A MEET IN THE MIDDLE ATTACK ON 8-ROUND AES

Almog Apirion

Huseyn Demirci & Ali Aydin Selcuk

outline

Introduction

- □ We will present 5-round distinguisher for AES
 - Relates a table entry of the fifth round to a table entry of the first round using 25 parameters that remain fixed
- Using this distinguisher to develop a meet-in-themiddle attack
 - **7** rounds of AES-192 and AES-256
 - 8 rounds of AES-256
- time-memory tradeoff
 - generalization of the basic attack which gives a better balancing between different costs of the attack

Introduction

- □ In year 2000, the Rijndael was adopted by NIST as the Advanced Encryption Standard
 - Currently one of the most widely used and analyzed ciphers in the world
 - only one non-linear function
 - Does not seem to have any considerable weaknesses so far
- □ AES-128, AES-192 and AES-256
 - number of rounds 10, 12 and 14 respectively
 full diffusion after two rounds 9-Jun-13

Introduction

AES Flash DEMO

Introduction

5

Full diffusion after two rounds

Attack on AES

- AES has been remarkably resistant against attacks
- Related key attacks on AES can go up to 10 rounds on AES-192 and AES-256 with a complexity close to the complexity of exhaustive search
- Attacks that are not of related-key type have been unable to go any further than 8 rounds.
 Most successful attacks in this class have been based on the square property 9-Jun-13

Square Attacks

- Also called Saturation attacks
- Most powerful cryptanalysis of AES to date was by this method
- Exploits the byte-oriented structure of the cipher
- Could break a reduced AES version using only 7 rounds of encryption
- But is faster than exhaustive key search

Attack on AES

- The square property on AES, was observed by the designers
 - If one byte is modified in the plaintext, then exactly
 4 are modified after one round, and all the 16 are
 modified after two rounds
 - The same property holds in decryption
- Conclusion: one-byte difference cannot lead to a one-byte difference after three rounds

The Square Property

- 9
- Attacks using the square property exploits the following property (Proposition1):
- Take a set of 256 plain texts so that one entry in the plaintext table is active and all the other entries are passive
- After applying three rounds of AES, the sum of each entry over the 256 cipher texts is 0

The Square Property

- 10
- leads to a straightforward attack on 4 rounds of AES
- the last round key is searched and decrypted and the third round outputs are checked for this property

Definitions

- $\square K(r)$ -the round key of the r-th round
- $\Box C(r)$ -the cipher text of the r-th round
- $\Box C_{i,j}(r)$, $K_{i,j}(r)$ byte values at row i , column j
- Addition is the same as bit-wise XOR
- one (inner) round AES encryption, round without whitening or exclusion of the mix column operation
- Active entry- an entry that takes all byte values between 0 and 255 exactly once
- Passive entry- an entry that is fixed to a constant byte value

- 12
- Denote \mathcal{A}_{ij} the i-th row, j-th column of the plaintext
- Let $t_{ij} = S(a_{ij})$ be that byte after the first s-box transformation

- $\square \mathcal{M}_{ij}$ and C_i are fixed values that depend on the passive entries and sub-key values
- At the end of the second round: $C_{11}^{(2)} = 2S(2t_{11} + c_1) + 3S(m_{22}) + S(m_{33}) + S(m_{44}) + K_{11}^{(2)} = 2S(2t_{11} + c_1) + c_5,$
- we can get the other diagonal entries as: $C_{22}^{(2)} = S(3t_{11} + c_4) + c_6$

$$\square C_{11}^{(3)} = 2C_{11}^{(2)} + 3C_{22}^{(2)} + C_{33}^{(2)} + C_{44}^{(2)} + K_{11}^{(3)}$$

