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Introduction

e Structural cryptanalysis is the branch of cryptology
which studies the security of cryptosystems described
by generic block diagrams.

* Tt analyses the syntactic interaction between the
various blocks, but ignores their semantic definition as
particular functions.

* For Exemple: Meet in in the middle attacks on double
encryptions, the study of various chaining structures,

and the properties of Feistel structures with a small
number of rounds.
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Introduction- Cont.

e Structural attacks are often weaker than actual attacks
on given cryptosystems, since they cannot exploit
particular weaknesses of concrete functions.

* The flip side of this is that they are applicable to large
classes of cryptosystems, including those in which
some of the internal functions are unknown or key
dependent.

» Structural attacks often lead to deeper theoretical
understanding of fundamental constructions, and
thus they are very useful in establishing general design
rules for strong cryptosystems.
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Introduction- Cont.

* The class of block ciphers considered in this paper are
product ciphers which use alternate layers of invertible
S-boxes and affine mappings.

* This structure is a generalization of
substitution/permutation networks in which the affine
mapping is just a bit permutation), and a special case
of Shannon's encryption paradigm which mixes
complex local operations with simple global
operations.
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* The best example for substitution/affine ciphers is
Rijndael which was recently selected as the winner of
AES competition.
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Introduction- Cont.

* The best non-structural attack on Rijndael is based on
the square attack which exploits the knowledge of the
S-box, the simplicity of the key schedule and the
relatively slow avalanche of the sparse affine mapping.

* It can break versions with six S-box layers and six
affine layers (a seventh layer can be added if the
attacker is willing to guess its 128 bit subkey in a
nonpractical attack).
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Introduction- Cont.

¢ In our structural attacks we:
* Do not know anything about the S-boxes.
e Do not know the affine mapping.
e Do not know the key schedule.

* since they can all be defined in a complex key-
dependent way.

* We assume that the avalanche is complete after a
single layer of an unknown dense affine mapping, and
that any attempt to guess even a small fraction of the
key would require a nonpractical amount of time.



Introduction- Cont.

* Consequently, we cannot use the square attack and we
have to consider a somewhat smaller number of layers.
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* We describe surprisingly efficient structural attacks or?
substitution/affine structures with five to seven layers.

* The main scheme we attack is the five layer scheme
S3A4, S, A; S in which each S layer contains k
invertible S-boxes which map m bits to m bits, and
each A layer contains an invertible affine mapping of
vectors of n = km bits over GF(2): A;(x) = L;x®B;
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* The only information available to the attacker is the *
fact that the block cipher has this general structure,
and the values of k and m.

» Since all the S-boxes and affine mappings are assumed
to be different and secret, the effective key length of
this five layer scheme is:

* log(2™1)*m+210g(0.29 - 2™°) ~ 3 - 2™ (m — 1.44) - =
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* The new attack is applicable to any choice of m and n,®
but to simplify the analysis we concentrate on the
Rijndael-like parameters of m = 8 bit S-boxes and n =
128 bit plaintexts.

* The effective key length of this version is about:
» 3-2'2.6.56 + 21> = 113,000 = 2'7 bits.
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* It is important to note that not all the information
about the S-boxes and the affine mappings can be
extracted from the scheme, since there are many
equivalent keys which yield the same mapping from
plaintexts to ciphertexts.

* QOur attack finds an equivalent representation of all the
elements in the scheme which makes it possible to
encrypt and decrypt arbitrary texts, but it may be
different from the original definition of these
elements.



! The Multiset Attack- Multiset

Properties

* We now develop a calculus of multiset properties,
which makes it possible to characterize intermediate
values deep in the encryption structure even though
nothing is known about the actual functions in it.

* Each multiset can be represented as a list of (value,
multiplicity) pairs for example:
{11,1,2,2,2,2,7} 2 (1,3),(2,4),(7,1).

* The size of the multiset is the sum of all its
multiplicities (in the above example 8).




! The Multiset Attack- Multiset

Properties-Cont.

* Definition 1: o

e A multiset M of m-bit values has property C (constant)
if it contains an arbitrary number of repetitions of a
single value.

. {1,1,1,2,2,2,2,7}
* Definition 2:

e A multiset M of m-bit values has property P
(permutation) if it contains exactly once each one of the
2™ possible values.

