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a b s t r a c t

The LCS of two rooted, ordered, and labeled trees F and G is the largest forest that can
be obtained from both trees by deleting nodes. We present algorithms for computing tree
LCS which exploit the sparsity inherent to the tree LCS problem. Assuming G is smaller
than F , our first algorithm runs in time O(r · height(F) · height(G) · lg lg|G|), where r is
the number of pairs (v ∈ F , w ∈ G) such that v and w have the same label. Our second
algorithm runs in time O(Lr lg r · lg lg|G|), where L is the size of the LCS of F and G. For
this algorithmwe present a novel three-dimensional alignment graph. Our third algorithm
is intended for the constrained variant of the problem in which only nodes with zero or
one children can be deleted. For this case we obtain an O(rh lg lg|G|) time algorithm, where
h = height(F)+ height(G).

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The longest common subsequence (LCS) of two strings is the longest subsequence of symbols that appears in both strings.
The edit distance of two strings is the minimal number of character deletions insertions and replacements required to
transform one string into the other. Computing the LCS or the edit distance can be done using similar dynamic programming
algorithms in O(mn) time and space, wherem and n (m ≤ n) are the lengths of the strings [14,27]. The only known speedups
to the edit distance algorithm are by polylogarithmic factors [6,10,21]. For the LCS problem however, it is possible to obtain
time complexities better than Õ(mn) in favorable cases, e.g. [3,9,15–17,23]. This is achieved by exploiting the sparsity
inherent to the LCS problem and measuring the complexity by parameters other than the lengths of the input strings. In
this paper, we apply this idea to computing the LCS of rooted, ordered, and labeled trees.
The problem of computing string LCS translates to finding a longest chain of matches in the alignment graph of the two

strings. Many string LCS algorithms that construct such chains by exploiting sparsity have their natural predecessors in
either Hirschberg [15] or Hunt and Szymanski [17]. Given two strings S and T , let L denote the size of their LCS and let
r denote the number of matches in the alignment graph of S and T . Hirschberg’s algorithm achieves an O(nL + n lg|Σ |)
time complexity by computing chains in succession. The Hunt–Szymanski algorithm achieves an O(r lgm) time complexity
by extending partial chains. The latter can be improved to O(r lg lgm) by using the successor data-structure of van Emde
Boas [26]. Apostolico and Guerra [3] gave an O(mL · min(lg|Σ |, lgm, lg 2nm )) time algorithm, and another algorithm with
running time O(m lg n + d lg nmd ) which can also be implemented to take O(d lg lgmin(d,

nm
d )) time [12]. Here, d ≤ r is the

number of dominant matches (as defined by Hirschberg [15]). Note that in the worst case both d and r areΘ(nm), while the
parameter L is always bounded by m. When there are k ≥ 2 input strings, the sparse LCS problem extends to the problem
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(a) F (b) G (c) LCS

Fig. 1. Two rooted trees F and G and their largest common subforest.

of chaining from fragments in multiple dimensions [1,22]. Here, the match point arithmetic is extended with range search
techniques, yielding a running time of O(r(lg n)k−2 lg lg n).
The problem of computing the LCS of two trees was considered by Lozano et al. [20] and Amir et al. [2]. The problem is

defined as follows.

Definition 1 (Tree LCS). The LCS of two rooted, ordered, labeled trees, is the size of the largest forest that can be obtained
from both trees by deleting nodes. Deleting a node vmeans removing v and all edges incident to v. The children of v become
children of the parent of v (if it exists) instead of v (see Fig. 1).

We also consider the following constrained variant of the problem.

Definition 2 (Homeomorphic Tree LCS). The Homeomorphic LCS (HLCS) of two rooted, ordered, labeled trees is the size of
the largest tree that can be obtained from both trees by deleting nodes, such that in the series of node deletions, a deleted
node must have 0 or 1 children at the time the deletion is applied.

