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Basic TMTO Finding Exhaustive DH DES

Basic Inversion Attacks

◮ A function f : {1, 2, . . . ,N} 7→ {1, 2, . . . ,N} is fixed.
◮ A value y = f (x) is given to the attacker who needs to

find x .

◮ This problem can model finding the inverse function of a
compression function or a hash function.

◮ This problem can model finding keys of an encryption
function.

◮ For example, f (k) = Ek(P) for some pre-determined
plaintext P.

◮ Or h(input) for hash functions.
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Basic TMTO Finding Exhaustive DH DES

Basic Inversion Attacks (cont.)

Simple approaches for solution:

◮ Exhaustive search — the attacker computes for each i the
value of f (i) and stops once y = f (i).

◮ Table attack/Dictionary attack — the attacker
precomputes once all f (i), and stores in a table (f (i), i)
sorted according to f (i).

◮ Exhaustive search — Precomputation = 0; Memory = 0;
Time = N.

◮ Table — Precomputation = N; Memory = N; Time = 1.
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Basic TMTO Finding Exhaustive DH DES

Some Variants Exhaustive Search

◮ If P CPUs are available, we can let each CPU run over
1/P of the search space.

Time = N/P (in real time).
◮ Sometimes, it is possible to evaluate f (·) on several

points simultaneously (bit-slicing, same subkey in the first
round, etc.)

Does not affect asymptotic time, but actual time.
◮ Sometimes, it is possible to partially-evaluate f (·), and

only if the partial evaluation succeeds, compute the full
evaluation.

Does not affect asymptotic time, but actual time.
◮ For a specific f (·), it is usually more efficient to build

dedicated hardware (FPGA/ASIC).

Saves on the money/time ratio (does not affect asymptotic).
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Basic TMTO Finding Exhaustive DH DES

Diffie and Hellman’s DES Machine

◮ Shortly after the introduction of DES, Diffie and Hellman
analyzed the 56-bit key length.

◮ Machine with 1,000,000 chips (in 64 racks), each tests a
DES key in a microsecond.

◮ Connecting it all (and taking some overhead), their
machine could find a DES key every half a day on average
for 20,000,000$.

◮ If you run the machine for 5 years, the cost of finding a
key is expected to be 5000$.

For more information: W. Diffie, M. Hellman, Exhaustive
cryptanalysis of the NBS Data Encryption Standard,
Computer, vol. 10, no. 6, pp. 74–84, June 1977.
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Basic TMTO Finding Exhaustive DH DES

Exhaustive Search Example — DES Challenges

◮ In 1997 RSA Labs started a DES challenge, they
published a plaintext and a ciphertext, and offered a prize
for the first one finding the key.

◮ The DESCALL project was used to solve the first
challenge in a distributed manner (90 days).

◮ In 1998, the second DES challenge was launched.

◮ distributed.net project found the key in 39 days.

◮ The third challenge (and last) was cracked using the DES
Cracker (by EFF).

◮ 22 hours to find a random key of 56-bit (full exhaustive
search was expected to take 56 hours).
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Basic TMTO Finding Exhaustive DH DES

Exhaustive Search Example — DES Cracker

◮ DES cracker consisted of 1,536 custom-designed ASIC
chips at a cost of material of around 250,000$ and could
search 88 billion keys per second.

◮ That is more than 236 keys per second.

◮ A full exhaustive search requires about 819,000 seconds
(slightly less than 9.5 days).

◮ Actually, the majority of the cost is the design cost and
fabrication of the first unit.

◮ A second machine would be much cheaper.

◮ Actually, today, for the same price, one should expect 256
more computational power for the same cost (or the same
computational power for slightly less than 1000$)
following Moore’s law.
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Basic TMTO Finding Exhaustive DH DES

Exhaustive Search Example — DES Cracker (cont)

◮ DES Cracker was used in the third challenge, and found
the key in 56 hours.

◮ In the amended third challenge (issued two weeks later),
the DES cracker was integrated into the Distributed.Net
project. This challenge was solved in about 22 hours.

◮ Conclusion: 56-bit key is not secure (1997).

◮ Conclusion 2: Today, 64-bit key is not secure.

◮ Conclusion 3: For real security, move to 80-bit security.
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Basic TMTO Finding Exhaustive DH DES

COPACOBANA

◮ COPACOBANA is a board with 120 slots for FPGAs.

◮ Using a hardware optimized implementation of DES, an
(old) FPGA can check one key every 1.84 ns.

◮ Put 120 such FPGAs together, and you can search 65.3
billion keys per second.

◮ In total, a search space of 56-bit DES key requires about
12.7 days to fully exhaust.

