(A : type-1a) = Adv(AΣ) < εΣ , by the existential unforgeability of Σ.
Let c = 2. The reduction AΓ starts the verif security game for the scheme Γ
(described in Experiment 4), and receives pkΓ from its challenger. AΓ also gen-
erates (pkΣ , skΣ) ← SAV.KeyGen(), and sends to A the keys pkΣ and pkΓ . In
the query phase, AΣ answers all the signature queries using skΣ , and stores
the transcript, i.e., keeps a list L of queried (mi, σi). When receiving a verifica-
tion query (mj , σj), A

Γ transforms it into xj ← ProbGenPRE(pkΣ ,mj , σj), for
its challenger. AΓ then relays the communication, i.e., AΓ forwards the public
output (ωj) of ProbGenΓ to A, and A’s reply (ρj) to its challenger. Let yj de-
note the final output of the challenger to the verification query. If y = ⊥, AΓ
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sends ∆ = ⊥ to A. Otherwise, AΓ returns ∆ ← VerL(pkΣ ,m, σ, y). Let (m∗,
σ∗) denote A’s challenge pair. The reduction checks if (m∗, σ∗) ∈ L, otherwise it
aborts, since A is submitting a type-1a forgery. If (m∗, σ∗) ∈ L, AΓ computes
x∗ ← ProbGenPRE(pkΣ ,m

∗, σ∗), sends x∗ to its challenger, and returns to A

the public output ω̂ received from its challenger. The second round of queries is
handled by AΓ as the first one. Let (m∗, σ∗, ρ∗) be the (type-2) forgery output
by A; then AΓ outputs ρ∗ to its challenger. By definition of type-2 forgery, it
follows that ρ∗ is a forgery against the verifiable computation scheme Γ . Thus,
Adv(A : type-2) = Adv(AΓ ) < εΓ , by the security of Γ .
To conclude, we combine the advantages of the two cases (c ∈ {0, 1}), and obtain

that SAVΓΣ is a ( εΣ+εΓ

2 , qs, qv)-extended existential unforgeable SAV signature
scheme.

It is easy to see that the same proof works for A an extended strong existen-
tial forger, the only change is that for c = 1 AΣ starts the SEUF game (described
in Experiment 2) and Adv(A : type-1a or type-1b) = Adv(AΣ) < εΣ .

Proof of Theorem 2 (Soundness against Collusion of SAVΓΣ).

Proof. The proof is done via reduction, in a similar way to the proof of Theorem
1, case c = 2. For completeness, we write the detailed proof.

We want here to build a reduction B that uses a collusion forgery against
the scheme SAVΓΣ (produced by an adversary A), to break the security of the
VC scheme Γ . The reduction works as follows. B starts the verif security game
for the scheme Γ (Experiment 4), and gets pkΓ from its challenger. B addi-
tionally generates (pkΣ , skΣ) ← SAV.KeyGen(), and sends pkΣ , skΣ , pk

Γ to A.
During the first query phase, B transforms A’s verification queries (m, σ) into
x ← ProbGenPRE(pkΣ ,m, σ), for its challenger. B then relays the communica-
tion, i.e., forwards the public output of (ω, τ) ← ProbGenΓ (skΓ , x), to A, and
A’s the reply, ρ, to its challenger. Let y denote the final output of the chal-
lenger to the verification query. If y = ⊥, B sends ∆ = ⊥ to A. Otherwise,
B returns ∆ ← VerL(pkΣ ,m, σ, y). Let (m∗, σ∗) denote A’s challenge pair. B
computes x∗ ← ProbGenPRE(pkΣ ,m

∗, σ∗), sends x∗ to its challenger, and re-
turns to A the public output ω̂ received from its challenger. The second round
of verification queries is handled by B with the same strategy as before (this
time, using m∗ and σ∗). Denote by (m∗, σ∗, ρ∗) the final output of the ad-
versary A. We recall that (m∗, σ∗, ρ∗) is a soundness forgery under collusion
if SAV.Verify(pr, pk,m∗, σ∗, ρ∗, τ̂) → ∆∗ /∈ {⊥,SAV.Verify(pr, pk,m∗, σ∗, ρ, τ̂)},
where ρ ← SAV.Comp(pb, ω̂) is generated honestly. The previous condition im-
plies that:

VerL(pkΣ ,m
∗, σ∗,VerifyΓ (skΓ , ρ∗, τ)) 6= VerL(pkΣ ,m

∗, σ∗,VerifyΓ (skΓ , ρ, τ))

and
VerifyΓ (skΓ , ρ∗, τ) 6= ⊥ .