Tree LCS is a popular metric for measuring the similarity of two trees and arises in XML comparisons, computer vision,
compiler optimization, natural language processing, and computational biology [5,7,19,28,24]. To date, computing the LCS
of two trees is done by using tree edit distance algorithms. Tai [24] gave the first such algorithm with a time complexity of
O(nm · leaves(F)2 · leaves(G)2), where n andm are the sizes of the input trees F and G (withm ≤ n) and leaves(F) denotes
the number of leaves in F . Zhang and Shasha [28] improved this result to O(nm · cdepth(F) · cdepth(G)), where cdepth(F) is
theminimum between height(F) (the height of F ) and leaves(F). In theworst case, their algorithm runs in O(n2m2) = O(n4)
time. Klein [18] improved this result to a worst-case O(m2nlg n) = O(n3lg n) time algorithm and Demaine et al. [11] further
improved to O(nm2(1+ lg nm )) = O(n

3). Chen [8] gave an O(nm+ n · leaves(G)2+ leaves(F) ·M(leaves(G))) time algorithm,
where M(k) is the time complexity for computing the distance product of two k × k matrices. For homeomorphic edit
distance (where deletions are restricted to nodes with zero or one child), Amir et al. [2] gave an O(mn) time algorithm.

Our results. We modify Zhang and Shasha’s algorithms and Klein’s algorithm similarly to the modifications of Hunt-
Szymanski and Hirschberg to the classical O(mn)-time algorithm for string LCS. We present two algorithms for computing
the LCS of two rooted, ordered, and labeled trees F and G of sizes n andm. Our first algorithm runs in time O(r · height(F) ·
height(G)·lg lgm)where r is the number of pairs (v ∈ F , w ∈ G) such that v andw have the same label. Our second algorithm
runs in time O(Lr lg r · lg lgm), where L = |LCS(F ,G)|. This algorithm is more complicated and requires a novel three-
dimensional alignment graph. In both these algorithms the lg lgm factor can be replaced by lg lg(min(m, r)) by noticing
that if r < m then there are at least m − r nodes in G that do not match any node in F so we can delete them from G and
solve the problem on the new Gwhose size is now at most r . Finally we consider LCS for the case when only homeomorphic
mappings are allowed between the compared trees (i.e. deletions are restricted to nodes with zero or one child). For this
case we obtain an O(rh lg lgm) time algorithm, where h = height(F) + height(G). A comparison between previous results
and our results is given in Table 1.

Roadmap. The rest of the paper is organized as follows. Preliminaries and definitions are given in Section 2. In Section 3 we
present our sparse variant of the Zhang–Shasha algorithm and in Sections 4 and 5we give such variants for Klein’s algorithm.
Finally, in Section 6 we describe our algorithm for the homeomorphic tree LCS.

2. Preliminaries

For a forest F , the node set of F is written simply as F , as when we speak of a node v ∈ F . We denote Fv as the subtree
of F that contains the node v ∈ F and all its descendants. A forest obtained from F by deleting nodes is called a subforest of
F . For a pair of trees F ,G, two nodes v ∈ F , w ∈ Gwith the same label are called amatch pair. For the tree LCS problem we
assume without loss of generality that the roots of the two input trees form a match pair (if this property does not hold for
the two input trees, we can add new roots to the trees and solve the tree LCS problem on the new trees).
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Table 1
Comparison between previous results and our results. Note that r ≤ nm
and Lr ≤ nm2 .