 $C_{33}^{(2)} = 2S(t_{11} + c_3) + c_7$ $C_{44}^{(2)} = S(t_{11} + c_2) + c_8$

- 13
- **Proposition 2**: Consider a set of 256 plaintexts where the entry a_{11} is active and all the other entries are passive
- Encrypt this set with 3 rounds ,Then the function which maps a_{11} to $c_{11}^{(3)}$ is entirely determined by 9 fixed 1-byte parameters.
- **Proof:** To write the equation for $c_{11}^{(3)}$ the constants $c_i, 1 \le i \le 8$ and $k_{11}^{(3)}$ are required
- □ Therefore, the nine fixed values $(c_1, c_2, ..., c_8, K_{11}^{(3)})$ completely specify the mapping $a_{11} \rightarrow c_{11}^{(3)}$.
 - **•** that the argument applies to any other third round cipher-text entry:

$$a_{ij} \rightarrow c_{ij}^{(3)}$$

- 15
- **Proposition 3**: Consider a set of 256 plaintexts where the entry a_{11} is active and all the other entries are passive
- □ Apply 4 rounds of AES to this set
- function S⁻¹denote the inverse of the AES s-box and k⁽⁴⁾ denote: 0E ⋅ K₁₁⁽⁴⁾ + 0B ⋅ K₂₁⁽⁴⁾ + 0D ⋅ K₃₁⁽⁴⁾ + 09 ⋅ K₄₁⁽⁴⁾, then S⁻¹[0E ⋅ C₁₁⁽⁴⁾ + 0B ⋅ C₂₁⁽⁴⁾ + 0D ⋅ C₃₁⁽⁴⁾ + 09 ⋅ C₄₁⁽⁴⁾ + k⁽⁴⁾] is a function of a₁₁ determined entirely by 1 key byte and 8 bytes that depend on the key and the passive entries
 Thus 0E ⋅ C₁₁⁽⁴⁾ + 0B ⋅ C₂₁⁽⁴⁾ + 0D ⋅ C₃₁⁽⁴⁾ + 09 ⋅ C₄₁⁽⁴⁾ is a function of a₁₁
 - determined entirely by 10 constant bytes

- The pervious observations can be extended to 5 rounds
- This property will help us to develop attacks on 7 rounds of AES-192 and AES-256, and on 8 rounds of AES-256
- **Proposition 4:** Consider a set of 256 plaintexts where the entry a_{11} is active and all the other entries are passive
- Encrypt this set with 4 rounds of AES
- □ Then, the function which maps $a_{11} \rightarrow c_{11}^{(4)}$ is entirely determined by 25 fixed1-byte parameters

Proposition 4 - proof:

By Proposition 2, in the third round:

$$C_{11}^{(3)} = 2S(2S(2t_{11} + c_1) + c_5) + 3S(2S(2t_{11} + c_4) + c_6) + S(S(t_{11} + c_3) + c_7) + S(S(t_{11} + c_2) + c_8) + K_{11}^{(3)}.$$
 (1)

Similarly it can be shown that

$$C_{22}^{(3)} = S(S(3t_{11} + c_4) + c_9) + 2S(3S(2t_{11} + c_3) + c_{10}) +3S(S(t_{11} + c_2) + c_{11}) + S(3S(2t_{11} + c_1) + c_{12}) + K_{22}^{(3)}, \qquad (2)$$

$$C_{33}^{(3)} = S(S(t_{11} + c_3) + c_{13}) + S(2S(t_{11} + c_2) + c_{14}) +2S(S(2t_{11} + c_1) + c_{15}) + 3S(2S(3t_{11} + c_4) + c_{16}) + K_{33}^{(3)} \qquad (3)$$

$$C_{44}^{(3)} = 3S(S(t_{11} + c_2) + c_{17}) + S(S(2t_{11} + c_1) + c_{18}) +S(3S(3t_{11} + c_4) + c_{19}) + 2S(S(t_{11} + c_3) + c_{20}) + K_{44}^{(3)}. \qquad (4)$$

Since

$$C_{11}^{(4)} = 2S(C_{11}^{(3)}) + 3S(C_{22}^{(3)}) + S(C_{33}^{(3)}) + S(C_{44}^{(3)}) + K_{11}^{(4)},$$
(5)

