
The Full Cost of
Cryptanalytic Attacks

Michael J. Wiener

Presented by Ilya Efanov
02.06.2013

Content

▪ 1. Introduction

▪ 2. Full Cost of Connecting Many Processors to a Large Memory

▪ 3. Applications

▪ 4. Conclusion

Introduction

▪ Question:

Some algorithms with input 𝑛 may require Θ 𝑛 steps and Θ 𝑛
memory elements.

What is the algorithms’ overall cost ?

Introduction

▪ Question:

Some algorithms with input 𝑛 may require Θ 𝑛 steps and Θ 𝑛
memory elements.

What is the algorithms’ overall cost ?

Θ 𝑛 , Θ 𝑛2 , or something else ?

Introduction

▪ How do we measure the cost of an algorithm ?

Introduction

▪ How do we measure the cost of an algorithm ?

▪ Current practice in stating the cost of an algorithm is very processor
centric - total number of operations performed by all processors.

steps
or

run-time
per processor

Introduction

W/O additional memory
(exhaustive search)

2𝑘 x 1 processor

2𝑘−1 x 2 processors

2𝑘−2 x 4 processors

2𝑘−3 x 8 processors

…

Introduction

W/O additional memory
(exhaustive search)

2𝑘 x 1 processor

2𝑘−1 x 2 processors

2𝑘−2 x 4 processors

2𝑘−3 x 8 processors

…

With additional large memory

2𝑘 x 1 processor / 2𝑚 memory

2𝑘−1 x 2 processors / 2𝑚 memory

2𝑘−2 x 4 processors / 2𝑚 memory

2𝑘−3 x 8 processors / 2𝑚 memory

…

Introduction

▪ Is there any problem with this metric ?

Introduction

▪ Is there any problem with this metric ?

▪ It ignores all hardware components except processors

Introduction

▪ We want to find more useful metric that considers all hardware costs.

Full Cost

▪ Definition:

The full cost of an algorithm run on a collection of hardware is the
number of components multiplied by the duration of their use.

run-time

Used by
– [Amirazizi, Hellman, 1981, 1988]
– [Bernstein, 2001]
– [Lenstra, Shamir, Tomlinson, Tromer, 2002] called it “throughput cost”

Full Cost of Connecting Many Processors
to a Large Memory

▪ We are concerned with the case where the processors repeatedly
access random locations in the large memory in parallel rather than
the case where each processor is operating within its own small
selection of memory

▪ For instance:

Given 1000 small processors accessing a large memory broken into
1000 blocks, where the processors generate a memory access every 100
ns, then the memory must support 1000 memory accesses every 100
ns.

Butterfly Network

▪ Connecting N Processors to N Blocks of Memory

0xx
1xx

xxx

xxx

xxx

xxx
0xx
1xx

0xx
1xx

0xx
1xx

00x
01x

10x
11x

00x
01x

10x
11x

000
001

010
011

100
101

110
111

0xx

1xx

0xx

1xx

00x

11x

10x

01x

processors memory blocks

Full Cost of Connecting Many Processors
to a Large Memory

▪ We have:
– 𝑛 = 2𝑘 processors and memory blocks

– Θ(𝑛𝑙𝑜𝑔𝑛) switching elements

– 2𝑘−1 2𝑘−1 − 1 = Θ(𝑛2) total wire length

Full Cost of Connecting Many Processors
to a Large Memory

▪ We have:
– 𝑛 = 2𝑘 processors and memory blocks

– Θ(𝑛𝑙𝑜𝑔𝑛) switching elements

– 2𝑘−1 2𝑘−1 − 1 = Θ(𝑛2) total wire length

▪ It’s possible to pack the memory elements in 3D, so it reduces total
wiring cost to Θ(𝑛3/2)

Full Cost of Connecting Many Processors
to a Large Memory

▪ We have:
– 𝑛 = 2𝑘 processors and memory blocks

– Θ(𝑛𝑙𝑜𝑔𝑛) switching elements

– 2𝑘−1 2𝑘−1 − 1 = Θ(𝑛2) total wire length

▪ It’s possible to pack the memory elements in 3D, so it reduces total
wiring cost to Θ(𝑛3/2)

▪ We cannot pack wires any tighter that filling three dimensions

Full Cost of Connecting Many Processors
to a Large Memory

▪ We have:
– 𝑛 = 2𝑘 processors and memory blocks

– Θ(𝑛𝑙𝑜𝑔𝑛) switching elements

– 2𝑘−1 2𝑘−1 − 1 = Θ(𝑛2) total wire length

▪ It’s possible to pack the memory elements in 3D, so it reduces total
wiring cost to Θ(𝑛3/2)

▪ We cannot pack wires any tighter that filling three dimensions

▪ Is it possible to reduce wiring cost below Θ(𝑛3/2) ?