Previous results Our results

Tree LCS

O(nm · cdepth(F) · cdepth(G)) [28] O(r · height(F) · height(G) · lg lgm)
O(nm2(1+ lg nm )) [11] O(Lr lg r · lg lgm)

Homeomorphic Tree LCS

O(nm) [2] O(rh lg lgm)

The Euler string of a tree F is the string obtained when performing a left-to-right DFS traversal of F and writing down the
label of each node twice: when the DFS traversal first enters the node and when it last leaves the node. We define eF (i) to
be the index such that both the ith and eF (i)th characters of the Euler string of F were generated from the same node of F .
Note that eF (eF (i)) = i.
For i ≤ j, we denote by F [i..j] the forest induced by all nodes v ∈ F whose Euler string indices both lie between i and j. A

left-to-right postorder traversal of a tree F whose root v has children v1, v2, . . . , vk (ordered from left to right) is a traversal
which recursively visits Fv1 , Fv2 , . . . , Fvk , then finally visits v. The postorder traversal of a forest F is a traversal composed of
postorder traversals of the trees of F , visited from left to right.
The tree LCS problem can be formulated in terms of matchings. Let F and G be two forests. We say that a setM ⊆ V (F)×

V (G) is an LCS matching between F and G if

1. M is a matching, namely every v ∈ F appears in at most one pair ofM and every v ∈ G appears in at most one pair.
2. For every (v, v′) ∈ M , label(v) = label(v′).
3. For every (v, v′), (w,w′) ∈ M , v is an ancestor ofw if and only if v′ is an ancestor ofw′.
4. For every (v, v′), (w,w′) ∈ M , v appears before w in the postorder traversal of F if and only if v′ appears before w′ in
the postorder traversal of G.

An LCS matchingM between F and G corresponds to a common subforest of F and G of size |M|, and vice versa.
For two forests F and G, let LCSR(F ,G) (resp., LCSL(F ,G)) denote the size of the largest forest that can be obtained from

F and G by node deletions without deleting the root of the rightmost (resp., leftmost) tree in F or G. If the roots of the
rightmost trees in F andG are not amatch pair thenwedefine LCSR(F ,G) = 0. Clearly, LCSR(F ,G) ≤ LCS(F ,G) and LCSL(F ,G)
≤ LCS(F ,G).

Lemma 1. If F and G are trees whose roots have equal labels then LCSR(F ,G) = LCSL(F ,G) = LCS(F ,G).

Proof. Let r and r ′ be the roots of F and G, respectively. We need to show that there is an LCS matching between F and
G of size LCS(F ,G) in which both r and r ′ are matched. Let M be an LCS matching between F and G of size LCS(F ,G). If r
and r ′ are matched inM we are done. Moreover, we cannot have that both r and r ′ are not matched inM since in this case
M ′ = M ∪ {(r, r ′)} is an LCS matching between F and G of size LCS(F ,G)+ 1, a contradiction.
Now, assume w.l.o.g. that r is not matched in M and r ′ is matched. Let v be the vertex in F that is matched to r ′ in M .

Then,M ′ = M ∪ {(r, r ′)} \ {(v, r ′)} is an LCS matching between F and Gwith size LCS(F ,G). �

A path decomposition of a tree F is a set of disjoint paths in F such that (1) each path ends in a leaf, and (2) each node appears
in exactly one path. Themain path of F with respect to a decompositionP is the path inP that contains the root of F . A heavy
path decomposition of a tree F was introduced by Harel and Tarjan [13] and is built as follows. We classify each node of F as
either heavy or light: For each node v we pick the child of v with maximum number of descendants and classify it as heavy
(ties are resolved arbitrarily). The remaining nodes are classified as light. Themain path p of the heavy path decomposition
starts at the root (which is light), and at each step moves from the current node v to its heavy child. We next remove the
nodes of p from F , and recursively compute a heavy path decomposition for each of the remaining trees. An important
property of this decomposition is that the number of light ancestors of a node v ∈ F is at most lg n+ 1.
A successor data-structure is a data-structure that stores a set of elements S with a key for each element and supports the

following operations: (1) insert(S, x): inserts x into S (2) delete(S, x): removes x from S (3) pred(S, k): returns the element
x ∈ S with maximal key such that key(x) ≤ k (4) succ(S, k): returns the element x ∈ S with minimal key such that
key(x) ≥ k. Van Emde Boas presented a data-structure [26] that supports each of these operations in O(lg lgu) time, where
the set of legal keys is {1, 2, . . . , u}.