◮ Cost estimates: 120 (old) FPGAs at less than 10,000
Euros.

More info: T. Güneysu et al. Cryptanalysis with
COPACOBANA, IEEE Transactions on Computers, vol. 57,
no. 11, November 2008.
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Basic TMTO Finding Exhaustive DH DES

Sony PlayStation

◮ In a sequence of recent attacks, the need for a large
computing power has raised.

◮ The attacks (specifically designated at MD5-based
certificates) required computing many MD5 executions
quickly.

◮ Sony PlayStation has 7 processing units. Which means
you can run the code 7 times in parallel (at a slightly
slower clock rate).

◮ By explicit use of bit-slicing techniques and the Sony
PlayStation 3 architecture, an amount of 175 million
MD5 computations per second per machine could be
reached (cost of machine — 400$).

c©Orr Dunkelman Cryptanalysis of Hash Functions Seminar — Generic Attacks 11/ 34
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Graphics Processing Units (GPU)

◮ There is actually nothing that amazing in PlayStations.

◮ The PlayStations were chosen as the ratio of MD5
computations in second per $ was better than using many
computers.

◮ One can improve this ratio using GPUs. On an ATI HD
4850 X2, it is possible to compute 1634 million MD5
computations per second (at 245$).
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Hellman’s Time-Memory Tradeoff Attack

◮ In [H80] Hellman suggested a method to have a tradeoff
between the time and the memory complexities.

◮ Assume that f is a permutation,
such that it has one huge cycle
covering all values.

◮ Precomputation: pick at random
point x1, compute xi+1 = f (xi),
and store the

√
Nth values (i.e.,

x1, x√N+1, x2
√

N+1, . . .).

◮ Online phase: given y , compute
f j(y ) until a stored xi

√

N is
encountered. Obtain x(i−1)

√

N+1

from the table, and apply f to
it, until y is obtained.
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Basic TMTO Finding Hellman D. Points Rainbow Analysis

Hellman’s Time-Memory Tradeoff Attack (cont.)

◮ The suggested attack has precomputation of P = N,
storage of M =

√
N , and online time, T =

√
N.

◮ But this works only if f induces a single cycle!

◮ Actually if f is a permutation a similar attack works,
which might require even less online computation or even
less memory (or both).

◮ The idea is to store every
√
Nth point on the cycle.

◮ Once the cycle is smaller than
√
N there is no need to

store any point on it, as you can start from y , and find its
preimage (predecessor in the graph) in less than

√
N

operations.
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Basic TMTO Finding Hellman D. Points Rainbow Analysis

Hellman’s TM Attack on Random Functions

◮ First trial:
◮ Precomputation: Take

m =
√
N starting points x i

and from each such point,
generate a sequence of

√
N

values, and store the obtained
end points (y i , x i ).

◮ Online phase: Given y , start
computing f on it, until
hitting one of the end points.
Retrieve from the table the
value of the corresponding
start point x i , and compute
forward until x = f −1(y) is
found.

x1 x11 x12 . . . y1

x2 x21 x22 . . . y2

x3 x31 x32 . . . y3

...

xm xm1 xm2 . . . ym

f f f f

f f f f

f f f f

f f f f
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Basic TMTO Finding Hellman D. Points Rainbow Analysis

Hellman’s TM Attack on Random Functions

(cont.)

◮ The function f is random. Thus, there are collisions
between the chains!

◮ From the collision, both chains “evolve” together, and
thus cover the same nodes (values).

◮ Thus, the chains are expected to cover much less than N

nodes.

◮ Adding more chains, will not solve the problem (each new
chain will cover very few new nodes before a collision is
found).

◮ Finally, because f is random, some nodes do not have
predecessors (about 1/e of the space).
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Basic TMTO Finding Hellman D. Points Rainbow Analysis

Hellman’s TM Attack on Random Functions

(cont.)

◮ Hellman solved the problem by using different

functions!

◮ Let fi be some small tweak of f , such that inverting fi is
like inverting f (for example fi(x) = f (x)⊕ i).

◮ For each of the t functions fi , pick m random starting
points, and compute chains of length t.

◮ For each function, store the values (end , start) in a table.

◮ In the online phase — try to compute f
j
i (y ) for every

i = 1, . . . t, and j = 1, . . . , t, until one of the end points
is found. Go to the corresponding start point, and find
the predecessor of y .
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Basic TMTO Finding Hellman D. Points Rainbow Analysis

Hellman’s TM Attack on Random Functions

(cont.)

