New Types of Cryptanalytic Attacks Using Related Keys

Eli Biham

Presented by: Nael Masalha

Outline

- Introduction
- LOKI89
- Related Keys
- Chosen Key Attack
- Chosen plaintext attack
- Summary

Introduction

- The author studies the influence of key scheduling algorithms on the strength of blockciphers.
- New types of attacks are described:
 - Chosen key chosen plaintext attack
 - Chosen key known plaintext attack
 - Chosen plaintext attack based on complementation property
- The new attacks are independent of the number of rounds of the attacked cryptosystem.
- Attacks are applicable to both variants of LOKI
- Attacks are not applicable to DES

LOKI89

- Feistel structure
- 64-bit plain/ciphertext and key length
- 16 rounds
- Similar to DES with replaced F function
- Replaced initial and final permutations
- Replaced key scheduling algorithm
- Key scheduling algorithm takes 64-bit key
- Defines its left half as K₁ and its right half as K₂
- Each other subkey $K_i = ROL12(K_j), j = i-2$
- Subkeys of odd rounds share the same bits
- Subkeys of even rounds share the same bits

Related keys

- Algorithms of extracting the subkeys of the various rounds are the same.
- Given a key we can shift all the subkeys one round backwards
- A new set of valid subkeys is received.
- Define new key from the new subkeys
- We call these keys *related keys*.

- Two related keys with certain relationship are used and several plaintexts are encrypted under each of them.
- The attacker knows only the relationship between the keys but not the keys themselves.
- Two attacks:
 - Chosen plaintext attack with 2¹⁷ chosen plaintexts.
 - Know plaintext attack with 2³³ know plaintexts.

- Given the key $K = (K_L, K_R)$
- Fix two subkeys K₂ and K₃
- Define $K^* = (K_2, K_3) = (K_R, ROL12(K_L))$
- If the data before the second round in an encryption under the key K equals the data before the first round in an encryption under the key K^{*}, then the data and the inputs of the F functions are the same in both executions shifted by one round.
- $P^* = (P_R, P_L \oplus K_L \oplus ROL12(K_L) \oplus F(P_R \oplus K_R \oplus K_L))$
- $C^* = (C_R \oplus K_L \oplus ROL12(K_L) \oplus F(C_L \oplus K_R \oplus K_L), C_L)$

- Chosen key chosen plaintext attack based on this property chooses two groups, each one with size 2¹⁶, plaintexts.
- $P_{0},...,P_{65535}$: whose right halves equal P_R and 32-bit left halves randomly chosen.
- $P^*_{O},...,P^*_{65535}$: whose left halves equal P_R and 32-bit right halves randomly chosen.

- Two unknown related keys are used to encrypt these two groups.
- A key *K* is used to encrypt the first 2¹⁶ plaintexts.
- A key $K^* = (K_R, ROL12(K_L))$ is used to encrypt the other 2¹⁶ plaintexts.

- In every pair of plaintexts P_i and P_j^* we are guaranteed that $P_{jL}^* = P_{iR}$.
- By the birthday paradox with a high probability there exists two plaintexts P_i and P^{*}_i such that

 $P_{jR}^{*} = P_{iL} \oplus K_L \oplus ROL12(K_L) \oplus F(P_{iR} \oplus K_R \oplus K_L)$

• It is easy to identify this pair, if it exists, by checking whether $C_R^* = C_L$. This test has a probability of 2⁻³² to pass accidentally.

• Such a pair reveals the value of

 $F(P_R \oplus K_R \oplus K_L) \oplus F(C_L \oplus K_R \oplus K_L) = P_R^* \oplus P_L \oplus C_L^* \oplus C_R$ in which the only unknown value is $K_L \oplus K_R$

- Chosen key know plaintext attack uses 2^{32} plaintexts P_i encrypted under an unknown key K, and 2^{32} known plaintexts P_i^* encrypted under related key $K^* = (K_R, ROL12(K_L))$.
- By the birthday paradox there is a high probability to have a pair in which the property holds.
- It is easy to identify this pair by the 2³² common bits of the plaintexts and 2³² common bits of the ciphertexts.

- A chosen plaintext attack reduces the complexity of exhaustive search using related keys.
- This attack is combined with the attacks based on complementation properties.
- In this attack the encryption is done using one key.

- LOKI89 key complementation property causes any key to have 15 equivalent keys which encrypt the plaintext to the same ciphertext.
- The 15 keys are the original key XORed with the 15 possible 64-bit hexadecimal numbers whose digits are identical.
- Known plaintext attack can be carried out with a complexity of 2⁶⁰.

- For each key, there is one equivalent key whose four most bits are zero, and one complement key whose four most significant bits of its both halves are zero.
- This property reduces the complexity of a chosen plaintext attack by a further factor 16 to 2⁵⁶.

- Choose any plaintext P_0 , and calculate the 15 plaintexts P_i , $i \in \{0_x, ..., F_x\}$, by $P_i = P_0 \bigoplus iiiiiiiiiiiiiiii_i$.
- Given the 16 ciphertexts {C_i}, under an unknown key K, try all the 2⁵⁶ keys K in which eight bits are zero: the four most significant bits of both halves.
- Encrypt P_0 by each trial K'.
- If the result equals one of the values $C_i \bigoplus iiiiiiiiiiiiiiii_x$, the original key is likely to be either $K = K' \bigoplus 0000000iiiiiii_x$ or any one of its 15 equivalent keys.

- The next operation takes 32-bit value, rotates it 12 bits to the left(ROL12) and XORs it with an 32-bit hexadecimal number whose all digits are equal, such that the four most significant bits of result are zero.
- Prepare a list of about 2²⁷ halfkeys{L_i}, with the properties:
 - Four most significant bits are zero
 - The list contains one value from any pair L_i and L_i for which L_i = next(L_i)
 - The list is minimal

Cycle Size	Number of Cycles	Number of elements in the Cycle
1	16	16
2	120	240
4	16,320	65,280
8	33,546,240	268,369,920

- Choose any plaintext P₀
- For each $P_{i'}$ choose $2^{32} P_{i,k} = (P_{iR'}, P_{iL} \bigoplus k)$
- Given the ciphertexts $\{C_i\}$, $\{C_{i,k}\}$, try all 2⁵⁵ keys K of the forms: $K' = (L_i, L_j)$ and $K' = (ROL12(L_i), ROR12(L_j))$
- Encrypt P_0 by each trial K' into C'.
- If the result equals one of the values $C_i \bigoplus iiiiiiiiiiiiiii_{x}$, the original key is likely to be either $K = K' \bigoplus 0000000iiiiii_{x}$ or any one of its 15 equivalent keys.

- The complexity of this attack is twice 2⁵⁴, i.e. 2⁵⁵.
- Optimized attack has complexity 1.5 times 2⁵⁴

Thank You