3. An O(r ·height(F) ·height(G) · lg lgm) algorithm

In this section we present an O(r · height(F) · height(G) · lg lgm) time algorithm for computing the LCS of two trees F
and G of sizes n and m and heights height(F) and height(G) respectively. The relation between this algorithm and Zhang
and Shasha’s O(nm · height(F) · height(G)) time algorithm [28] is similar to the relation between Hunt and Szymanski’s
O(r lg lgm) time algorithm [17] and Wagner and Fischer’s O(mn) time algorithm [27] in the string LCS world.
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(a) F (b) G (c) Alignment graph

Fig. 2. An alignment graph of two trees F and G. The horizontal and vertical edges are of weight 0. Every diagonal edge corresponds to a match pair, and
the weight of the edge is the LCS of the corresponding subtrees of F and G.

We describe an algorithm based on that of Zhang and Shasha using an alignment graph. This approach was also used
in [25,4]. The alignment graph BF ,G of F and G is an edge-weighted directed graph defined as follows. The vertices of BF ,G are
(i, j) for 1 ≤ i ≤ 2n and 1 ≤ j ≤ 2m. Intuitively, vertex (i, j) corresponds to LCS(F [1..i],G[1..j]), and edges in the alignment
graph correspond to edit operations. The graph has the following edges:

1. Edges (i− 1, j)→ (i, j) and (i, j− 1)→ (i, j)with weight 0 for every i and j. These edges either connect vertices which
represent the same pair of forests, or represent deletion of the rightmost root of just one of the forests. Both cases do not
change the LCS, hence the zero weight we assign to these edges.

2. An edge for every match pair v ∈ F , w ∈ G, except for the roots of F and G. Let i and eF (i) be the two characters of the
Euler string of F that correspond to v, where eF (i) < i, and let eG(j) < j be the two characters of the Euler string of G
that correspond to w. We add an edge (eF (i), eG(j)) → (i, j) with weight LCS(Fv,Gw) to BF ,G. This edge corresponds to
matching the rightmost trees of F [1..i] and G[1..j] and its weight is obtained by recursively applying the algorithm on
the trees Fv and Gw . Note that we cannot add an edge of this type for the match pair of the roots of F and G because we
cannot compute the weight of such edge by recursion.

3. An edge (2n− 1, 2m− 1)→ (2n, 2m)with weight 1, which corresponds to the match between the roots of F and G.

See Fig. 2 for an example. For an edge e = (i, j)→ (i′, j′), let tail(e) = (i, j) and head(e) = (i′, j′). The ith coordinate of a
vector x is denoted by xi. For example, for e above, head(e)2 = j′.

Lemma 2. The maximum weight of a path in BF ,G from vertex (1, 1) to vertex (i, j) is equal to LCS(F [1..i],G[1..j]).

Proof. We prove the lemma using induction on i + j. The base of the induction (when i = j = 0) is trivially true. Consider
some i and j. Let v andw be the vertices that generate locations i and j in the Euler strings of F and G, respectively.
Let p be a path from (1, 1) to (i, j) of maximum weight. We first show that there is an LCS matching M between F [1..i]

and G[1..j] of size at least weight(p). Let e = (i′, j′) → (i, j) be the last edge on p. Denote by p′ the prefix of p up to but
not including e. From the construction of the graph we have that i′ + j′ < i + j, so by the induction hypothesis, weight(p′)
≤ LCS(F [1..i′],G[1..j′]). Therefore, there is an LCS mapping M ′ between F [1..i′] and G[1..j′] of size weight(p′). There are
three cases, depending on the type of e.

1. If e is an edge of the first type above, then weight(e) = 0, and M = M ′ is the desired matching (note that F [1..i′] and
G[1..j′] are subforests of F [1..i] and G[1..j], respectively, soM ′ is also an LCS matching between F [1..i] and G[1..j]).