¢ {0,1,2,3,4,5,6,7}



! The Multiset Attack- Multiset

Properties-Cont.

* Definition 3: .
e A multiset M of m-bit values has property E (even) if

each value occurs an even number of times (including
no occurrences at all).

* {1,1,2,2,3,3,4,4}
* Definition 4:
e A multiset M of m-bit values has property B (balanced)

if the XOR of all the values (taken with their
multiplicities) is the zero vector 0™.

e {1,1,2,2,3,3,4,4,5,5,5,5}



The Multiset Attack- M

Properties-Cont.

uﬁltiset

* Definition 5:

e A multiset M of m-bit values has property D (dual) if it
has either property P or property E.



! The Multiset Attack- Multiset

Properties-Cont.

* Lemma1:

* 1. Any multiset with either property E or property P
(when m > 1) also has property B.

e 2. The E and C properties are preserved by arbitrary
functions over m-bit values.

* 3. The P property is preserved by arbitrary bijective
functions over m-bit values.

* 4. The B property is preserved by an arbitrary linear
mapping from m bits to n bits when m > 1. It is
preserved by arbitrary affine mappings when the size of
the multiset is even.



! The Multiset Attack- Multiset

Properties-Cont.

* Let us consider now blocks of largersizen =k-m *
with mixed multiset properties.

* For example, we denote by C!"1PC*~! a multiset with
the property that when we decompose each n bit value
into k consecutive blocks of m contiguous bits, k-1 of
the blocks contain (possibly different) constants across
the multiset, and the i-th block contains exactly once
each one of the 2™ possible m-bit values.



! The Multiset Attack- Multiset

Properties-Cont.

» We denote by D¥ a multiset that decomposes into k  ®
multisets each one of which has property D.

* This decomposition should be understood not as a
cross product of k multisets but as a collection of k
projections of n bit to m bit values.

* Note that this decomposition operation is usually
nonreversible, since we lose the order in which the
values in the various blocks are combined.



The Multiset Attack- Multiset
Properties-Cont.

* For example {0,1,2,3}{1,1,2,2}{1,1,1,1} can be derived from
several different multisets such as
{(om),(1m1),(221,),(321)} or {(021),(121),(211),(311) }.



! The Multiset Attack- Multiset

Properties-Cont.

* Lemma 2: °

e 1. Property C*=1PC*~! is preserved by a layer of arbitrary
S-boxes provided that the i-th S-box is bijective.

» 2. Property D¥ is transformed into property D¥ by a layer
of bijective S-boxes.

e 3. Property D¥ is transformed into B by an arbitrary
linear mapping on n bits, and by an arbitrary affine
mapping when the size of the multiset is even.

e 4. Property C'"1PC*~! is transformed into property D¥
by an arbitrary affine mapping when the size of the
multiset is even.



! The Multiset Attack- Multiset

Properties-Cont.

* Proof: o
e Claims 1and 2 are trivial. We show why claim 3 holds.
* We donate claim 3 as y; = ;- dj;x; a bit y; at the
output of the linear mapping.

 Property B holds since for each j, the sum (mod 2) of
y; bits over the 2™ elements of the multiset is zero:

Zs 1y] Z 11 ]Ix _Z d]lz x =0

e The last expression is zero since by Lemma 1, claim 1,
both P and E (and thus D) imply the B-property.



! The Multiset Attack- Multiset

Properties-Cont.

e The result remains true even when we replace the linear
mapping by an affine mapping if we XOR the additive
constant an even number of times.

 Let us now show why claim 4 holds:

 Any affine mapping over GF(2) can be divided into k
distinct n to m-bit projections.



! The Multiset Attack- Multiset

Properties-Cont.

 Since (k — 1)m of the input bits are constant, we will be®
interested only in restrictions of these affine mappings
to new affine mappings that map the i — th block of m
bits (the one which has the P property) into some other
m-bit block in the output:
o y=Ay(x) =Ly x®B;,j=1,...k

 Here L;; is an arbitrary m X m (not necessarily
invertible) binary matrix and B; € {0,1}"™.

e We can again ignore B; since it is XOR'ed an even
number of times.



