
Differential Cryptanalysis

See:
Biham and Shamir,
Differential Cryptanalysis of the Data Encryption Standard, Springer Ver-
lag, 1993.
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The Data Encryption Standard - DES

1. The most widely used cipher in civilian applications.

2. Developed by IBM; Evolved from Lucifer.

3. Accepted as an US NBS standard in 1977, and later as an international
standard.

4. A block cipher with N = 64 bit blocks.

5. 56-bit keys (eight bytes, in each byte seven bits are used; the eighth bit
can be used as a parity bit).

6. Exhaustive search requires 256 encryption steps (255 on average).
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The Data Encryption Standard - DES (cont.)

7. Iterates a round-function 16 times in 16 rounds. The round-function
mixes the data with the key.

8. Each round, the key information entered to the round function is called a
subkey. The subkeys K1, . . . , K16 are computed by a key scheduling
algorithm.
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The F -Function
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The Initial Permutation (IP)

The following tables describe for each output bit the number of the input bit
whose value enters to the output bit. For example, in IP , the 58’th bit in the
input becomes the first bit of the output.

IP:
58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

FP=IP−1:
40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25
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The P Permutation and the E Expansion

P Permutes the order of 32 bits. E Expands 32 bits to 48 bits by duplicating
16 bits twice.

P :
16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

E:
32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1
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The S Boxes

S box S1:

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S box S2:

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9
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The S Boxes (cont.)

S box S3:

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S box S4:

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14
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The S Boxes (cont.)

S box S5:

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S box S6:

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13
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The S Boxes (cont.)

S box S7:

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S box S8:

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11
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The S Boxes (cont.)

How to interpret the S boxes:
The representation of the S boxes use the first and sixth bits of the input as a
line index (between 0 and 3), and the four middle bits as the row index (between
0 and 15).
Thus, the input values which correspond to the standard description of the S
boxes are

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62
33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63
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The S Boxes (cont.)

Note that all the operations are linear, except for the S boxes.
Thus, the strength of DES crucially depends on the choice of the
S boxes.
If the S boxes would be affine, the cipher becomes affine, and thus easily break-
able.
The S boxes were chosen with some criteria to prevent attacks.
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The Key Scheduling Algorithm

The key scheduling algorithm generates the 16 48-bit subkeys from the 56-bit
key, by duplicating each key bit into about 14 of the subkeys in a particular
order.
PC-1:

57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36

63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

Number of rotations in the key scheduling algorithm:

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Rotations 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1
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The Key Scheduling Algorithm (cont.)

PC-2:
14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2

41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32
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Decryption

Decryption is done by the same algorithm as encryption, except that the
order of the subkeys is reversed (i.e., K16 is used instead of K1, K15 instead of
K2, . . . , and K1 instead of K16.).
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Differential Cryptanalysis

The first method which reduced the complexity of attacking DES below (half
of) exhaustive search.
Note: In all the following discussion we ignore the existence of the initial and
the final permutations, since they do not affect the analysis.
Motivation:

1. All the operations except for the S boxes are linear.

2. Mixing the key in all the rounds prohibits the attacker from knowing
which entries of the S boxes are actually used, and thus he cannot know
their output.
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Differential Cryptanalysis (cont.)

How can we inhibit the key from hiding the information?
The basic idea of differential cryptanalysis: Study the differences
between two encryptions of two different plaintexts: P and P ∗.
Notation: For any valueX during the encryption of P , and the corresponding
value X∗ during encryption of P ∗, denote the difference by X ′ = X ⊕X∗.
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Differential Cryptanalysis (cont.)

Advantages: It is easy to predict the output difference of linear operations
given the input difference:

• Unary operations (E, P, IP):

(P (X))′ = P (X)⊕ P (X∗) = P (X ′)

• Binary operations (XOR):

(X ⊕ Y )′ = (X ⊕ Y )⊕ (X∗ ⊕ Y ∗) = X ′ ⊕ Y ′

• Mixing the key:

(X ⊕K)′ = (X ⊕K)⊕ (X∗ ⊕K) = X ′

We conclude that the differences are linear in linear operations, and in partic-
ular, the result is key independent.
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Differences and the S Boxes