■ to express the function $a_{11} \rightarrow c_{11}^{(4)}$ the following fixed values are sufficient: $\begin{pmatrix}c_1, c_2, \dots, c_{20}, K_{11}^{(3)}, K_{22}^{(3)}, K_{33}^{(3)}, K_{44}^{(4)}, K_{11}^{(4)}\end{pmatrix}$ (6)

- 21
- Although each of the diagonal entries depend on 9 fixed parameters, the fourth round entry C₁₁⁽⁴⁾ is entirely determined by25 variables(rather than 9*4+1=37),This is a result of the fact that the constants c1, c2, c3 and c4 are common in formulas (1-4) of all the diagonal entries

that argument applies to any other cipher-text entry

Since this 4-round property is related to a single entry, we can develop a 5-round distinguisher by considering the fifth round decryption

- 22
- **Proposition 5**: Consider a set of 256 plaintexts where the entry a_{11} is active and all the other entries are passive
- Apply 5 rounds of AES to this set
- In function S^{-1} denote the inverse of the AES s-box and $k^{(5)}$ denote: $0E \cdot K_{11}^{(5)} + 0B \cdot K_{21}^{(5)} + 0D \cdot K_{31}^{(5)} + 09 \cdot K_{41}^{(5)}$, then $S^{-1}[0E \cdot C_{11}^{(5)} + 0B \cdot C_{21}^{(5)} + 0D \cdot C_{31}^{(5)} + 09 \cdot C_{41}^{(5)} + k^{(5)}]$ is a function of a_{11} determined entirely by 5 key bytes and 20 bytes that depend on the key and the passive entries
- □ Thus $0E \cdot C_{11}^{(5)} + 0B \cdot C_{21}^{(5)} + 0D \cdot C_{31}^{(5)} + 09 \cdot C_{41}^{(5)}$ is a function of a_{11} determined entirely by 26 constant bytes

- 23
- □ AES-128,25 bytes may be too much to search
- AES-256, we can pre-calculate and store all the possible values of this function and using this distinguisher we can attack on 7 and 8 rounds
- AES-192, we can apply a time-memory tradeoff trick to reduce the complexity of the precomputation of the function over these 25 parameters and to make the attack feasible for 192-bit key size

The Attack on AES

MITM attack on 7-round AES outline:

- First we pre-compute all possible $a_{11} \rightarrow c_{11}^{(4)}$ mappings
- Then we choose and encrypt a suitable plaintext set
- We search certain key bytes
 - Do a partial decryption on the cipher-text set
- Compare the values obtained by this decryption to the values in the pre-computed set
- When a match is found the key value tried is most likely the right key value

□ For each of the 2^{25x8} values of $(c_1, c_2, ..., c_{20}, K_{11}^{(3)}, K_{22}^{(3)}, K_{44}^{(3)}, K_{11}^{(4)})$ calculate the function $a_{11} \rightarrow c_{11}^{(4)}$ for each $0 \le a_{11} \le 255$

 $C_{11}^{(4)} = 2S(C_{11}^{(3)}) + 3S(C_{22}^{(3)}) + S(C_{33}^{(3)}) + S(C_{44}^{(3)}) + K_{11}^{(4)}$ according to equations (1-4)

	c1	c2		c20	k11(3)	k22(3)	k33(3)	k44(3)	k11(4)	C11(4)
	0	0	0	0	0	0	0	0	0	
X	0	0	0	0	0	0	0	0	1	
	255	255	255	255	255	255	255	255	255	

a(7)	a(6)	a(5)	a(4)	a(3)	a(2)	a(0)	a(1)
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1
1	1	1	1	1	1	1	1

- □ Let K_{init} be the initial whitening subkey blocks $(K_{11}^{(0)}, K_{22}^{(0)}, K_{33}^{(0)}, K_{44}^{(0)})$, Try each possible value of K_{init}
- choose a set of 256 plaintexts accordingly to satisfy that the first entry takes every value from 0 to 255 and all other entries are fixed at the end of round 1
- \Box Search $K_{11}^{(1)}$ to guess the value of $C_{11}^{(1)}$
- □ Encrypt this set of plaintexts with 7 rounds of AES.