Full Cost of Connecting Many Processors
to a Large Memory

▪ We have:
– 𝑛 = 2𝑘 processors and memory blocks

– Θ(𝑛𝑙𝑜𝑔𝑛) switching elements

– 2𝑘−1 2𝑘−1 − 1 = Θ(𝑛2) total wire length

▪ It’s possible to pack the memory elements in 3D, so it reduces total
wiring cost to Θ(𝑛3/2)

▪ We cannot pack wires any tighter that filling three dimensions

▪ Is it possible to reduce wiring cost below Θ(𝑛3/2) ?

▪ No.

General Case

▪ Problem 1: Memory request rate may be not Θ(1) bits per unit time.

▪ For example, if each processor generates a request of size 𝑙𝑜𝑔𝑛 every
𝑛 units of time, we say that the memory access rate per processor is
𝑙𝑜𝑔𝑛/𝑛 .

▪ Problem 2: The number of processors and number of memory blocks
may not be equal.

General Case

▪ Theorem 1:

The total number of components required to allow each of 𝑝 processors
uniformly random access to 𝑚 memory elements at a memory access
rate 𝑟, including the components of processors, memory, switching
elements and wires is Θ(𝑝 +𝑚 + 𝑝𝑟 3/2).

General Case

▪ Corollary 1:

For an algorithm where 𝑝 processors access a memory of size 𝑚 at rate 𝑟
and the total number of processor operations 𝑇, the full cost of the
algorithm is 𝐹 = Θ((𝑇/𝑝)(𝑝 + 𝑚 + 𝑝𝑟 3/2)).

General Case

▪ Corollary 1:

For an algorithm where 𝑝 processors access a memory of size 𝑚 at rate 𝑟
and the total number of processor operations 𝑇, the full cost of the
algorithm is 𝐹 = Θ((𝑇/𝑝)(𝑝 + 𝑚 + 𝑝𝑟 3/2)).

▪ Corollary 2:

For an algorithm where the rate 𝑟 at which 𝑝 processors access a memory of
size 𝑚 is high, 1/𝑟 = 𝑚𝑜(1), the memory size is independent of the number
of processors and the number of processor operations is 𝑇, the full cost of
the algorithm is a minimum of 𝐹 = Θ(𝑇𝑟𝑚1/3) where 𝑝 = Θ(𝑚2/3/𝑟)

Full Cost vs. Processor Centric Cost

▪ If we rewrite the full cost from Corollary 1 as

𝐹 = Θ 𝑇/𝑝 𝑝 +𝑚 + 𝑝𝑟 3/2 = Θ 𝑇 1 +𝑚/𝑝 + 𝑝1/2𝑟3/2

So 𝐹 = Ω(𝑇).

And we are getting 𝐹 = Θ 𝑇 iff 𝑝 = Ω 𝑚 and 𝑟 = Ο(𝑝−1/3)

Full Cost vs. Processor Centric Cost

▪ If we rewrite the full cost from Corollary 1 as

𝐹 = Θ 𝑇/𝑝 𝑝 +𝑚 + 𝑝𝑟 3/2 = Θ 𝑇 1 +𝑚/𝑝 + 𝑝1/2𝑟3/2

So 𝐹 = Ω(𝑇).

And we are getting 𝐹 = Θ 𝑇 iff 𝑝 = Ω 𝑚 and 𝑟 = Ο(𝑝−1/3)

Conclusion: The full cost of an algorithm is never less than the
traditional count of processor steps.

Applications

▪ Double encryption

More:

▪ Discrete logarithm

▪ Factoring

▪ Encryption

▪ Triple encryption

▪ Hash Collisions

Double encryption

▪ 𝐶 = 𝐸𝑘2(𝐸𝑘1(𝑃))

▪ Key space is 𝑛2

– Using techniques for recovering many keys at once with a chosen-plaintext
attack reduces key space to 𝑛

▪ Given (𝑃, 𝐶) find 𝑘1, 𝑘2

▪ Attack approaches
– Simple meet-in-the-middle

– Parallel collision search

Meet-In-The-Middle

▪ Obrevation 𝐸𝑘1 𝑃 = 𝐸𝑘2
−1(𝐶)

For each possible 𝑘1
• Compute 𝐸𝑘1(𝑃)
• Store (𝑘1, 𝐸𝑘1(𝑃)) in

a hash table indexed
by 𝐸𝑘1(𝑃)

Large Memory

For each possible 𝑘2
• Compute 𝐸𝑘2

−1 𝐶
• Look it up in the table.