Assume we have two inputs X and X∗ for the same S box, and that we know
only their difference X ′.
Denote Y = S(X).
What do we know about Y ′?
The simple case: when X ′ = 0: S(X) = S(X∗) for any X , and Y ′ = 0.
If X ′ 6= 0: we do not know the output difference.
Definition: Lets look on the distribution of the pairs (X ′, Y ′) of all the pos-
sible inputs X . We call the table containing this information difference dis-
tribution table of the S box.

c© Eli Biham - March, 28th, 2012 20 Differential Cryptanalysis



The Difference Distribution Table of S1

Input Output XOR

XOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 6 0 2 4 4 0 10 12 4 10 6 2 4
2x 0 0 0 8 0 4 4 4 0 6 8 6 12 6 4 2
3x 14 4 2 2 10 6 4 2 6 4 4 0 2 2 2 0
4x 0 0 0 6 0 10 10 6 0 4 6 4 2 8 6 2
5x 4 8 6 2 2 4 4 2 0 4 4 0 12 2 4 6
6x 0 4 2 4 8 2 6 2 8 4 4 2 4 2 0 12
7x 2 4 10 4 0 4 8 4 2 4 8 2 2 2 4 4
8x 0 0 0 12 0 8 8 4 0 6 2 8 8 2 2 4
9x 10 2 4 0 2 4 6 0 2 2 8 0 10 0 2 12
Ax 0 8 6 2 2 8 6 0 6 4 6 0 4 0 2 10
Bx 2 4 0 10 2 2 4 0 2 6 2 6 6 4 2 12
Cx 0 0 0 8 0 6 6 0 0 6 6 4 6 6 14 2
Dx 6 6 4 8 4 8 2 6 0 6 4 6 0 2 0 2
Ex 0 4 8 8 6 6 4 0 6 6 4 0 0 4 0 8
Fx 2 0 2 4 4 6 4 2 4 8 2 2 2 6 8 8
10x 0 0 0 0 0 0 2 14 0 6 6 12 4 6 8 6

.

..
27x 10 4 2 0 2 4 2 0 4 8 0 4 8 8 4 4
28x 12 2 2 8 2 6 12 0 0 2 6 0 4 0 6 2
29x 4 2 2 10 0 2 4 0 0 14 10 2 4 6 0 4
2Ax 4 2 4 6 0 2 8 2 2 14 2 6 2 6 2 2
2Bx 12 2 2 2 4 6 6 2 0 2 6 2 6 0 8 4
2Cx 4 2 2 4 0 2 10 4 2 2 4 8 8 4 2 6
2Dx 6 2 6 2 8 4 4 4 2 4 6 0 8 2 0 6
2Ex 6 6 2 2 0 2 4 6 4 0 6 2 12 2 6 4
2Fx 2 2 2 2 2 6 8 8 2 4 4 6 8 2 4 2
30x 0 4 6 0 12 6 2 2 8 2 4 4 6 2 2 4
31x 4 8 2 10 2 2 2 2 6 0 0 2 2 4 10 8
32x 4 2 6 4 4 2 2 4 6 6 4 8 2 2 8 0
33x 4 4 6 2 10 8 4 2 4 0 2 2 4 6 2 4
34x 0 8 16 6 2 0 0 12 6 0 0 0 0 8 0 6
35x 2 2 4 0 8 0 0 0 14 4 6 8 0 2 14 0
36x 2 6 2 2 8 0 2 2 4 2 6 8 6 4 10 0
37x 2 2 12 4 2 4 4 10 4 4 2 6 0 2 2 4
38x 0 6 2 2 2 0 2 2 4 6 4 4 4 6 10 10
39x 6 2 2 4 12 6 4 8 4 0 2 4 2 4 4 0
3Ax 6 4 6 4 6 8 0 6 2 2 6 2 2 6 4 0
3Bx 2 6 4 0 0 2 4 6 4 6 8 6 4 4 6 2
3Cx 0 10 4 0 12 0 4 2 6 0 4 12 4 4 2 0
3Dx 0 8 6 2 2 6 0 8 4 4 0 4 0 12 4 4
3Ex 4 8 2 2 2 4 4 14 4 2 0 2 0 8 4 4
3Fx 4 8 4 2 4 0 2 4 4 2 4 8 8 6 2 2
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The Difference Distribution Table of S1 (cont.)

Observe that:

• In the first line X ′ = 0 and thus all the 64 pairs satisfy Y ′ = 0. Y ′ 6= 0
is impossible.

• In the rest of the lines: The average value is 4, the sum in each line is 64.
The values are all even in the range 0–16.