The two inequalities above imply ⊥ 6= VerifyΓ (skΓ , ρ∗, τ) 6= VerifyΓ (skΓ , ρ, τ).
Therefore (x∗, ρ∗) is a valid forgery against the VC scheme Γ .
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Since we assume Γ to be an εΓ secure verifiable computation scheme, we
derive that Adv(A) ≤ Adv(B) < εΓ .

Proof of Theorem 3 (Anonymity of SAVΓΣ from Private Verification).

Proof. The proof proceeds by reducing the privacy of the VC scheme Γ to the
anonymity of SAVΓΣ .

Let the reduction B initiate the priv game for the VC scheme Γ (described
in Experiment 5). B receives the public key pkΓ from its challenger, and runs
SAV.KeyGen twice to generate two pairs of signing keys (pk0, sk0) and (pk1, sk1).
Eventually, B forwards pk0, pk1 and pkΓ to A.

During the query phase of the SAV-anonymity game, B essentially relays the
communication between A and its challenger. More precisely, upon receiving a
query of the form (m, pkb), from A, the reduction performs the following steps:

(1) it selects skb corresponding to the queried identity b ∈ {0, 1},
(2) it produces a valid signature σ ← SAV.Sign(skb,m),
(3) it computes x← ProbGenPRE(pk0,m, σ),
(4) it starts a (public) verification query on x with its challenger.

The challenger replies to B’s query with ωx, the public output of the algorithm
SAV.ProbGen(skΓ , x). B forwards ωx as ω = ωx to A. In order to complete its
verification query, B can return a random value ωy to its challenger, and ignores
the challenger’s public verification output β ∈ {0, 1}.

Let m∗ denote the challenge message submitted by A. B prepares its chal-
lenge inputs as follows. First, it generates a valid signature of m∗ for each
identity, i.e., σb ← SAV.Sign(skb,m

∗), for b ∈ {0, 1}. Secondly, it computes
x∗b ← ProbGenPRE(pkb,m

∗, σb). Finally, it provides to its challenger the values
x∗0, x

∗
1. The challenger replies with ωx∗b , according to the private-VC experiment.

The reduction concludes the challenge phase by relaying ω̂ = ωx∗b to A.
In the second query phase, B acts as in the first query phase. The final output

of B is the same bit b′ output by A.
Since our simulation is perfect, it holds Adv(A) = Adv(B) < εΓ .

Proof of Theorem 4 (Anonymity of SAVΓΣ from Perfect Adaption).

Proof. For this proof, we define a sequence of hybrid games, and prove that the
case b = 0 is indistinguishable from the case b = 1. As a matter of notation, Wi

denotes the event ‘the adversary wins Game i’, while Prob [W] is the probability
of event W. The function µ : H → G is the natural secret-key to public key
homomorphism of Σ (implied by perfect adaptivity), i.e., it holds that pkΣ =
µ(skΣ) for any key pair. To highlight the changes between subsequent games,
we frame the parts that differ.

As stated by the theorem, ProbGenPRE runs Adapt as a subroutine. To ease
the presentation for the proof we describe ProbGenPRE as a composition of Adapt
and a function G:

ProbGenPRE(pr, pk,m∗, σ) = G(Adapt(pk,m∗, σ, h←R H),m∗).
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Game 0: The original SAV-anonymity game (described in Definition 13), where
in challenge phase the challenger runs:

SAV.ProbGen(pr, pkb,m
∗, σ): Output (τ, ω) where

h←R H
(pk′, σ′)← Adapt(pkb,m

∗, σ, h)
x← G(pk′, σ′,m∗), (τ, ω)← SAV.ProbGen(x)

Note that, with overwhelming probability pk′ /∈ {pk0, pk1}, i.e., pk′ is different
from the two public keys involved in the anonymity game.
Game 1: This is the same with Game 0 apart that in the challenge phase the
challenger runs the following SAV.ProbGen′ algorithm, instead of SAV.ProbGen:

SAV.ProbGen′(pr, pkb,m
∗, σ): Output (τ, ω) where

h←R H, set h′ = skb⊕1 · h

(pk′, σ′)← Adapt(pkb,m
∗, σ, h′ )

x← G(pk′, σ′,m∗), (τ, ω)← SAV.ProbGen(x)

Transition - Game 0 → Game 1: Under adaptability of signatures, this change
is conceptual and Prob [W0]=Prob [W1].

