The Full Cost of
Cryptanalytic Attacks

Michael J. Wiener

Presented by Ilya Efanov
02.06.2013

Content

1. Introduction

2. Full Cost of Connecting Many Processors to a Large Memory

3 Applications

4. Conclusion

Introductioh

= Question:

Some algorithms with input n may require O(n) steps and 0(n)
memory elements.

What is the algorithms’ overall cost ?

Introductioh

= Question:

Some algorithms with input n may require O(n) steps and 0(n)
memory elements.

What is the algorithms’ overall cost ?

®(n), ®(n?), or something else ?

Introductioh

EE———

= How do we measure the cost of an algorithm ?

Introductioh.

e ——— = == - o - e - — ~

e ‘How do we measure the cost of an algorithm ?

= Current practice in stating the cost of an algorithm is very processor
~centric - total number of operations performed by all processors.

steps
or
run-time
per processor

processors

Introductioh

2% x 1 processor

2%=1 x 2 processors
282 x 4, processors

2%=3 x 8 processors

Introductioh

2% x 1 processor

2%=1 x 2 processors
2K%=2 x4, processors

2%=3 x 8 processors

2% x 1 processor / 2™ memory
2%=1 x 2 processors | 2™ memory

282 x 4, processors | 2™ memory

2%=3 x 8 processors / 2™ memory

Introductioh

EE———

= |sthere any problem with this metric ?

Introductioh

E————

= |sthere any problem with this metric ?

= Itignores all hardware components except processors

Introductioh

— s = : e : L XY S Sy e :

. ‘We want to find more useful metric that considers all hardware costs.

Full Cost

e Definition:

The full cost of an algorithm run on a collection of hardware is the
number of components multiplied by the duration of their use. ‘

h/w components

or : run-time
total h/w cost |

Used by

— [Amirazizi, Hellman, 1981, 1988]
- —[Bernstein, 2001]

= Lenstra Shamir, Tomlinson, Tromer, 2002] caIIed it “throughput cost”

Full Cost of Connecting Many Processors
to a Large Memory

2, X ' V— 4 =5 i ———— — — = e -

= We are concerned with the case where the processors repeatedly
access random locations in the large memory in parallel rather than

- the case where each processor is operating within its own small
selection of memory

= For instance:

Given 1000 small processors accessing a large memory broken into
1000 blocks, where the processors generate a memory access every 100

" ns, then the memory must support 1000 memory accesses every 100
ns.

v

&k
g

e P s S e =y ;:‘ g o <
= - e TP yarg ot : e g
% e F & s > L b ating o SRR Ty N
’ . T e = o Tty . ST 2NN e, o o
A%E oy - o P Pg = L f i < O iy ok, el = & S
. oy L S Y N, o = e e e = : ¢
o . s -3 &) e Ry AN, R g LR i T L ™
ot < % V- em i RMSEEST s . R e . AR L e | = =
oyt <o - o ARl ’ v o G Ty -~ 5 -
= gyt Tter: etwork
S i — LIRS T PR S YA AT S D . - - . N 2 . ~
S DR R e =L mut T e < ; = - o : X
o Ty ¥ « 2D el Sy g o A A o e :
. . .. % e S e <~,;:’_‘~ = - '-."., i L 3
y g A e i TR RS S S b e L o s > o - : - g
— — — — e e L=

s raso

——h

s <L
Lo Ve

cessors to N Blocks of Memory

= -'”P‘»:-*"Cori.ne‘_»ct_i_n g N Proc

1010).¢
01X

10X
11X ‘

00X '

01X

10X
11X

Full Cost of Connecting Many Processors
to a Large Memory |

= We have:
- - n=2¥processors and mémory blocks
' - O(nlogn) switching elements
- 2k=1(2k=1 _ 1) = ©(n?) total wire length

Full Cost of Connecting Many Processors
to a Large Memory

= We have:

- - n=2¥processors and mémory blocks
- O(nlogn) switching elements
- 2k=1(2k=1 _ 1) = ©(n?) total wire length

* It's possible to pack the memory elements in 3D so it reduces total
wiring cost to @(n3/2)

Full Cost of Connecting Many Processors
to a Large Memory

= We have:

- - n=2¥processors and mémory blocks
- O(nlogn) switching elements
- 2k=1(2k=1 _ 1) = ©(n?) total wire length

* It's possible to pack the memory elements in 3D so it reduces total
wiring cost to @(n3/2)

= We cannot pack wires any tighter that filling three dimensions

Full Cost of Connecting Many Processors
to a Large Memory

We have:

- - n=2¥processors and mémory blocks

' - O(nlogn) switching elements

- 2k=1(2k=1 _ 1) = ©(n?) total wire length

It's possible to pack the memory elements in 3D so it reduces total
wiring cost to @(n3/2)

We cannot pack wires any tighter that filling three dimensions

ls it possible to reduce wiring cost below ©(n3/?) ?

Full Cost of Connecting Many Processors
to a Large Memory

= We have:

- - n=2¥processors and mémory blocks
- O(nlogn) switching elements
- 2k=1(2k=1 _ 1) = ©(n?) total wire length

* It's possible to pack the memory elements in 3D so it reduces total
wiring cost to @(n3/2)

= We cannot pack wires any tighter that filling three dimensions
= |s it possible to reduce wiring cost below @(n3/2) ?

.-No.

General Case

et = - ——

* Problem 1: Memory request rate may be not ©(1) bits per unit time.

= Forexample, if each processor generates a request of size logn every
n units of time, we say that the memory access rate per processor is
logn/n .