! The Multiset Attack- Multiset

Properties-Cont.

e If L;; is invertible over GF(2), then L;; - x isa1-1 o
transform and thus L;; - x gets all the 2™ possible values

when x ranges over all the 2™ possible inputs, so it has
property P.

e Thus we are left with the case of non-invertible L;;.
e Suppose that rank (Li j) =r < m.

* The kernel is defined as the set of solutions of the
homogeneous linear equation L;; - x = 0.



! The Multiset Attack- Multiset

Properties-Cont.

* Let xy be some solution of the non-homogeneous o
equation L;; - x = y.

e Then all the solutions of the non-homogeneous
equation have the form xy,@v,, where v, is any vector

from the kernel.

e The size of the kernel is 2", and thus each y has either

no preimages or exactly 2" preimages.



! The Multiset Attack- Multiset

Properties-Cont.

e Since r < m by assumption, 2™ is even, and thus the®
multiset of m-bit results has property E.

» Consequently each block of m bits of the output has
either property P or property E, and thus the n bit
output has property D¥, as claimed.



e

The Multiset Attack- Recovering Layers
S1 and S5

* Consider a multiset of chosen plaintexts with property®
Ci—l p Ck ~ .
* The key observations behind the attack are:
¢ 1. The given multiset is transformed by layer S into a
multiset with property C'*”1PC*~!by Lemma 2, claim 1.
e 2. The multiset C:~1PC*~is transformed by the affine
mapping A, .into a multiset with property D¥ by Lemma
2, claim 4.



he Multiset Attack- Recovering Layers

S1 and S55-Cont.

e 3. The multiset property D¥ is preserved by layer S2, and
thus the output multiset is also D¥, by Lemma 2, claim
5

e 4. The multiset property D¥ is not necessarily preserved
by the affine mapping A,, but the weaker property B¥ is
preserved.

* 5. We can now express the fact that the collection of
inputs to each S-box in S5 satisfies property B by a
homogeneous linear equation.

* We will operate with m-bit quantities at once as if
working over GF(2™) (XOR and ADD are the same in
this field).



he Multiset Attack- Recovering Layers
S1 and S55-Cont.

 Variable z; represents the m-bit input to the S-box
which produces i as an output (the variable z; describes
S~—1 which is well defined since S is invertible), and we
use 2™ separate variables for each S-box in S5.

 When we are given a collection of actual ciphertexts, we
can use their m-bit projections as indices to the
variables, and equate the XOR of the indexed variables
to 0™,

 Different collections of chosen plaintexts are likely to

generate linear equations with different random looking
subsets of variables.



he Multiset Attack- Recovering Layers
S1 and S55-Cont.

* When sufficiently many linear equations are obtained
we can solve the system by Gaussian elimination in
order to recover all the S-boxes in S3 in parallel.
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S1 and S55-Cont.

* Unfortunately, we cannot get a system of equations ©
with a full rank of 2™, Consider the truth table of the
inverted S-box as a 2™ X m-bit matrix.

* Since the S-box is bijective, the columns of this matrix
are m linearly independent 2™ -bit vectors.

* Any linear combination of the S-box input bits (which
are outputs of the inverted S-box) is also a possible
solution, and thus the solution space must have a
dimension of at least m.



he Multiset Attack- Recovering Layers
S1 and S55-Cont.

* Moreover, since all our equations are XOR's of an even®
number (2™) of variables, the bit complement of any
solution is also a solution.

* Since the system of linear equations has a kernel of
dimension at least m+1, there are at most 2™ —m — 1
linearly independent equations in our system.

* When we used m=8 we got a linear system of rank 247
in 256 variables, according to the formula.



he Multiset Attack- Recovering Layers
S1 and S55-Cont.

* Fortunately, this rank deficiency is not a problem in ©
our attack. When we pick any one of the non-zero
solutions, we do not get the “true” S~1, but A(S™1),
where A is an arbitrary invertible affine mapping over
m-bits.

* By taking the inverse we obtain S(471).
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S1 and S55-Cont.

* This is the best we can hope for at this phase, since the
arbitrarily chosen A~! can be compensated for when
we find A(4,) = A’, instead of the “true" affine
transform A2, and thus the various solutions are
simply equivalent keys which represent the same
plaintext/ciphertext mapping.