Whenever, 𝐸𝑘2
−1 𝐶 is in the

table, we have a candidate key
pair (𝑘1, 𝑘2) that can be tested
on the other (𝑃, 𝐶) pairs

Meet-In-The-Middle

▪ 𝑚 = Θ(𝑛𝑙𝑜𝑔𝑛) – required memory size

▪ 𝑡 = Ω 𝑙𝑜𝑔𝑛 𝑜𝑟 𝑡 = 𝑛𝑜 1 - encryption and decryption time
– keys and text of size Θ(𝑙𝑜𝑔𝑛)

▪ 𝑟 = Θ(𝑙𝑜𝑔𝑛/𝑡) – memory access rate

▪ 𝑇 = Θ(𝑛𝑡)

By Corollary 2 the full cost of a meet-in-the-middle attack on double
encryption is 𝐹 = Θ(𝑇𝑟𝑚1/3) and then 𝐹 = Θ 𝑛𝑙𝑜𝑔𝑛 4/3

Note: We will say that it’s 𝑛4/3+𝑜 1

Parallel Collision Search applied to
MITM attacks

▪ 𝑚 = Θ(𝑤𝑙𝑜𝑔𝑛) - required memory size
– 𝑤 memory locations, each of size Θ(𝑙𝑜𝑔𝑛)

▪ 𝑇 = Θ(𝑛3/2𝑡/𝑤1/2) - the total number of processor steps across 𝑝
processors

▪ 𝑟 = Θ(𝑤1/2(𝑙𝑜𝑔𝑛)/(𝑛1/2𝑡)) – memory access rate
– memory access of size Θ(𝑙𝑜𝑔𝑛) is made every 𝑛/𝑤 1/2 encryptions

Parallel Collision Search applied to
MITM attacks

By Corollary 1, the full cost of the algorithm is

𝐹 = Θ((𝑛3/2𝑡/𝑤1/2𝑝)(𝑝 + 𝑚 + 𝑝𝑟 3/2)).

▪ This cost is a minimum of Θ(𝑛6/5𝑡2/5 𝑙𝑜𝑔𝑛 4/5) when:
– 𝑝 = Θ(𝑤𝑙𝑜𝑔𝑛)

– 𝑤 = Θ(𝑛3/5𝑡6/5/ 𝑙𝑜𝑔𝑛 8/5)

▪ Note: 𝑛6/5+𝑜(1)

Result Comparison

▪ The full cost of a known-plaintext attack on double encryption using
a simple meet-in-the-middle attack is 𝑛4/3+𝑜 1 and this can be
reduced to 𝑛6/5+𝑜(1) using parallel collision search.

Conclusion

In general:

▪ 𝑝 - # processors

▪ 𝑚 – memory size

▪ 𝑟 – memory access rate

▪ 𝑇 – processor steps

Then full cost is 𝐹 = Θ(𝑇 + 𝑇𝑚/𝑝 + 𝑇𝑝1/2𝑟3/2)

processor costs memory cost of connecting the memory

Conclusion

▪ For the full cost to match the traditional measure of algorithm cost,
i.e. 𝐹 = Θ(𝑇), we must have 𝑝 = Ω(𝑚) and the memory access rate
must be low, 𝑟 = Ο(𝑝−1/3).

Cryptanalytic problem Attack Method Processor Steps Full Cost

One discrete logarithm
(prime group order 𝑛)

Shanks
Parallel Collision Search

𝑛1/2+𝑜 1

𝑛1/2+𝑜 1
𝑛2/3+𝑜 1

𝑛1/2+𝑜 1

𝑛-th discrete logarithm
(prime group order 𝑛)

Shanks
Parallel Collision Search

𝑛𝑜 1

𝑛𝑜 1
𝑛1/3+𝑜 1

𝑛1/5+𝑜 1

Factoring Number field sieve 𝐿(1.90188…) 𝐿(1.94961…)

Block cipher encrypting
(|key space| = 𝑛)

All methods (first key)
Table lookup (𝑛-th key)

𝑛1+𝑜 1

𝑛𝑜 1
𝑛1+𝑜 1

𝑛1/3+𝑜 1

Double encryption Meet-in-the-middle
Parallel collision search

𝑛1+𝑜 1

𝑛1+𝑜 1
𝑛4/3+𝑜 1

𝑛6/5+𝑜 1

2-key triple encryption
(|message space| = 𝑢 ≥ 𝑛)

Unlimited chosen texts
𝑤 known texts (𝑤 ≤ 𝑢)

𝑛1+𝑜 1

𝑛1+𝑜 1 𝑢/𝑤

𝑛4/3+𝑜 1

𝑛1+𝑜 1 𝑢/𝑤
2
3

3-key triple encryption Meet-in-the-middle
Parallel collision search

𝑛2+𝑜 1

𝑛2+𝑜 1
𝑛7/3+𝑜 1

𝑛11/5+𝑜 1

Hash collision
(|output space| = 𝑛)

Meet-in-the-middle
Parallel collision search

𝑛1/2+𝑜 1

𝑛1/2+𝑜 1
𝑛2/3+𝑜 1

𝑛1/2+𝑜 1

Thank you