* Problem 2: The number of processors and number of memory blocks
may not be equal. '

General Case

= Theorem 1:

The total number of components required to allow each of p processors
uniformly random access to m memory elements at a memory access
rate r, including the components of processors, memory, switching
elements and wires is @(p + m + (pr)3/2).

General Case

= Corollary 1:

For an algorithm where p processors access a memory of size m at rate r
and the total number of processor operations T, the full cost of the |

algorithmis F = 0((T/p)(p + m + (pr)3/?)).

General Case

= Corollary 1:

For an algorithm where p processors access a memory of size m at rate r
and the total number of processor operations T, the full cost of the

algorithmis F = 0((T/p)(p + m + (pr)3/?)).

= Corollary 2:

For an algorithm where the rate r at which p processors access a memory of
- sizem s high, 1/r = m°®, the memory size is independent of the number
of processors and the number of processor operations is T, the full cost of
the algorithm is a minimum of F = O(Trm'/3) where p = @(m?/3/r) -

Full Cost.vs. Processor Centric Cost

et = - —

= If we rewrite the full cost from Corollary 1 as
F=0 ((T/p)(p +m + (PT)B/Z)) =0 (T(l +m/p + p1/2r3/2))

SoF = Q(T).
And we are getting F = O(T) iffp = Q(m) andr = O(p_‘1/3‘)

Full Cost.vs. Processor Centric Cost

et = - ——

= If we rewrite the full cost from Corollary 1 as

F=0 ((T/p)(p +m + (pr)3/2)) =0 (T(l +m/p + p1/2r3/2))
SoF = Q(T).

And we are getting F = O(T) iffp = Q(m) andr = O(p_‘1/3)

Conclusion: The full cost of an algorithm is never less than the
~ traditional count of processor steps.

Applications

= Double encryption
More:

= Discrete logarithm

Factoring

Encryption

Triple encryption

Hash Collisions

E————

Double encryption

———— = - —

C = Ey,(Ex, (P))

Key space isn?

— Using techniques for recovering many keys at once with a chosen-plaintext
attack reduces key spaceton

Given (P, C) find (kq, k5)

Attack approaches
- Simple meet-in-the-middle
— Parallel collision search

Meet-In-The-Middle

— = e = - —_—— - — = = e =T

. Obrevation Ey (P) = Ek_zl(C)

For each possible k,
» Compute Ej, (P) » Compute E; ' (C)
 Store (kq, Ei. (P))in - * Lookitupin the table.
a hash table indexed Large Memory Whenever, E;.*(C) isin the -

by Ej., (P) table, we have a candidate key
pair (kl, k,) that can be tested
on the other (P, C) pairs

For each possible k;

Meet-In-The-Middle

e —————

m = 0(nlogn) —required memory size

t = Q(logn) or t = n°Y - encryption and decryption time
— keys and text of size ®(logn)

r = O(logn/t) — memory access rate

T = 0(nt)

- By Corollary 2 the full cost of a meet-in-the-middle attack on double
encryptionis F = ©(Trm'/3) and then F = O(nlogn)*/3

Note: We will say that it's n#/3+0(1)

Parallel Collision Search applied to
| MITM attacks

e —————

* m = O(wlogn) - required memory size
= wmemory locations, each of size ©(logn)

= T =0(n3/2t/wl/?) - the total number of processor steps across p
ProCessors

« r = O(w2(logn)/(n'/?t)) — memory access rate
— memory access of size ®(logn) is made every (n/w)/? encryptions

Parallel Collision Search applied to
| MITM attacks

E——

By Corollary 1, the full cost of the algorithm is
F = 0((m*?t/w!/?p)(p + m + (pr)*/?)).

= This cost is a minimum of ®(n®°t%/>(logn)*/>) when:
- p = O(wlogn)
- w = 0(n3>t%>/(logn)8/>)

= Note: n®/5to(1)

Result Comparison

et = - —

= The full cost of a known-plaintext attack on double encryption using
- asimple meet-in-the-middle attack is n*/3+°(1) and this can be
- reduced to n®°*°() ysing parallel collision search.

Conclusion

n general:

= p - # processors

. fh—-memory‘size

" T'—memory access rate

= T —processor steps

- Thenfullcostis F =0(T+Tm/p + Tpl/zrg/z)

ol

~ processor costs memory cost of connecting the memory

Conclusion

———— - = - —

= For the full cost to match the traditional measure of algorithm cost,
~ i.e. F = 0(T), we must have p = Q(m) and the memory access rate
~ must be low, 7 = 0(p~1/3).

Cryptanalytic problem Attack Method - Processor Steps Full Cost
One discrete logarithm Shanks nl/2+o(1) n2/3+o(1) -
(prime group order n) Parallel Collision Search - nl/2+o(1) nl/2+o(1)
n-th discrete logarithm Shanks n°@ nl/3+0(1)
(prime group order n) Parallel Collision Search no@ nl/5+0(1)

Factoring Number field sieve L(1.90188...) L(1.94961 ...)
~ Block cipherencrypting All methods (first key) nlto(1) nito(1)
(|key space| =n) Table lookup (n-th key) no@ nl/3+o(1)
Double encryption Meet-in-the-middle nlto(V) n?/3+o(1)
Parallel collision search nlto(®) n6/5+o(1)
2-key triple encryption Unlimited chosen texts nito(D) n4/3+o(1)
(lmessage space|=u = n) w known texts (w < u) nttoWy /1w n1+0(1)u/W%
3-key triple encryption Meet-in-the-middle n2+to(1) n7/3+0(1)
Parallel collision search n2+o(1) nl11/5+0(1)
Hash collision Meet-in-the-middle nl/2+o(1) n2/3+o(1)
(loutput space| = n) Parallel collision search nl/2+o(1) nl/2+o(1)

_ Thank you