The Multiset Attack- Recovering Layers
S and $;3-Cont.

* single collection of 2™ chosen plaintexts gives rise to e
one linear equation in the 2 unknowns in each one of
the k -S-boxes in layer S;.

* To get 2™ equations, we can use 2™ (21°) chosen
plaintexts of the form (4, u, B, v, C), in which we place
the P structures u and v at any two block locations,
and choose A,B,C as arbitrary constants.

* For each fixed value of u, we get a single equation by
varying v through all the possible 2™ values.

* However, we can get an additional equation by fixing v
and varying u through all the 2™ possible values.
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S1 and S55-Cont.

* Since we get 2 - 2™ equations in 2" unknowns, we can®

. 3
reduce the number of chosen plaintexts to - - 221 by

. 1 . . .
eliminating the = of the plaintexts in which uand v are
simultaneously chosen in the top half of their range.
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S1 and 53— Cont.

* Solving each system of linear equations by Gaussian *
elimination requires 23™ steps, and thus we need
k - 23™ steps to find all the S-boxes in Sj.

* For n=128, m=8, k=16 we get very modest time
complexity of 228,

* To find the other external layer S;, we can use the same
attack in the reverse direction. However, the resultant
attack requires both chosen plaintexts and chosen
ciphertexts.
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he Multiset Attack- Attacking the Inner
Layers ASA

* We are left with a structure A’, S, A’y - two (possibly o
modified) affine layers and an S-box layer in the middle.

* In order to recover the affine layers we use Biham's low
rank detection technique.

* Consider an arbitrary pair of known plaintexts P; and P,
with difference P, ®P,.
» With probability zim, after A'; there will be no difference at

the input to one of the k S-boxes in S,. Thus there will also
be no difference at the output of this S-box.



- The Multiset Attack- Attacking the Inner
Layers ASA-Cont.

* Consider now the set of pairs P,®C;, P,@DC; for many®
randomly chosen n-bit constants C;.

* Any pair in this set still has this property, and thus the
set of all the obtained output differences after A", will
have a rank of at most n — m, which is highly unusual
for random n dimensional vectors.

* Consequently, we can confirm the desired property of
the original pair P; and P, by applying this low rank
test with about n modifiers C;.
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he Multiset Attack- Attacking the Inner
Layers ASA-Cont.

* We want to generate and test pairs with zero input  ©
differences at each one of the k S-boxes.

* We choose a pool of t random vectors P; and another
pool of n modifiers C;, and encryptall then - t
combinations P;@C;.

2
* We have about % possible pairs of P; 's, each one of

them has a probability of zim to have the desired

property at one of the S-boxes, and we need about
k - log(k) random successes to cover all the k S-boxes.
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he Multiset Attack- Attacking the Inner
Layers ASA-Cont.

* The critical value of t thus satisfies % : zim =k -log(k) =

and thus t = /2m*1log(k).

¢ For n=128, m=8, k=16 we get t=2°, and thus the total
number of chosen plaintexts we need is n - t = 212>,




The Multiset Attack- Attacking the Inner
Layers ASA-Cont.

* Now we use linear algebra in order to find the °
structure of 4',.

» Consider the representation of A’, as a set of n vectors
Vo, Vi, o, Vi1, V; € {0,1}", where A, transforms an
arbitrary binary vector by, by, ..., b,,_1 producing the
linear combination:

o A'5(b) = &, b; V..
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he Multiset Attack- Attacking the Inner
Layers ASA-Cont.

* From the data pool we extract information aboutk  ©
different linear subspaces of dimension n — m (= 120).

* Then we calculate the intersection of any k — 1(= 15) of
them.

* This intersection is an m-dimensional linear subspace
which is generated by all the possible outputs from

one of the S-boxes in layer S, after it is expanded from
8 bits to 128 bits by A’,.



The Multiset Attack- Attacking the Inner
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* We perform this operation for each S-box and by this ®
we find a linear mapping A", which is equivalent to
the original choice.

* The complexity of this phase is that of Gaussian
elimination on a set of O(n — m) equations.



- The Multiset Attack- Attacking the Inner
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» After finding and discarding A’,, we are left with the ©
two layer structure S, A’;.

* If we need to perform only decryption, we can recover
this combined mapping by writing formal expressions

for each bit, and then solving the linear equations with
k - 2™ (212) variables.