◮ Preprocessing — N. Memory — t tables, of m blocks
each, total of mt. Online time — t2 applications of f ,
and t2 table accesses. As we want to cover O(N) values,
we need mt2 ≈ N, i.e.,

TM2 = N2.

◮ A common point on the curve is M = T = N2/3.

◮ Of course, if mt > N or t2 > N, then the attack is
inferior to other generic attacks.

◮ There are some small technicalities concerning the false
alarms (hitting an end point, even though the value is not
covered by the chain), but most of the time it is OK.
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Basic TMTO Finding Hellman D. Points Rainbow Analysis

Choosing the Function f

◮ Consider the case of a block cipher.

◮ When suggesting a function to invert, the function often
picked is f (K ) = EK (P) from some pre-determined
plaintext P.

◮ When the block size is equal to the key size, this function
has the “right” size.

◮ But what if the block size is not equal to the key size?

◮ If |P| > |K |, then EK (P) is longer than K , and a simple
solution is to drop some bits of the output (beware of
false alarms!).

◮ If |P| < |K |, one can define the function
f (K ) = EK (P1)||EK (P2).
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Basic TMTO Finding Hellman D. Points Rainbow Analysis

Choosing the Function f

◮ Actually the problem is that the attacks works for
f : {1, 2, . . . ,N} 7→ {1, 2, . . . ,N}, so we need to
transform the function which we wish to invert F (·) to
such a form.

◮ Hence, in most cases, we need to transform the “natural”
output to be in the same domain as the input.

◮ This is extremely hard when the domains are not of the
type “all strings of length ℓ” but have more complicated
structures, e.g., “all passwords containing only characters
in English”.

◮ This is also a way to implement different fi functions.
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Basic TMTO Finding Hellman D. Points Rainbow Analysis

Reducing Storage Accesses using Distinguished

Points

◮ Each table contains m pairs of (end point, start point).

◮ After each computation of f (or fi), we need to access a
table.

◮ Accessing large tables (especially if m is larger than the
size of the RAM) takes time, sometimes greater than of
actually computing f .

◮ A solution by Rivest, to use the concept of distinguished
points.

◮ Instead of each chain ending always after t iterations of
fi , we let the chain continue until an easily identifiable
point is achieved (e.g., log2(t) least significant bits are 0).
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Basic TMTO Finding Hellman D. Points Rainbow Analysis

Reducing Storage Accesses using Distinguished

Points (cont.)

◮ On average, the same number of points is covered. But
instead of t2 table accesses, we can use only t of these
(whenever a distinguished point is encountered).

◮ Note that the other parameters are the same! Specifically,
the number of f invocations and/or memory size is the
same.

◮ Really good for hardware acceleration and parallelization
[SRQL02].

c©Orr Dunkelman Cryptanalysis of Hash Functions Seminar — Generic Attacks 22/ 34
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Rainbow Tables

x1 x11 x12 . . . y1

x2 x21 x22 . . . y2

x3 x31 x32 . . . y3

...

xm xm1 xm2 . . . ym

f1 f2 f3 ft

f1 f2 f3 ft

f1 f2 f3 ft

f1 f2 f3 ft

y yi
ft

?y yi
ft−1 ft

?y yi
f1 f2 f3 ft

?

◮ As noted before, it might be
beneficial to reduce the number of
accesses to the table.

◮ In [O03], Oechslin suggested the
concept of rainbow tables, without
the need of distinguished points.

◮ Instead of having t multiple tables
(each with m starting points), we
start with mt starting points.

◮ For each point xi , we evaluate
yi = ft(ft−1(. . . f2(f1(xi)) . . .)), and
store (yi , xi).

◮ In the online phase: given y , check
ft(y ), ft(ft−1(y )), . . . , as end
points.
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Rainbow Tables (Analysis)

◮ This method has the advantage of reducing false alarms,
and it is claimed to achieve a curve N2 = 2TM2.

◮ This is partially true, but due to some technicalities,
[BBS06] showed that rainbow tables are less favorable
(mostly due to a larger memory block).
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Basic TMTO Finding Hellman D. Points Rainbow Analysis

Analysis of Time-Memory Tradeoff Attacks

◮ The matter of estimating the success rate of a TMTO
attack has received a great deal of attention.

◮ Coverage in one table was already rigorously analyzed by
Hellman in 1980 (a table covers about 80% of its “size”).

◮ Under the assumption the tables are independent of each
other, the expected success rate is 55%.

◮ A lot of research was done on choosing the optimal values
(see [BPV98,SRQL02,KM96,KM99] for more details).

◮ Then the rainbow table succeeds to offer more than 99%
coverage.