Let K_{final} be the subkey blocks (K⁽⁷⁾₁₁, K⁽⁷⁾₂₄, K⁽⁷⁾₃₃, K⁽⁷⁾₄₂, k⁽⁶⁾) where k⁽⁶⁾ denotes 0E ⋅ K⁽⁶⁾₁₁ + 0B ⋅ K⁽⁶⁾₂₁ + 0D ⋅ K⁽⁶⁾₃₁ + 09 ⋅ K⁽⁶⁾₄₁
 Search over all possible values of K_{final}
 Using K_{final} do a partial decryption of the cipher-text (C⁽⁷⁾₁₁, C⁽⁷⁾₂₄, C⁽⁷⁾₃₃, C⁽⁷⁾₄₂) to obtain the entry C⁽⁵⁾₁₁ over the set of 256 cipher-texts obtained in Step 2

- □ If K_{final} and K_{init} subkeys are guessed correctly the function $a_{11} \rightarrow c_{11}^{(5)}$ must match one of the functions obtained in the pre-computation stage
 - Compare the sequence of the 256 C⁽⁵⁾₁₁ from step 3 to the sequences obtained in pre-computation
 - If a match is found, the current key is the correct key
 - the probability of having a match for a wrong key: $2^{25x8}x2^{-2048} = 2^{-1848}$

- Step 5: Repeat the attack three times with different target values C⁽⁵⁾₂₁, C⁽⁵⁾₃₁ and C⁽⁵⁾₃₁
 using the same plaintext set
 already discovered K_{init}
- this attack gives us another 15 key bytes from the final two rounds
- Step 5: Now having recovered most of the key bytes, we can search the remaining key bytes exhaustively

The Attack on AES

0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	1	
255	255	255	255	255	255	255	255	255	

X										
a(7)	a(6)	a(5)	a(4)	a(3)	a(2)	a(0)	a(1)			
0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	1			
1	1	1	1	1	1	1	1			

The Attack on AES- analysis

- 31
- This attack requires 2³² chosen plaintexts where the first column of the plaintext takes every possible value and the rest remain constant
- There is a pre-computation step which calculates 2^{200} possible values for 256 plaintexts, Therefore the complexity of this step, which will be done only once, is 2^{200} evaluations of the function
- In the key search phase, for every combination of K_{init}, K⁽¹⁾₁₁ and K_{final}, we do partial decryption over 256 cipher-texts which makes
 - 2⁸⁸ partial decryptions
 - we assume that 2⁸ partial decryptions take approximately the time of a single encryption
- \Box Therefore the processing complexity is comparable to 2^{80} encryptions

The Attack on AES- analysis

- The target entries used in Step 5 to be on the same column as $C_{11}^{(5)}$
 - $\Box \quad C_{21}^{(5)}, C_{31}^{(5)}, C_{41}^{(5)}$
 - equations (1-4) will remain identical in these computations, and the only change will be on a few coefficients in equation (5).
- □ There won't be a need for a separate pre-computation
 - $\hfill\square$ The necessary values for $a_{11} \to c_{21}^{(5)}$ can be obtained with a slight overhead
- However, we will need separate memory to store the obtained values
- □ Hence, the memory requirement of the attack is $4X2^{208} = 2^{210}$ bytes, which is equivalent to 2^{206} AES blocks