Game 2: This is the same as Game 1, apart that in the challenge phase the
challenger replies with signatures generated with the other secret key:

SAV.ProbGen′(pr, pkb,m
∗, σ): Output (τ, ω) where

h←R H, σ̃ ← Sign(skb⊕1,m
∗)

(pk′, σ′)← Adapt( pkb⊕1 , m∗, σ̃, h)

x← G(pk′, σ′,m∗), (τ, ω)← SAV.ProbGen(x)

Transition - Game 1 → Game 2: Also this change in conceptual and it holds
that Prob [W1]=Prob [W2]. To see why, recall that by definition of adaptabil-
ity the output of Adapt(pk,m, σ, h) → (pk′, σ′) has the same distribution as
(pk · µ(h),Sign(sk + h,m)). Thus, in Game 2, σ′ is actually a signature for m∗

under the public key pk′ = pkb ·
(
pkb⊕1 · µ(h)

)
. Since H is abelian, we can write

pk′ also as pk′ = pkb⊕1 ·
(
pkb · µ(h)

)
= pkb⊕1 · µ(h′), for some h′ ∈ H. Under

adaptability, this change is conceptual: the previous equalities show that σ′ is a
signature adapted from pkb but it can also be a signature adapted from pkb⊕1.
Distinguishing between the two cases implies guessing the shift amount h chosen
by the challenger, which leads to unconditional SAV-anonymity.

B Detailed descriptions of our SAV schemes

In this Appendix we present thorough descriptions of the new SAV scheme pro-
posed in this paper (Section 6). The complete explanations of the algorithms in
SAVCDS1

BLS , SAVCDS1

Wat and SAVCDS2

CL are presented in Figures 4, 5 and 6 respectively.
For consistency, we adopt the multiplicative notation for describing the op-

eration elliptic curve groups.
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SAV.Init(1λ) = SetUpBLS(1λ). This algorithm generates the global parameters of the
scheme, that include: a Gap Diffie-Hellman bilinear group (p, g,G,GT , e) according
to the security parameter λ; and a hash function H : {0, 1}∗ → G that maps messages
m ∈M = {0, 1}∗ to group elements in G. The output is gp = (p, g,H,G,GT , e).

SAV.KeyGen() = KeyGenBLS(). The key generation algorithm draws a random s←R Z∗p
and outputs (pk, sk) = (gs, s).

SAV.VSetup() = KeyGenCDS1(). This algorithm outputs pr = void and
pb = (p,G,GT , e, g, β̂), where β̂ = e(g, g).

SAV.Sign(sk,m) = SignBLS(sk,m). The signing algorithm outputs σ = H(m)s ∈ G.

SAV.ProbGen(void, pk,m, σ). This algorithm runs ProbGenPRE(pk,m, σ) →(
(pk, H(m)), (σ, g)

)
and returns the outputs of ProbGenCDS1 on the two pairs

(pk, H(m)) and (σ, g). In details, for (pk, H(m)) the problem generator algorithm

selects two random values r1, r2 ←R Zp, computes the points R1 = pkr
−1
2 gr1 , R2 =

H(m)r
−1
1 gr2 and Û = β̂r1r2 . This process (with fresh randomness) is applied to the

pair (σ, g) as well. The final outputs are ω =
(
(pk, H(m), R

(1)
1 , R

(1)
2 ), (σ, g,R

(2)
1 , R

(2)
2 )
)

and τ =
(
(Û (1), r

(1)
1 , r

(1)
2 ), (Û (2)r

(2)
1 , r

(2)
2 )
)
.

SAV.Comp(pb, ω). The algorithm computes the following bilinear pairings:

α
(1)
1 = e(pk, H(m)), α

(1)
2 = e(R

(1)
1 , R

(1)
2 )
(
e(pk, g)e(g,H(m))

)−1
, α

(2)
1 = e(σ, g), α

(2)
2 =

e(R
(2)
1 , R

(2)
2 )
(
e(σ, g)e(g, g)

)−1
. It returns ρ = (ρ1, ρ2) =

(
(α

(1)
1 , α

(1)
2 ), (α

(2)
1 , α

(2)
2 )
)
.

SAV.Verify(void, pk,m, σ, ρ, τ). The verification algorithm first runs VerifyCDS1(ρi, τi)

for i ∈ [2], i.e., checks whether α
(i)
2 = Û (i)(α

(i)
1 )(r

(i)
1 r

(i)
2 )−1

and α1 ∈ GT . If any of the
previous checks fails, the verification algorithm returns ∆ = ⊥ and halts. Otherwise,
it sets yi = α

(i)
1 , for i ∈ [2] and runs VerL(pk,m, σ, y), which returns ∆ = 1 if y1 = y2,

and ∆ = 0 otherwise.