The entries with value 16 mean that for a quarter of the pairs with this
input difference X ′, the output difference is the particular Y ′.

The entries with value 0 mean that there are no pairs with the corre-
sponding input difference X ′ and the corresponding output difference Y ′.
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Differences and the S Boxes (cont.)

Definition: If the entry of the input difference X ′ and the output difference
Y ′ is greater than zero, we say that X ′ may cause Y ′ by the S box, and
denote X ′ → Y ′.
Definition: The probability of X ′ → Y ′ is the probability that for
a pair with the input difference X ′, the output difference is Y ′, among all
the possible pairs. In DES, the probability is the corresponding value in the
difference distribution table divided by 64.
Similarly we defineX ′ → Y ′ by the F -function, and define the probability
as the product of the probabilities by the eight S boxes.
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Differences and the S Boxes (cont.)

Differential cryptanalysis uses the entries with large values, and in particular
the 0 → 0 entry and the entries with value 16, and other large values.
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Observation

Given an input and output differences of an S box, it is possible to list all the
pairs with these differences.
Example: For the entry 09x → 1x the 2 pairs are:

1. 33x, 3Ax

2. 3Ax, 33x

For the entry 01x → Fx the 4 pairs are:

1. 1Ex, 1Fx

2. 1Fx, 1Ex

3. 2Ax, 2Bx

4. 2Bx, 2Ax

The lists of pairs of all the differences can easily be computed in advance.
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Example of a Simple Attack

Assume a 3-round DES, in which for some pair of plaintexts
P ′ = 01 96 00 18 00 00 00 00x, and T

′ = 41 96 40 1A 48 00 00 00x.
We also assume that T = 00 00 00 00 08 00 00 00x and
T ∗ = 41 96 40 1A 40 00 00 00x.
(We use the notation T for the ciphertexts, as we use C for the third round
intermediate values.)
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Example of a Simple Attack (cont.)

Then, the differences in the various rounds are

P ′ = 01 96 00 18 00 00 00 00x

A′ = 00 00 00 00x a′ = 00 00 00 00x

B′ = 48 00 00 00x b′ = 01 96 00 18x

= P (02 00 00 08x)

C ′ = 40 00 40 02x c′ = 48 00 00 00x

= P (13 00 00 00x)

T ′ = 41 96 40 1A 48 00 00 00x

F

F

F
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Example of a Simple Attack (cont.)

We identify that S1 in the third round accepts difference 09x in the input and
outputs difference 1x in the output. Looking at the difference distribution table,
we find only two possible pairs for this combination ((33x, 3Ax) and (3Ax, 33x)).

Thus, we get the following equations:

S1E ⊕ S1K = 33x or 3Ax

S1∗E ⊕ S1K = 3Ax or 33x.

From the known ciphertexts we know that
S1E = 01x
S1∗E = 08x.

Therefore, we can find two possible values for S1K
S1K = 32x or 3Bx.

(Notice that the difference between these two values is always the input differ-
ence, 09x in this case.)
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Characteristics

In differential cryptanalysis we wish to know some statistical information on the
differences in intermediate rounds during encryption, given only the plaintext
difference.
Example: A two-round characteristic with probability 14

64 (In S1, 0Cx →
Ex with probability 14

64
):

ΩP = 00 80 82 00 60 00 00 00x

A′ = 00 80 82 00x a′ = 60 00 00 00x p = 14
64

= P (E0 00 00 00x)

B′ = 0 b′ = 0 p = 1

ΩT = 60 00 00 00 00 00 00 00x

F

F
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Characteristics (cont.)

Informal Definition: Associated with any pair of encryptions are the XOR
value of its two plaintexts, the XOR of its ciphertexts, the XORs of the inputs
of each round in the two executions and the XORs of the outputs of each round
in the two executions. These XOR values form an n-round characteristic.
A characteristic has a probability, which is the probability that a random pair
with the chosen plaintext XOR has the round and ciphertext XORs specified
in the characteristic. We denote the plaintext XOR of a characteristic by ΩP

and its ciphertext XOR by ΩT .
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Characteristics (cont.)