2. If e is an edge of the second type above then i′ = eF (i) and j′ = eG(j). Let M ′′ be an LCS matching between Fv and Gw of
size LCS(Fv,Gw). By construction, weight(e) = LCS(Fv,Gw). The forest F [1..i] is the disjoint union of the forests F [1..i′]
and Fv (as i′ = eF (i)), and Fv is the rightmost tree in F [1..i]. Similarly, G[1..j] is the disjoint union of the forests G[1..j′]
and Gw , and Gw is the rightmost tree in G[1..j]. Therefore,M = M ′ ∪M ′′ is an LCS mapping between F [1..i] and G[1..j] of
size weight(p′)+weight(e) = weight(p).
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3. If e is of the third type above then v and w are the roots of F and G, respectively. Hence, M = M ′ ∪ {(v,w)} is an LCS
mapping between F [1..i] and G[1..j] of size weight(p′)+ 1 = weight(p).

We next prove the opposite direction. Let M be an LCS mapping between F [1..i] and G[1..j] of maximum size. We will
show that there is a path p from (1, 1) to (i, j)with weight at least |M|. If v is not matched inM thenM is an LCS matching
between F [1..i− 1] and G[1..j]. By, induction, there is a path p′ from (1, 1) to (i− 1, j) of weight at least |M|. Since there is
an edge (i−1, j)→ (i, j) in BF ,G, we obtain that there is a path from (1, 1) to (i, j) of weight at least |M|. The same argument
holds ifw is notmatched inM . Suppose, therefore, that both v andw arematched inM .We have that eF (i) < i (otherwise v is
not a vertex of F [1..i] so it cannot be matched inM) and eG(j) < j. Moreover, v andw are the last vertices in the postorders
of F [1..i] and G[1..j], respectively, so v must be matched to w. If (i, j) 6= (2n, 2m), then M ′′ = M ∩ (V (Fv) × V (Gw))
is an LCS matching between Fv and Gw , and M ′ = M \ M ′′ is an LCS matching between F [1..i] − Fv = F [1..eF (i)] and
G[1..j]−Gw = G[1..eG(j)]. By induction, there is a path p′ from (1, 1) to (eF (i), eG(j)) of weight at least |M ′|. Therefore, there
is a path from (1, 1) to (i, j)with weight at least |M ′| + LCS(Fv,Gw) ≥ |M ′| + |M ′′| = |M|. Finally, if (i, j) = (2n, 2m) then
M ′ = M \ {(v,w)} is an LCS matching between F [1..i − 1] and G[1..j − 1]. By induction there is a path p′ from (1, 1) to
(i− 1, j− 1) of weight at least |M ′|, so there is a path from (1, 1) to (i, j) of weight at least |M ′| + 1 = |M|. �

Zhang and Shasha’s algorithm computes the maximumweight of a path from (1, 1) to (i, j), for every vertex (i, j) of BF ,G.
By Lemma 2, this gives LCS(F ,G) at the vertex (2n, 2m). If there are only few match pairs, we can do better. Denote the set
of edges in BF ,G with nonzero weights by EF ,G. Clearly, |EF ,G| = r . We will exploit the sparsity of the edges EF ,G by ignoring
the edges with weight 0 and the vertices that are not the endpoint of an edge in EF ,G. We define the score of e ∈ EF ,G as the
maximum weight of a path in BF ,G from (1, 1) to head(e) that passes through e.
Lemma 3. score(e) = LCSR(F [1..head(e)1],G[1..head(e)2]) for every edge e ∈ EF ,G.
Proof. Fix e ∈ EF ,G, and let (v,w) be the corresponding match pair. If v,w are the roots of F ,G, respectively, then
F [1..head(e)1] = F and G[1..head(e)2] = G. Furthermore, by Lemmas 1 and 2, score(e) ≤ LCS(F ,G) = LCSR(F ,G). Oth-
erwise, following the proof of Lemma 2, we have that for every maximum weight path p from (1, 1) to head(e) which
passes through e, there is an LCS matchingM = M ′ ∪M ′′ between F [1..head(e)1] and G[1..head(e)2]whose size is equal to
weight(p). Furthermore,M ′′ is an LCS matching between Fv and Gw of size LCS(Fv,Gw). By Lemma 1, we may assume that v
is matched tow inM ′′. It follows that score(e) = |M| ≤ LCSR(F [1..head(e)1],G[1..head(e)2]).
In the opposite direction, letM be a matching between F [1..head(e)1] and G[1..head(e)2] of size LCSR(F [1..head(e)1], )