Fig. 4. SAVCDS1
BLS : Our SAV for the BLS Signature in [3].
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SAV.Init(1λ) = SetUpWat(1
λ). This algorithm generates a bilinear group (p, g,G,GT , e)

according to the security parameter λ; selects n+ 1 group elements V0, V1, ... Vn ←R G
and defines a function H : {0, 1}n → G as H(m) = V0(

∏n
i=1 V

mi
i ). The output is

gp = (p, g,H,G,GT , e).

SAV.KeyGen() = KeyGenWat(). The key generation algorithm draws a random s←R Z∗p
and outputs (pk, sk) = (e(g, g)s, s).

SAV.VSetup() = KeyGenCDS1(). This algorithm outputs pr = void and pb =
(p,G,GT , e, g, β̂), where β̂ = e(g, g).

SAV.Sign(sk,m) = SignWat(sk,m). The signing algorithm picks a random a←R Zp and
outputs σ = (σ1, σ2) = (gs(H(m))a, ga) ∈ G2.

SAV.ProbGen(void, pk,m, σ). This algorithm runs ProbGenPRE(pk,m, σ) → (pk′, σ′) to
create a signature for a new public key, i.e., it picks two random values h, b←R Zp and
sets pk′ = pkβ̂h, σ′ = (ghσ1H(m)b, σ2g

b). (By the adaptivity of Wat if σ is a valid
signature for m under sk with randomness a, then σ′ is a valid signature for m under
sk′ + h with randomness a+ b).
Secondly, the problem generation algorithm runs ProbGenCDS1 on (σ′1, g) and
(H(m), σ′2). In details, for each pair (A,B), the algorithm selects two random values

r1, r2 ←R Zp, computes the points R1 = Ar
−1
2 gr1 , R2 = Br

−1
1 gr2 and Û = β̂r1r2 . The fi-

nal outputs are ω = (R
(1)
1 , R

(1)
2 , R

(2)
1 , R

(2)
2 ) and τ = (pk′Û (1), r

(1)
1 , r

(1)
2 , Û (2)r

(2)
1 , r

(2)
2 ).

SAV.Comp(pb, ω). The algorithm parses ω as
(
(R

(1)
1 , R

(1)
2 ), (R

(2)
1 , R

(2)
2 )
)
; for each pair

(A,B) it computes α1 = e(A,B) and α2 = e(R1, R2)
(
e(g,B), e(A, g)

)−1
. It returns

ρ = (α
(1)
1 , α

(1)
2 , α

(2)
1 , α

(2)
2 ).

SAV.Verify(void, pk,m, σ, ρ, τ). The verification algorithm parses ρ = (ρ(1), ρ(2)) =(
(α

(1)
1 , α

(1)
2 ), (α

(2)
1 , α

(2)
2 )
)

and τ = (pk′, τ (1), τ (2)) =
(
(Û (1), r

(1)
1 , r

(1)
2 ), (Û (2)r

(2)
1 , r

(2)
2 )
)
.

For i ∈ [2] it runs VerifyCDS2(ρ(i), τ (i)), i.e., it checks if α
(i)
2 = Û (i)(α

(i)
1 )(r

(i)
1 r

(i)
2 )−1

and
α1 ∈ GT . If any of the previous checks fails, the verification algorithm returns ∆ = ⊥
and halts. Otherwise, it returns y(i) = α

(i)
1 and runs VerL(pk,m, σ, y), which returns

∆ = 1 if y(1) = pk′ y(2), and ∆ = 0 otherwise.

Fig. 5. SAVCDS1
Wat : Our SAV for the Wat Signature in [23].
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SAV.Init(1λ) = SetUpCL(1λ). The setup algorithm generates the global parameters of
the scheme, that include a bilinear group (q,G, g,GT , ĝ, e).

SAV.KeyGen() = KeyGenCL(). The key generation algorithm draws two random values
x, y ←R Zq, computes gx = X, gy = Y and returns pk = (X,Y ) and sk = (x, y).

SAV.VSetup() = KeyGenCDS2(). This algorithm outputs pr = void and pb =
(p,G,GT , e, G,B, β̂), where G ←R G, B = g and β̂ = e(G,B).

SAV.Sign(sk,m) = SignCL(sk,m). The sign algorithm picks a random a←R G and out-
puts the signature σ = (σ1, σ2, σ3) = (a, ay, ax+mxy) ∈ G3.

SAV.ProbGen(void, pk,m, σ). This algorithm first runs ProbGenPRE(pk,m, σ) →
(σ2, σ3). Then it runs ProbGenCDS2 on σ2 and σ3. In more details, for i ∈ {2, 3} it

selects three random values r
(i)
1 , r

(i)
2 , u(i) ←R Zq, computes the points R

(i)
1 = σi · Gr

(i)
1

and R
(i)
2 = σu

(i)

i · Gr
(i)
2 , and calculates X̂

(i)
1 = (β̂)r

(i)
1 , X̂

(i)
2 = (β̂)r

(i)
2 . The final out-

puts are ω = (R
(2)
1 , R

(2)
2 , R

(3)
1 , R

(3)
2 ) and τ = (u(2), X̂

(2)
1 , X̂

(2)
2 , u(3), X̂

(3)
1 , X̂

(3)
2 ).