Definition: An n-round characteristic is a tuple Ω = (ΩP ,ΩΛ,ΩT )
where ΩP and ΩT are m-bit numbers and ΩΛ is a list of n elements ΩΛ =
(Λ1,Λ2, . . . ,Λn), each is a pair of the form Λi = (λiI , λ

i
O) where λ

i
I and λ

i
O are

m/2 bit numbers and m is the block size of the cryptosystem. A characteristic
satisfies the following requirements:

λ1I = the right half of ΩP
λ2I = the left half of ΩP ⊕ λ1O
λnI = the right half of ΩT

λn−1
I = the left half of ΩT ⊕ λnO

and for every i such that 2 ≤ i ≤ n− 1:

λiO = λi−1
I ⊕ λi+1

I .
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Characteristics (cont.)

Definition: Characteristics can be concatenated if
swap(Ω1

T ) = Ω2
P . The resultant characteristic is

Ω = (Ω1
P ,Ω

1
Λ||Ω

2
Λ,Ω

2
T ).

Definition: A right pair with respect to a characteristic Ω and a key K is
a pair P , P ∗, which satisfies P ′ = ΩP , and all whose differences in the rounds
1, . . . , n are as predicted by the characteristic.
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Characteristics (cont.)

Definition: An independent key is a list of subkeys which is not necessarily
derivable from some key via the key scheduling algorithm.
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Probability of a Characteristic

Definition: The probability of a characteristic is the probability that a
random pair P , P ∗ which satisfies P ′ = ΩP is a right pair with respect to a
random independent key.
Note: The probability of a characteristic is the product of all the probabilities
of the S boxes in the characteristic.
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Probability of a Characteristic (cont.)

Note: The probability of characteristics of DES is the probability that any
specific pair P , P ∗ (P ′ = ΩP ) is a right pair among all random keys. We are
more interested in the probability that for a specific (unknown) key, a random
pair P , P ∗ (P ′ = ΩP ) is a right pair. In practice, the first probability is a good
approximation of the second probability.
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Examples of One-Round Characteristics

Choose the inputs of the S boxes by the best entries in the difference distribution
tables.
Example: An one-round characteristic with probability 1 is (for any L′):

ΩP = (L′, 0x)

A′ = 0x a′ = 0x p = 1

ΩT = (L′, 0x)

F
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Examples of One-Round Characteristics (cont.)

The second best one-round characteristic has probability 1/4, using only one
active S box (S2):

ΩP = (L′, 04 00 00 00x)

A′ = 40 08 00 00x a′ = 04 00 00 00x p = 16
64

= 1
4

= P (0A 00 00 00x)

ΩT = (L′ ⊕ 40 08 00 00x, 04 00 00 00x)

F

There is a similar characteristic using S6.
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Examples of One-Round Characteristics (cont.)

The next best characteristic has probability 14
64
:

ΩP = (L′, 60 00 00 00x)

A′ = 00 80 82 00x a′ = 60 00 00 00x p = 14
64

= P (E0 00 00 00x)

ΩT = (L′ ⊕ 00 80 82 00x, 60 00 00 00x)

F
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A Three-Round Characteristic

A three-round characteristic with probability 1/16:

Ω1
P
= 40 08 00 00 04 00 00 00x

A′ = 40 08 00 00x a′ = 04 00 00 00x p = 1
4

B′ = 0x b′ = 0x p = 1

C ′ = 40 08 00 00x c′ = 04 00 00 00x p = 1
4

Ω1
T
= 40 08 00 00 04 00 00 00x

F

F

F
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A Five-Round Characteristic

A five-round characteristic with probability about 1/10486:
ΩP = 40 5C 00 00 04 00 00 00x

A′ = 40 08 00 00x a′ = 04 00 00 00x p = 1
4

= P (0A 00 00 00x)

B′ = 04 00 00 00x b′ = 00 54 00 00x p = 10·16
64·64

= P (00 10 00 00x)

C ′ = 0 c′ = 0 p = 1

D′ = 04 00 00 00x d′ = 00 54 00 00x p = 10·16
64·64

E′ = 40 08 00 00x e′ = 04 00 00 00x p = 1
4

ΩT = ΩP = 40 5C 00 00 04 00 00 00x

F

F

F

F

F

c© Eli Biham - March, 28th, 2012 40 Differential Cryptanalysis



Differential Attacks

The simplest differential attack (0R-attack) breaks ciphers with the same num-
ber of rounds as the characteristic. Using 3-round characteristics we can find
key bits of 3-round DES, and using 5-round characteristics we can find key bits
of 5-round DES.
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Differential Attacks (cont.)

The basic algorithm:

1. Choose some m = 2p−1 random pairs P , P ∗ such that P ′ = ΩP , and
request the corresponding ciphertexts T and T ∗ under the unknown key
K.