G[1..head(e)2] such that (v,w) ∈ M . Following the proof of Lemma 2 we define a path p from (1, 1) to head(e) with
weight at least |M|. Since (v,w) ∈ M , it follows that p passes through e. Therefore, score(e) ≥ LCSR(F [1..head(e)1],G[1..]
head(e)2). �

By Lemmas 1 and 3 we have that LCS(F ,G) = score((2n − 1, 2m − 1)→ (2n, 2m)). We now describe a procedure, called
ComputeScores, that computes LCS(F ,G) in O(|EF ,G| · lg lgm) time, assuming we have already computed LCS(Fv,Gw) for
every match pair v ∈ F , w ∈ G except for the roots of F and G. This procedure computes score(e) for every e ∈ EF ,G. It uses a
successor data-structure S that stores edges from EF ,G, where the key of an edge e is head(e)2. The pseudocode for procedure
ComputeScores is as follows (we assume that score(NULL) = 0).

Procedure ComputeScores
1: for i = 1, . . . , 2n do
2: for every e ∈ EF ,G with tail(e)1 = i do
3: score(e)← weight(e)+ score(pred(S, tail(e)2))
4: for every e ∈ EF ,G with head(e)1 = i do
5: j← head(e)2
6: if score(e) > score(pred(S, j)) then
7: insert(S, e)
8: while succ(S, j+ 1) 6= NULL and score(succ(S, j+ 1)) ≤ score(e) do
9: delete(S, succ(S, j+ 1))

Example 1. Consider the alignment graph of Fig. 2. Initially S is empty. When i = 2 procedure ComputeScores sets the
scores of the edges e1 = (2, 2)→ (3, 7) and e2 = (2, 3)→ (3, 4) to 1. When i = 3, the procedure processes the edges e1
and e2 in an arbitrary order. Suppose, for example, that e1 is processed first. When e1 is processed, it is added to S. When e2
is processed, it is added to S and e1 is removed from S (since j = 4, succ(S, j + 1) = e1 and score(e1) = score(e2)). When
i = 4, the procedure sets the scores of the edges (4, 2)→ (9, 7) and (4, 3)→ (9, 4) to 2 and 1, respectively. When i = 5,
the procedure sets the score of the edge e3 = (5, 5)→ (6, 6) to 2 (since pred(S, tail(e3)2) = e2). When i = 6, the edge e3
is added to S. The next changes in S occur when i = 8 and i = 10: When i = 8 the edge (7, 8)→ (8, 9) is added to S, and
when i = 10 the edge (9, 9)→ (10, 10) is added to S.
Let e1, e2, . . . be the edges of EF ,G according to the order in which they are processed in line 4. An edge e is t-relevant if
e is one of the edges e1, . . . , et . We say that a path p is t-relevant if all its nonzero weight edges are t-relevant. Denote by
w(t, i, j) themaximumweight of a t-relevant path from (1, 1) to (i, j). The correctness of procedure ComputeScores follows
immediately from the following lemma.
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Lemma 4. For every t, the score of et is computed correctly by ComputeScores. Moreover, for every t, just after et is processed
in lines 4–9, score(pred(S, j)) = w(t, head(e)1, j) for all j.
Proof. We prove the lemma by induction on t . Assume that the lemma holds for 1, . . . , t − 1. Let et = (i1, j1) → (i2, j2).
We first prove that the score of et is computed correctly. Let t ′ be the maximum index such that head(et ′)1 ≤ i1. By the
induction hypothesis, just after et ′ is processed, score(pred(S, j1)) = w(t ′, head(et ′)1, j1). Since there is no t ′-relevant edge
ewith head(et ′)1 < head(e)1 ≤ i1, it follows thatw(t ′, head(et ′)1, j1) = w(t ′, i1, j1). All the paths from (1, 1) to (i1, j1) are
t ′-relevant, sow(t ′, i1, j1) is equal to the maximumweight of a path from (1, 1) to (i1, j1). Hence, at the time et is processed
in line 3, score(et) = weight(et)+ score(pred(S, j1)).
We next prove that after processing et in lines 4–9, score(pred(S, j)) = w(t, head(e)1, j) for all j. Let i′ = head(et−1)1. By