SAV.Comp(pb, ω). The algorithm parses ω = (R
(2)
1 , R

(2)
2 , R

(3)
1 , R

(3)
2 ) and returns

ρ = (e(R
(2)
1 , g), e(R

(2)
2 , g), e(R

(3)
1 , g), e(R

(2)
2 , g)).

SAV.Verify(void, pk,m, σ, ρ, τ). The verification algorithm first runs VerifyCDS2(ρ, τ),

i.e., for i ∈ {2, 3} it checks if α
(i)
2 = X̂

(i)
2 (α1(X̂

(i)
1 )−1)u and α

(i)
1 ∈ GT . If any of the

previous checks fails, the verification algorithm returns ∆ = ⊥ and halts. Otherwise,
the values y(i) = β

(i)
1 (X̂

(i)
1 )−1, for i ∈ {2, 3} are used as input for VerL. In details,

VerL(pk,m, σ, y = (y(2), y(3))), computes: β1 = e(σ1, Y ), β2 = e(X,σ1σ
m
2 ). If both

β1 = y(1) and β2 = y(2), the algorithm returns ∆ = 1; otherwise it returns ∆ = 0.

Fig. 6. SAVCDS2
CL : Our SAV for the CL Signature in [5].

C New attacks against previous works

In this Appendix, we review the main existing works on SAV and provide new
attacks against existing schemes.

C.1 (Extended) Existential/Strong Forgeability of [15,25]

Chow et al. proved that Protocol II (Figure 5 in [24]) is not existentially un-
forgeable [8]. In what follows we show that: Protocol III (Figure 4 in [25]) is
not existentially unforgeable; Protocol I (Figure 3 in [25]) is not extended ex-
istentially unforgeable; and SAV-ZSS [15] (depicted in Figure 1 in [25]) is not
extended strongly unforgeable.

Protocol III is a SAV for the Wat signature. Despite what claimed in [25], this
scheme is not existentially unforgeable according to Definition 9. We adapt the
notation used in [25] and show a very simple attack strategy to produce type-1a
forgeries against Protocol III. Let the adversary select a random message m∗ ←R
{0, 1}n and two group elements σ1

∗, σ2
∗ ←R G. Let (m∗, σ∗ = (σ1

∗, σ2
∗)) be
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the challenge pair. By construction the challenger returns to the adversary ω̂ =
(m∗, σ′1, σ2

∗), where σ′1 = σ1
∗gr for a randomly chosen r ←R H. The adversary can

now use σ1
∗ to compute gr as gr =

σ′1
σ1
∗ . At this point, A sets K∗2 = pke(g, gr),

K∗3 = 1 and outputs (m∗, σ∗, ρ∗ = (K∗2 ,K
∗
3 )). This is a type-1a forgery. Indeed

by bilinearity we have K∗2 = pk ·1 ·e(g, gr) = pk ·K∗3 ·Kr
1 . We have thus described

a successful strategy to make an un-queried message-signature pair verify in the
server-aided sense.

The enabler of our attack against Protocol I and SAV-ZSS is the simplis-
tic definition of the SAV.Verify algorithm: in neither of the schemes the veri-
fier can distinguish between an invalid signature and a wrong value returned
by the server. We adapt the notation in [25] and show a successful attack
strategy to produce type-2 forgeries. Let the adversary select a random mes-
sage m ←R M and make a sign query on m. Denote by σ the returns sig-
nature. According to the unforgeability game the pair (m, σ) is valid. Set
(m∗, σ∗) = (m,σ), and output (m∗, σ∗, ρ∗), where ρ∗ ←R GT . With overwhelming
probability ρ∗ 6= e(H(m∗), pk), and thus SAV.Verify returns 0 (on (m∗, σ∗) ∈ L).
The same attack strategy can be employed against the SAV-ZSS scheme by Gi-
rault and Lefranc [15].

We describe an attack strategy to produce extended strong forgeries against
SAV-ZSS (the same idea applies also against Protocol I). With the notation in
[25], let the adversary pick a random message m ←R M and make a sign query
on m in the first query phase. Let σ be the signature returned by the challenger
for message m. A can set as challenge message to be m∗ = m and choose a
random σ∗ 6= σ. After the challenge phase, A parses ω̂=(σ∗, R), and outputs
(m∗, σ∗, ρ∗=e(σ,R)) at the end of the experiment. It is immediate to check that
the adversary’s output is a type-1b forgery. Indeed, (m∗, σ∗) /∈ L and the output
of SAV.Verify is 1, since the adversary used the correct σ to produce ρ∗ (note
that this is not a type-1a forgery since (m∗, σ) ∈ L).

