Preimages for Reduced SHA-O and SHA-1

Christophe De Cannière and Christian Rechberger

> Presented by Stav Hertz

Agenda

Background

Iteration 1 (High level) Inverting the compression function From P3 to preimage Putting everything together

Iteration 2 (Low level)

Fixing the columns Preimage method conclusions Outlook

Background

Recollection

• Preimage

• Second preimage

• SHA

Previous research

• All currently known generic preimage attacks require either:

Impractically long first preimages

A first preimage lying in a very small subset of the set of all possible preimages

A target digest constructed in a very special way

Our results

SHA-O
37 rounds - 2⁷⁵
49 rounds - 2¹⁵⁹

SHA-1
34 rounds - 2⁸⁰
44 rounds - 2¹⁵⁷

Iteration 1

Inverting the compression function From P₃ to preimage Putting everything together

Inverting the compression function

• Goal:

Find a message that transforms a given IV to a given result of the compression function

• Different(ial) approaches:

For second preimage - Reuse the differential characteristics used in collision attacks Compute the hash value of a related message and then steer the result towards the target value

Used method

• Changing the representation and tweaking the states

Fig. 5. Bits affected by a single bit flip at the input (SHA-1). Black bits are guaranteed to flip; gray bits may be flipped; white bits are unaffected

Defining Partial-Pseudo-Preimage

and

Partial \longrightarrow Partially matching output

P3 to preimage

• Goal:

Transform the attack on the compression function that gives a P3 to an attack on the hash function leading to the preimage

Different approaches:
Meet in the middle
Layered Tree method
Alternative Backward-Forward Tree

Used method

• P3 graph

Nodes: (h(i),m(i))

Edges: Mapping between h(i) and f(h(i),m(i))

- First message block forward direction
- Last message block backward direction

Finding the preimage
 Finding a connection (a path) between the entry node and the exit node in the graph

Putting everything together

• Goal:

Combine the two methods to receive a correctly padded message

• Different approaches:

- Restrict the degrees of freedom in the compression function attack to receive correct length
- Construct expandable messages using:
 - Multicollisions
 - Flexibility of the P3 graph method

Visual results

Iteration 2

Fixing the columns Preimage method conclusions Outlook

Fixing the columns

Old representation vs. New representation

Goal: Zeroing the E words

Bit flip observation

Stage 1 & Stage 2 – Number of free bits

Preimage method conclusions

No structure imposed

Precomputation

• The effort for every additional preimage attack is 2^{b+c}

Outlook

Parameter	Preimage	Collision
Step-reduced variants (SHA-1)	45 Steps	58 Steps
Degrees of freedom	Not all degrees of freedom are used	Limiting factor
Sensitivity for different choices of rotation constants	Strong dependency to constants	Not such a strong dependency as used to be

Summery

• Inverting the compression function

• P3 graphs for hash preimages

Dealing with padding

Results and outlook

Questions?

Thank you