induction, just before et is processed score(pred(S, j)) = w(t − 1, i′, j) = w(t − 1, i2, j) for all j, where the second equality
is true since there is no (t − 1)-relevant edge e with i′ < head(e)1 ≤ i2. A maximum weight t-relevant path from (1, 1) to
(i2, j) can either pass through et or not. In the former case, et is the last nonzero weight edge on the path, so the weight of
the path is score(et). In the latter case, the path is (t − 1)-relevant, so the weight of the path isw(t − 1, i2, j). Therefore,

w(t, i2, j) =
{
w(t − 1, i2, j) if j < j2
max(w(t − 1, i2, j), score(et)) otherwise .

The if clause in lines 6–9 updates S with exactly this quantity. It follows that just after processing et , score(pred(S, j)) =
w(t, i2, j) for all j. �

To analyze the running time of procedure ComputeScores, let us count the number of times each operation on S is called.
Each edge of EF ,G is inserted or deleted at most once. The number of successor operations is the same as the number
of deletions, and the number of predecessor operations is the same as the number of edges. Hence, the total number of
operations on S is O(|EF ,G|). Using the successor data-structure of van Emde Boas [26] we can support each operation on S
in O(lg lgm) time yielding a total running time of O(|EF ,G| · lg lgm). By running procedure ComputeScores recursively on
every match pair we get that the total time complexity is bounded by

O

( ∑
match pair (v,w)

|EFv ,Gw | · lg lgm

)
= O

(
lg lgm ·

∑
match pair (v,w)

depth(v) · depth(w)

)
= O (lg lgm · r · height(F) · height(G)) .

4. An O(mr lg r · lg lgm) algorithm

We begin this section by giving an alternative description of Klein’s algorithm using an alignment graph. However, as
opposed to the alignment graph of [25,4] our graph is three dimensional.
Given a tree F and a path decompositionP of F we define a sequence of subforests of F as follows. F(n) = F , and F(i) for

i < n is the forest obtained from F(i+1) by deleting one node: If the root of leftmost tree in F(i+1) is not on the main path
ofP then this root is deleted, and otherwise the root of the rightmost tree in F is deleted. Let xi be the node which is deleted
from F(i)when creating F(i− 1). Let yi be the node of G that generates the ith character of the Euler string of G. Let Iright be
the set of all indices i such that F(i−1) is created from F(i) by deleting the rightmost root of F(i), and Ileft = {1, . . . , n}\ Iright.
The alignment graph BF ,G of trees F and G is defined as follows (see Fig. 3). The vertices of BF ,G are (i, j, k) for 0 ≤ i ≤ n,

1 ≤ j ≤ 2m, and j ≤ k ≤ 2m. Intuitively, vertex (i, j, k) corresponds to LCS(F(i),G[j..k]). For a vertex (i, j, k) with i ∈ Iright
the following edges enter the vertex.
1. If i ≥ 1, an edge (i − 1, j, k) → (i, j, k) with weight 0. This edge corresponds to deletion of the rightmost root of F(i).
This does not increase the LCS hence the zero weight.