2. Choose only the pairs satisfying T ′ = ΩT , and discard the others. About
m(p + 2−64) pairs remain (from the m pairs): mp right pairs and 2−64m
wrong pairs. If p≫ 2−64 we can assume that all the remaining pairs are
right pairs.
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Differential Attacks (cont.)

3. Each remaining right pair satisfies the difference predictions of the char-
acteristics and its values of T and T ∗ are known. The differences of the
inputs and the outputs of the S boxes of the last round are known from
T ′ = T ⊕ T ∗ (and from the characteristic).

If the input difference is non-zero, not all the inputs are possible, and only
a minority of the inputs satisfy the input and output differences: in each
pair only about 0–16 possible values for the 6 input bits of the S box are
possible. Each value suggests one value for the 6 corresponding key bits.

The right value of the 6 key bits must be suggested by all the right pairs,
while other values are suggested arbitrarily by only a few of the pairs. By
cutting the sets of keys suggested by all the pairs, we receive two possible
values for each 6 key bits; in total we receive 28 = 256 possible values for
48 key bits (if all the eight S boxes are active).

If a wrong pair still remains, still the keys suggested by the largest number
of pairs are likely to include the right key.
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Success Rate Analysis

Why 2−64 of the remaining pairs are wrong?:
Because if the cipher is a random permutation, given any pair of ciphertexts,
the probability that their difference is a given value is 2−64 (actually 1/264− 1)
independent of the value.
What is the success rate?:
Let the number of active S-boxes in the last round be s. Each right pair
suggests 2s keys for sure (two options for each active S-box). Each active S-box
has actually four possible solutions on average. Hence, each right pair suggests
4s solutions. Moreover, m · 2−64 pairs suggest completely random values in the
active S-boxes (again 4s values on average). But if p ≫ 2−64, we can discard
this option.
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Probabilities Versus Number of Rounds

The probabilities of the characteristics reduces very fast with the number of
rounds:

Number of rounds Probability

1 1
2 1/4
3 1/16
4 ≈ 1/800
5 ≈ 1/10000
6 ≈ 1/1000000
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Probabilities Versus Number of Rounds (cont.)

As the number of rounds is increased, the reduction rate grows. By the table,
we may expect that at 9–10 rounds, the probabilities are smaller than 2−56 or
2−64.
We are interested in longer characteristics with higher probabil-
ities.
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Differentials

Usually differential cryptanalysis use only the ΩP and ΩT of the characteristics,
but not the intermediate values.
Definition: A Differential is a set of all the characteristics with the same
ΩP and ΩT .
The probability of the differential is the sum of the probabilities of the various
characteristics.
In most differential attacks we actually use differentials, rather than character-
istics. The probabilities of the characteristics serve as lower bounds for the
probabilities of the differentials.
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Iterative Characteristics

Characteristics which can be concatenated to themselves are called iterative
characteristics.
The best iterative characteristic of DES is:

ΩP = (ψ, 0) = 19 60 00 00 00 00 00 00x

A′ = 0 a′ = 0 p=1

B′ = 0 b′ = ψ = p = 14·8·10
643

19 60 00 00x ≈ 1
234

ΩT = (0, ψ) = 00 00 00 00 19 60 00 00x

F

F

where ψ = 19 60 00 00x. Due to the importance of this iterative characteristic,
we call it the iterative characteristic.
There is another value ψ† = 1B 60 00 00x for which the iterative characteristic
has the same probability.
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Iterative Characteristics (cont.)

These two characteristics are the best when iterated to seven or
more rounds.
Note: In DES, in order to receive the same output of the F -function, two
different inputs must differ in the input of at least three S boxes.
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Probabilities Versus Number of Rounds

The probability of the iterative characteristic versus the number of rounds:

Number of rounds Probability

3 2−7.9 ≈ 1/234
5 2−15.7 ≈ 1/55000
7 2−23.6

9 2−31.5

11 2−39.4

13 2−47.2

15 2−55.1

16 2−62

17 2−63
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XOR-Differences in the Presence of Additions

Consider the operation Z = X + Y . If X ′ = Y ′ = 0, then necessarily Z ′ = 0.
But when X ′ = 1x, Y

′ = 0, there are several possible XOR-differences of Z ′.
X ′ = 1x means that X = X∗ + 1 or vice versa (we shall continue under the
assumption that X = X∗ + 1). Both are added with Y = Y ∗, to obtain Z.
If the least significant bit of Y = Y ∗ is zero, then there is the difference in Z is
going to be only in the least significant bit.
When the least significant bit of Y = Y ∗ is one, there there is going to be carry
in X + Y but no carry in X∗ + Y ∗. This means, that the same process is
repeated (i.e., if the second least significant bit of Y = Y ∗ is 0, the carry chain

ends here, otherwise, there is difference in the carry).
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XOR-Differences in the Presence of Additions (cont.)