A Time-Memory Tradeoff

- 33
- The cost of the attack is dominated by generation of the function set in the pre-computation phase
- □ A time-memory tradeoff can balance the costs
 - Instead of evaluating all the possible functions in the precomputation phase, we can evaluate and store only a part of the possible function space
 - On the other hand, we must repeat the key search procedure a number of times with different plaintext sets
- □ In general, if we reduce the size of the function set by a factor of n_1 and repeat the key search procedure for each candidate key n_2 times $(n_1, n_2 > 1)$

A Time-Memory Tradeoff

34

The probability of having a match for the right key becomes: $1 - \left(1 - \frac{1}{n_1}\right)^{n_2} \approx 1 - e^{-\frac{n_2}{n_1}}$

• which means a success probability of 63% for $n_1 = n_2$ and 98% for $n_2 = 4n_1$

A Time-Memory Tradeoff

					Complex	ity	
Block Cipher	r Paper	Rounds	Type	Data	Memory	Time	Pre.
AES-192	[12]	7	Collision	2^{32}	2^{84}	2^{140}	2^{84}
	[21]	7	Imp. Differential	2^{92}	2^{153}	2^{186}	_
	[18]	7	Square	2^{32}	2^{32}	2^{184}	_
	[10]	7	Square	$19 \cdot 2^{32}$	2^{32}	2^{155}	_
	[10]	7	Square	$2^{128} - 2^{119}$	2^{64}	2^{120}	_
	This paper	7	MitM	2^{32}	2^{206}	2^{72}	2^{208}
[This paper	7	MitM-TM	2^{34+n}	2^{206-n}	2^{74+n}	2^{208-n}
	[10]	8	Square	$2^{128} - 2^{119}$	2^{64}	2^{188}	_
AES-256	[18]	7	Square	2^{32}	2^{32}	2^{200}	_
	[12]	7	Collision	2^{32}	2^{84}	2^{140}	2^{84}
	[10]	7	Square	$21 \cdot 2^{32}$	2^{32}	2^{172}	_
	[10]	7	Square	$2^{128} - 2^{119}$	2^{64}	2^{120}	_
	[21]	7	Imp. Differential	$2^{92.5}$	2^{153}	$2^{250.5}$	_
	This paper	7	MitM	2^{32}	2^{206}	2^{72}	2^{208}
	This paper	7	MitM-TM	2^{34+n}	2^{206-n}	2^{74+n}	2^{208-n}
	[10]	8	Square	$2^{128} - 2^{119}$	2^{104}	2^{204}	_
	This paper	8	MitM	2^{32}	2^{206}	2^{200}	2^{208}
	This paper	8	MitM-TM	2^{34+n}	2^{206-n}	2^{202+n}	2^{208-n}

□ the basic attack on AES-192 is not feasible

By tradeoff the attack becomes feasible for n₁ > 2¹⁶(n > 16)
 The pre-computation cost is considered separately

Extension to 8 Rounds

- 36
- To attack 8-round AES we follow exactly the same steps of the 7-round attack, but we also search the last round key exhaustively
 - The data, pre-computation, and storage complexities do not change, whereas the complexity of the key search phase increases by a factor of 2¹²⁸
 - Hence the time complexity becomes 2^{200} (instead of 2^{72})
 - Faster than exhaustive search

An Improved Attack

- In the partial decryption phase of the attack in Step 3 where the attacker checks the partial cipher-text values of round 5
- if the attacker looks at the XOR of two partial ciphertexts rather than looking at them individually, the $k^{(5)}$ term in the equation cancels
- f denoting the mapping $a_{11} \rightarrow c_{11}^{(4)}$ the attacker computes and stores S(f(i)) + S(f(0))

 \Box The key search complexity reduced by a factor of 2^8

Conclusion

- The attacks present a new way of utilizing square-like properties for attacking AES
 - if only one entry of a set of plaintexts is active each entry of the cipher-text after 4 rounds can be entirely defined using 25 fixed bytes
 - the first 5-round distinguisher of AES enabled to develop attacks on 7 and 8 rounds of AES-256 and 7 rounds of AES-192
- The attack has a huge pre-computation and memory complexity