◮ Why?
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Analysis of Time-Memory Tradeoff Attacks

◮ The main problem is the interaction between the different
fi ’s, which are actually relatively close to each other.

◮ This is especially meaningful, when considering the fact
that there are many points without an ancestor (about
1/e of the points of the graph has din = 0).

◮ Rainbow’s 99% coverage stems from the fact that they
target cases where there are many preimages (e.g., in
hash function inversion).

◮ The problem was left open until [BBS06] which analyzed
the success rate of generalized TMDTO algorithms in the
stateful random graph model.

◮ In the stateful random graph model, the computation is
applied on a state which has an hidden part.

c©Orr Dunkelman Cryptanalysis of Hash Functions Seminar — Generic Attacks 26/ 34



Basic TMTO Finding Cycle Floyd Nivasch

How to Find the Collision

◮ The simplest algorithm is to pick 1.17 · 2n/2 random
values mi , compute h(mi), and store them in a hash
table, until a collision is found.

◮ Time complexity: 1.17 · 2n/2 invocations of h(·) +
1.17 · 2n/2 memory accesses.

◮ Memory complexity: 1.17 · 2n/2 cells.
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Reducing Memory Usage

◮ Consider the random function f : {0, 1}n 7→ {0, 1}n as a
directed graph:

◮ Let V = {0, 1}n (i.e., each node has a label of length n).
◮ and (x , y) ∈ E if f (x) = y .

◮ A collision in f (·) can be views as two edges (x1, y ) and
(x2, y ).
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Cycle Finding

◮ Start from a random node x1, and compute iteratively
xi+1 = f (xi).

◮ After about
√
2n steps, you expect to enter a cycle.

◮ The entry point (unless it is back to x1) suggests a cycle.

x1 x2 x3 x4 x5
x6

x7

x8

x9

x10x11

x12

x13

x14

x15
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Basic TMTO Finding Cycle Floyd Nivasch

Floyd’s Cycle Finding Algorithm

◮ Start with two pointers p1, p2 initialized both to x1.
◮ p1 is incremented each time by 1 position p1 ← f (p1),

and p2 is incremented each time by 2 positions
p2 ← f (f (p2)) until they collide.

◮ At this point, set p1 to x1, and increment both pointers
each time by 1 position, they will collide in the entry
point to the cycle.

x1 x2 x3 x4 x5
x6

x7

x8

x9

xx
x12

x13

x14

x15

p1, p2 p1 p2p1
p2

p1

p2

p1, p2

p1

p2

p1

p2

p1, p2
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Analysis of Floyd’s Cycle Finding Algorithm

◮ This method is also known as the ρ-method.

◮ Let the tail’s (x1  x3) length be ℓ, and let the cycle’s
length be r . Then if the two pointers collide after t steps:

t − ℓ = 2t − ℓ mod r ⇒ t ≡ 0 mod r

◮ Then, after ℓ more steps, the pointer p2 is in position
2t + ℓ, which means, it did 2t steps inside the cycle,
which means that it points to the entry point.

◮ The algorithm does not work when x1 is the start of the
cycle, or when the cycle is of length 1 (the former is easily
solved by picking a different starting point, the latter
offers a fixed-point).
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Nivasch’s Algorithm for Cycle Finding

◮ Floyd’s algorithm may take up to 5r + 3ℓ computations of
f until the collision is located.

◮ The idea behind Nivasch’s algorithm is to reduce the time
significantly, while using a small amount of memory.

◮ It also uses only one pointer.
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Basic TMTO Finding Cycle Floyd Nivasch

Nivasch’s Algorithm for Cycle Finding (cont.)

◮ Initialize a pointer p to some random element x1 = r .
◮ Initialize a stack to (x1, 1).
◮ Each step, compute xi+1 = f (xi).
◮ Pop from the stack all entries (xj , j) for which xj > xi+1.
◮ Push (xi+1, i + 1) to the stack.

15 40 76
33

89
21

26

39

66

5547
90

93

34

50
p p p

p

p

p

p

(15, 1)

(40, 2)

(76, 3)

(33, 4)(21, 6)(21, 6)

(21, 19)(26, 7)

(34, 14)(33, 17)
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Nivasch’s Algorithm for Cycle Finding (cont.)

◮ Once the collision is detected, we can move to the phase
of finding the actual collision.

◮ Note that the difference between the indices in the
colliding entry is the length of the cycle.

◮ The memory consumption is about O(n) for a space of 2n

values.

◮ It is also possible to use 2k stacks (each corresponding to
a different value of k LSBs of the value), thus detecting
the colliding values faster (i.e., find the cycle length
faster).

◮ Finally, this can be used to find the actual collision.
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