C.2 Critical review of previous models for collusion attacks

In the seminal work on SAV, Girault and Lefranc [15] addressed the signer-server
collusion scenario as “auxiliary non-repudiation”. The first formal definition is
due to Wu et al. in [24], where collusion is seen as a way to increase the adver-
sary’s power, allowing A to produce valid signatures using the signing key sk.
The aim is to make SAV.Verify output 1 (valid) for an invalid pair (m∗, σ̄), where
m∗ is a message chosen by A, and σ̄ is a random invalid signature provided by
the challenger. This model was criticised by Wang et al. [22] in two points. First,
the leakage of the signing key sk to the malicious server is considered unrealistic
and replaced with a forger’s key pair (pkf , skf ). Secondly, Wang et al. suggested
to let the adversary output both m∗ and the signature σ∗ – which is no longer
an invalid signature produced by the challenger –. Although the approach pro-
posed in [22] gives an interesting twist to the notion of collusion, we retain that in
most practical scenarios, the adversary – i.e., the colluding pair malicious signer-
server – actually holds the signing key sk. Therefore we prefer to use Chow et
al.’s model for collusion [8], which builds on Wu et al.’s [24].
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C.3 New collusion attacks against the soundness of [15,25]

We present a new attack strategy to break the soundness under collusion in
SAV-ZSS [15] and Protocol I [25]. The idea is similar to the one presented at the
end of Section 4 for type-1b forgeries against SAV-ZSS. We explain the attack for
the Protocol I, the procedure for SAV-ZSS is analogous. The adversary picks a
random message m∗ and a random signature σ∗, to be the challenge pair. With
overwhelming probability σ∗ is not a valid signature for m∗. Nonetheless, by the
correctness of the scheme SAV.Verify(pr, pk,m∗, σ∗, ρ∗, τ̂) outputs 1 whenever
ρ∗=e(σ,R). The adversary can compute ρ∗ using ω̂=(σ∗, R) and generating a
valid signature for the challenge message σ ← SAV.Sign(sk,m∗). Thus the scheme
is not sound under collusion.

Our collusion attack against Protocol II [25] uses a slightly different tech-
nique. In order to construct a collusion forgery the adversary can pick m∗ and
σ∗ at random. Let ω̂ = (m∗, σ̃∗, pk) be the value returned by the challenger.
The adversary can generate the valid signature σ ← SAV.Sign(sk,m∗), compute
σ̃∗

σ∗ · σ = σ · gr = σ̃ and set ρ∗ = (K1,K2) = (e(σ̃, R), e(H(m∗), pk)). It is trivial
to check that K1 = K2 · τ̂ , since for the BLS signature σ = H(m∗)sk and pk = gsk.

Finally, we show that Protocol III [25] is not sound against collusion. Let
the adversary choose a random message m∗ as the challenge message and set
σ∗ ← SignΣ(sk,m∗), ρ∗ = (K∗2 ,K

∗
3 ) for K∗2 ,K

∗
3 ←R GT . By construction σ∗ is a

valid signature for m∗, thus the output of the server-aided verification should be
∆ = 1. However, since the adversary returns random values for the verification,
with non-negligible probability it holds that: K∗2 6= pk ·K∗3 ·e(g, g)r. To conclude,
we have SAV.Verify(pr, pk,m∗, σ∗, ρ∗, τ̂)→ ∆ = 0 with overwhelming probability,
since Protocol III performs no check on the correctness of the results returned
by the server.

C.4 Anonymity of [15,25]

We observe that whenever ω contains σ the SAV is trivially not anonymous: A
can output b∗ such that Verify(pkb∗ ,m

∗, σ) = 1.
Since in both Protocol I [25] and SAV-ZSS [15] the value outsourced to the

server, ω, contains σ, the schemes are not SAV-anonymous.
In Protocol II [25], ω contains pk, and thus A can easily win the SAV-

anonymity experiment by outputting b∗ such that pkb∗ = pk.
Protocol III by Wu et al. [25] is SAV-anonymous, in this case anonymity

follows from the fact that the verifier adapts the given signature before sending
it to the server (Theorem 4).