* If we also need to perform encryption this trick will
not work, since the formal expressions will be huge,
However, we can just repeat our attack in the reverse
direction by using chosen ciphertexts and recover A™;.



The Multiset Attack- Attacking the Inner
Layers ASA-Cont.

* After that we can find the remaining layer S, with  ©
about 2™ known plaintexts.

* Again we will find not the real S-box layer S, but the
equivalent one which corresponds to the modified A4,
A*,that we have found in earlier phases.



The Multiset Attack- Attacking the Inner
Layers ASA-Cont.

* The complete attack uses about 2™ chosen plaintexts®
(216) and about k23™ (16- 22* = 228) steps.
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A Chosen Plaintext Attack on ASAS

* We now show how to use a pure chosen plaintext *
attack, and avoid the less realistic chosen plaintext and
chosen ciphertext attack with the same time and data
complexities as the original attack.

* After the first phase of the original attack we are left
witha A',S,A4,S; structure, since we can recover only
one of the two external S-box layers.



!A Chosen Plaintext Attack on ASAS-

Cont.

* Since the inputs go through the additional S-box layer®
S, we can no longer argue that for any C;, P,®C; and
P, ®C; will have a zero difference at the input to some
S-box in S, whenever P; and P, have this property.

* Because of that we have to use a more structured set of
modifiers which can be nonzero only at the inputs to
the S-boxes in which P; and P, are identical.
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= A Choéen Plaintext Attack on ASAS-
Cont.

» We use 21¢ chosen plaintexts with the multiset o
property PPC*~2 (the two P's could be placed
anywhere, and we could reuse the chosen plaintexts
from the first phase of the attack).

* There are 21> different ways to choose a pair of values
from the first P.

* For each such pair (a4, a,), we generate a group of
28 pairs of extensions of the form (aq, by, ¢, d, ...) and
(a,, by, c,d, ...) where by is any common element from
the second P, and ¢, d, ... are the constants from C*~2.
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A Chosen Plaintext Attack on ASAS-
Cont.

* We claim that all these 28 pairs will have the same  ©
difference at the output of S, since the first S-box gets
a fixed pair of values and the other S-boxes get
identical inputs in each pair.

* We can now apply the low rank test since we have
sufficiently many choices of (a,, a,) to get a zero
difference at the input to each S-box in S, with high
probability, and for any such (a,, a,) we have
sufficiently many pairs with the same difference in
order to reliably test the rank of the output vectors.
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A Chosen Plaintext Attack on ASAS-
Cont.

* Once we discover the partition of the output space inté
16 different linear subspaces of dimension 120, we can
again find the intersection of any 15 of them in order
to find the 8 dimensional subspace generated by the
outputs of each one of the 16 S-boxes.

» We fix A', by choosing any set of 8 arbitrary spanning
vectors in each one of the 16 subspaces, and this is the
best we can possibly do in order to characterize A’, due
to the existence of equivalent keys.
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Cont.

* One possible problem with this compact collection of ®
plaintexts is that the attack may fail for certain
degenerate choices of affine mappings.

* For example, if both A; and A, are the identity
mapping, the insufficiently mixed intermediate values
always lead to very low output ranks.

* However, the attack was always successful when tested
with randomly chosen affine mappings.
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Cont.

* After peeling off the computed A’,, we are now left ©
with a §',A,S;structure, which is different from the
A',S,A'| structure we faced in the original attack.

* We have already discovered in the previous part of the
attack many groups of 256 pairs of plaintexts, where in
each group we know that the XOR of each pair of

inputs to any particular S-box in S’, is the same
constant.



! A Chosen Plaintext Attack on ASAS-

Cont.

* We do not know the value of this constant, but we can®
express this property as a chain of homogeneous linear
equations in terms of the values of the inverse S-box,
which are indexed by the known outputs from the
S'5,A,S, structure.

* For example:

e ST P SL(72)=5"1(255) P S1(13) =571(167)
P S 1(217)=...



!A Chosen Plaintext Attack on ASAS-

Cont.

* If we need additional equations, we simply use anothe?
one of the 21> possible groups of pairs, which yields a
different chain of equations (with a different unknown
constant).



Questions?