There is a special bit which cause a very short carry chain. A difference in the
most significant bit, does not generate a carry chain, as the modular reduction
cancels the difference. Hence, when we are dealing with the most significant bit
there is no probability associated with it.
If X ′ has two active bits, the carry chain from the lower bit, can cancel the
difference in the more higher order bit. The probability of each carry/no carry
decision is 1/2 (where of course, after no-carry decision, there is no more carries).

If Y ′ 6= 0 as well, one can repeat the previous analysis. Each active bit (either
in X ′ or in Y ′) may cause a carry (or not cause a carry) with probability 1/2.
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Truncated Differentials

Truncated differential are an extension of differential cryptanalysis where the
difference is not fully specified. For example, consider the following 2-round
truncated differential:

P ′ = (x, 0)

A′ = 0 a′ = 0 p = 1

B′ = y b′ = x p = 1

T ′ = (x, y)

F

F
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Truncated Differentials (cont.)

Using truncated differentials in differential attacks is similar to the use of regular
differentials. There are two small differences:

1. The probability that a wrong pair looks as if it is a correct one is S · 2−64,
where S is the number of possible differences (in the example above, x
and y can be any value, and thus, S = 264).

2. In differential cryptanalysis, the probability of the differential is indepen-
dent of the direction (encryption/decryption). In the case of truncated
differentials, this is not the case. For example, inverting the order of the
rounds in the above example yields a truncated differential with proba-
bility 2−32.
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Some Caveats

Usually truncated differentials are really useful to handle. The reason for that
is that transitions of the form a→ b can be approximated with the probability
2−w (for a 6= 0, |b| = w), independent of a and b.
Of course, this is under the assumption that a may cause difference b. If the
round function is bijective, and a 6= 0 then b cannot be 0.
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Some Caveats (cont.)

Let us assume that for a specific a,A:

P ′ = (X, a)

A′ = A a′ = a p = 1

T ′ = (X ⊕ A, a)

F

Then, the probability of following truncated differential is 0:

P ′ = (B 6= A, a)

a′ = a

T ′ = (0, a)

F
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Some Caveats (cont.)

The following truncate differential may also have probability 0:

P ′ = (A, b)

a′ = b

T ′ = (0, b)

F
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Motivation

Consider a collision in a hash function. There are two messages M1,M2 for
which h(M1) = h(M2). If h(·) is a Merkle-Damg̊ard hash function, then
this collision also exists somewhere in the compression function, i.e., there are
two sets of inputs to the compression function, cv1, m1 and cv2, m2, for which
F (cv1, m1) = F (cv2,m2).
In other words, for F , we can define the differential (∆cv,∆m) → 0.
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Differential Characteristics of Compression Functions

To differentially attack compression functions, one needs to first find a suitable
differential characteristic. For example, in collision producing attacks, one aims
to find a characteristics that predicts a zero difference after the feed forward
operation.
If we consider a case where we have one block collision, then the differential
characteristic is of the form (∆cv = 0,∆m) → 0.
As most compression functions are block ciphers in disguise, it seems to be the
same process for finding and suggesting differential characteristics. However,
in most of these compression functions, the message blocks are used as the
key of the block cipher (Davies-Meyer construction). This means that we are
restricted to a very special class of “related-key” differential characteristics.
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Differential Characteristics of Compression Functions (cont.)

There is a huge advantage in attacking compression functions over attacks di-
rectly targeted at the block cipher. The adversary has a much greater knowledge
about what is going on inside the primitive. This means that the adversary can
very quickly know if the characteristic is followed, and to what extent.
On the other hand, when discussing a collision-finding characteristics, we are
restricted by a lower probability bound. While an attack on a block cipher with
n-bit blocks can use differentials with probability of c · 2−n, for c > 1, attacks
on hash functions with digest size of n bits cannot exploit differentials with
probability lower than 2−n/2.
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