D Digital Signatures (security notions)

In what follows, we recall the fundamental definition of a correct signature
scheme and give the detailed description of two signature schemes that we turn
into SAVΓΣ in the paper, as well as standard security definitions for signature
schemes.
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Definition 15 (Completeness). A signature scheme Σ is said to be ε-complete
if ∀λ ∈ N, ∀gp ← SetUp(1λ), all pairs (pk, sk) ← KeyGen() and for all possible
messages m ∈M, it holds that:

Prob
[
Verify

(
pk,m,Sign(sk,m)

)
= 1
]
≥ 1− ε.

D.1 Unforgeability and Anonymity

We present the security notions in a compact notation using experiments and
oracles. In particular, OSign denotes the signing oracle, which holds the secret
key sk and on input a message m returns σ ← Sign(sk,m). The notation AOSign

denotes the interaction between the adversary A and the signing oracle.
We present two flavours of unforgeability: existential and strong.

Definition 16 (Existential Un-
forgeability [4]). A digital signa-
ture scheme Σ is said to be (ε,
qs)-existential unforgeable (EUF)
against adaptive chosen message
attacks if for any PPT adversary A

it holds that:

Prob
[
ExpEUF

A [Σ] = 1
]
< ε .

Experiment 1 (ExpEUF
A [Σ])

(pk, sk) ← KeyGen()

for i = 1, ... , qs
xi ← AOSign(sk,·)(pk, {(xj , σj)}i−1

j=1)

(m∗, σ∗)← A(pk, {(xj , σj)}qsj=1)

if (1)Verify(pk,m∗, σ∗) = 1 and
(2)(m∗, ·) /∈ {(xj , σj)}qsj=1

return 1, else return 0.

Intuitively, existential unforgeability requires that the verification algorithm does
not accept signatures that are not generated in an honest way. It is important
to notice that the winning condition includes a new message: indeed m∗ should
not be among the queried messages. Strong unforgeability extends EUF to also
ensure that the adversary cannot modify (e.g., re-randomising) a signature ob-
tained in the query phase and output a new valid signature on the same message
[4].

Definition 17 (Strong Existen-
tial Unforgeability [4]). A digi-
tal signature scheme Σ is said to be
(ε, qs)-strongly existential unforge-
able against adaptive chosen mes-
sage attacks if for any PPT adver-
sary A it holds that:

Prob
[
ExpSEUF

A [Σ] = 1
]
< ε .

Experiment 2 (ExpSEUF
A [Σ])

(pk, sk) ← KeyGen()

for i = 1, ... , qs
xi ← AOSign(sk,·)(pk, {(xj , σj)}i−1

j=1)

(m∗, σ∗)← A(pk, {(xj , σj)}qsj=1)

if (1)Verify(pk,m∗, σ∗) = 1 and
(2a)(m∗, ·) /∈ {(xj , σj)}qsj=1 or

(2b)(m∗, σ∗) /∈ {(xj , σj)}qsj=1

return 1, else return 0.

The concept of anonymous signatures was introduced in 2006 by Yang et al. [26].
As the name suggests, the main feature of anonymous signatures is to hide the
identity of the signer when only the signature σ is known. In this case, we modify
the signing oracle as follows. OSign now holds two secret keys sk0, sk1; on input
a message m and an identifier for the identity of the signer, e.g., bi ∈ {0, 1}
σ ← Sign(skbi ,m).
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Definition 18 (Anonymity [26]). A
digital signature scheme Σ is said to be
(ε, qs)-anonymous if for any PPT ad-
versary A it holds that:∣∣∣∣ Prob [Expanon

A [Σ] = 1]− 1

2

∣∣∣∣ < ε .

Definition 18 is the one given in [26]
for static security. Anonymity holds as
long as the challenge message is not re-
vealed to the adversary. Otherwise, the
adversary could simply run the public

Experiment 3 (Expanon
A [Σ])

(pk0, sk0)← KeyGen()
(pk1, sk1)← KeyGen()

for i = 1, ... , qs
xi ←AOSign(sk0,sk1,·,·)(pk0, pk1,

{(xj , σj)}i−1j=1)

b←R {0, 1},m←R M

σ ← Sign(skb,m)
b′ ←AOSign(sk0,sk1,·,·)(σ)

if b′ = b output 1, else output 0.

algorithm Verify(pk1,m, σ)→ b and determine the identity of the signer accord-
ing to the value of b = b′.

Lemma 1. The CL signature scheme in [5] is not anonymous.

Proof. We need to show that an adversary A who possesses the two public
keys pk0 = (X0, Y0) and pk1 = (X1, Y1) and a signature σ = (σ1, σ2, σ3) on
an unknown message, has non-negligible probability in determining the identity
b ∈ {0, 1} of the signer of σ. Consider the equation e(σ1, Y0) = e(σ2, g), i.e.,
e(a, gy0) = e(ayb , g) for a random value a←R G. If the equality does not hold, the
adversary outputs the guess b′ = 1, otherwise, it outputs b′ = 0. It is immediate
that using the previous strategy A wins the anonymity game with overwhelming
probability.

E Verifiable Computation (security notions)

In what follows, we collect the basic properties of verifiable computation schemes.

Definition 19 (Correctness). A VC scheme is said to be correct if for any
f and x, given (pk, sk) ← KeyGen(λ, f), (ωx, τx) ← ProbGen(sk, x) and ωy ←
Comp(pk, ωx), then Verify(sk, τx, ωy) → y with y = f(x) 6= ⊥, holds with all-but
negligible probability.

We report the notions of security (Expverif
A [VC] [2]) and privacy (Exppriv

A [VC]
[12]) for a verifiable computation scheme. The adopted security models allow
for verification queries (which were not considered in the seminal work [14]).
Intuitively, a verifiable computation scheme is secure if a malicious server (the
worker) cannot succeed in persuading the verifier to accept an incorrect output.
More formally,

Definition 20 (Security). A verifiable computation scheme Γ is (ε, qv)-secure
for a function f if for any probabilistic polynomial time adversary A it holds
that:

Prob
[
Expverify

A [Γ , f ,λ] = 1
]
≤ ε .
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The notion of privacy for a verifiable computation scheme essentially states
that if the algorithm ProbGen is run on two different inputs, the corresponding
two public outputs are indistinguishable to a malicious server. More formally,

Definition 21 (Private). A verifiable computation scheme Γ is (ε,qv)-private
for a function f if for any probabilistic polynomial time adversary A it holds
that:

Prob
[
Exppriv

A [VC, f , λ] = 1
]
≤ 1

2 + ε.

The privacy experiment reported below is an adaptation to our notation of the
definition given by Fiore et al. in [12]. We define a function Bool to simulate
the public verification output of a VC scheme, i.e., Bool(y 6= ⊥) returns 1 if y
differs from the rejection value ⊥, and 0 otherwise.

Experiment 4 (Expverif
A [VC, f ,λ])

(pk, sk)← KeyGen(λ, f)

for i = 1, ... , ` = qv = poly(λ)
xi ← A(pk, {(xj , ωxj , yj)}

i−1
j=1)

(ωxi , τxi)← ProbGen(sk, xi)
ωyi ← A(pk, {(xj , ωxj , yj)}ij=1)
yi ← Verify(sk, τxi , ωyi)

x̂← A(pk, {(xj , ωxj , yj)}`j=1)
(ωx̂, τx̂)← ProbGen(sk, x̂)

set aux={x̂, ωx̂, pk, {(xj , ωxj , yj)}`j=1}
for i = 1, ... , ` = qv = poly(λ)

ωy′i ← A(aux, {(ωy′j , y
′
j)}i−1

j=1)

y′i ← Verify(sk, τx̂, ωy′i)

ω∗ŷ ← A(aux, {(ωy′j , y
′
j)}`j=1)

y∗ ← Verify(sk, τx̂, ω
∗
ŷ)

if y∗ 6= ⊥ and y∗ 6= f(x)
return 1, else return 0.

Experiment 5 (Exppriv
A [VC, f , λ])

b←R {0, 1}
(pk, sk)← KeyGen(λ, f)

for i = 1, ... , ` = qv = poly(λ)
xi ← A(pk, {(xj , ωxj , βj)}

i−1
j=1)

(ωxi , τxi)← ProbGen(sk, xi)
ωyi ← A(pk, {(xj , ωxj , βj)}ij=1)
yi ← Verify(sk, τxi , ωyi)
βi ← Bool(yi 6= ⊥)

(x̂0, x̂1)← A(pk, {(xj , ωxj , βj)}`j=1)
(ωx̂0 , τx̂0) ← ProbGen(sk, x̂0)
(ωx̂1 , τx̂1) ← ProbGen(sk, x̂1)

set aux={x̂0, x̂1, ωx̂b , pk, {(xj , ωxj , βj)}
`
j=1}

for i = 1, ... , ` = qv = poly(λ)
x′i ← A(aux, {(x′j , ωx′j , β

′
j)}i−1

j=1)

(ωx′i , τx′i)← ProbGen(sk, x′i)

ωy′i ← A(aux, {(x′j , ωx′j , β
′
j)}ij=1)

yi ← Verify(sk, τxi , ωyi)
βi ← Bool(yi 6= ⊥)

b′ ← A(aux, {(x′j , ωx′j , β
′
j)}`j=1)

if b′ = b output 1, else output 0.
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