2. If j ≤ k− 1, an edge (i, j, k− 1)→ (i, j, k) with weight 0. This edge either connects vertices which represent the same
pair of forests, or represent deletion of the rightmost root in G[j..k]. Both cases do not change the LCS, hence the zero
weight.

3. If xi, yk is a match pair, j ≤ eG(k) < k, and xi is not on the main path of F , an edge (i − |Fxi |, j, eG(k)) → (i, j, k) with
weight LCS(Fxi ,Gyk). This edge correspond to matching the rightmost tree in F(i) to the rightmost tree of G[j..k].

4. If xi, yk is a match pair, j ≤ eG(k) < k, and xi is on the main path of F , an edge (i− 1, eG(k), k− 1)→ (i, j, k)with weight
1. This edge corresponds to matching xi (the root of F(i) = Fxi ) to yk (the rightmost root of G[j..k]). If we match these
nodes then only descendants of yk can be matched to the nodes of F(i− 1) (since F(i) is a tree). To ensure this, we set the
second coordinate of the tail of the edge to eG(k) (instead of j as in the previous case), since nodes with indices j′ < eG(k)
are not descendants of yk.

Similarly, for i ∈ Ileft the edges that enter (i, j, k) are
1. If i ≥ 1, an edge (i− 1, j, k)→ (i, j, k)with weight 0.
2. If j ≤ k− 1, an edge (i, j+ 1, k)→ (i, j, k)with weight 0.
3. If xi, yj is a match pair, j < eG(j) ≤ k, and xi is not on themain path of F , an edge (i−|Fxi |, eG(j), k)→ (i, j, k)withweight
LCS(Fxi ,Gyj).

4. If xi, yj is a match pair, j < eG(j) ≤ k, and xi is on the main path of F , an edge (i−1, j+1, eG(j))→ (i, j, k)with weight 1.
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(a) F (b) G

(c) Alignment graph

Fig. 3. Part of the alignment graph of two trees F and G. Let Si = {(i, j, k) : 1 ≤ j ≤ k ≤ 2m}. Figure (c) shows the vertices in S2 ∪ S3 ∪ S4 . To a vertex v in
S4 enters an edge from the vertex in S4 below v if such vertex exists (as 4 ∈ Ileft), and an edge from the vertex in S3 that corresponds to v (only two edges
of this type are shown in the figure). Similarly, to a vertex v in S3 enters an edge from the vertex in S3 to the left of v if such vertex exists (as 3 ∈ Iright),
and an edge from the vertex in S2 that corresponds to v. Additionally, due to the match pair x3, y9 , to the vertices (3, 1, 9), (3, 2, 9), (3, 3, 9), and (3, 4, 9)
enter edges from the vertices (2, 1, 9), (2, 2, 9), (2, 3, 9), and (2, 4, 9), respectively.

The set of all edges in BF ,G with nonzero weights is denoted by EF ,G. In order to build BF ,G one needs to know the values of
LCS(F ′,G′) for some pairs of subforests F ′,G′ of F ,G. These values are obtained bymaking recursive calls to Klein’s algorithm
on the appropriate subforests of F and G.

Lemma 5. The maximum weight of a path in BF ,G from some vertex (0, l, l) to vertex (i, j, k) is equal to LCS(F(i),G[j..k]).
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Proof. We prove the lemma by induction on i+ (k− j). The base on the induction (i− j+ k = 0) is trivially true. Consider
some i, j, and k, and suppose that i ∈ Iright (the proof for i ∈ Ileft is similar).
The proof of the lemma is similar to the proof of Lemma 2. We first show that for a maximum weight path p from

some vertex (0, l, l) to (i, j, k), there is an LCS matching between F(i) and G[j..k] of size at least weight(p). This is done by
considering the prefix of p up to but not including e, where e = (i′, j′, k′)→ (i, j, k) is the last edge on p. As before, we can
use the inductive hypothesis on p′ (since we have by the construction of the graph that i′ − j′ + k′ < i− j+ k) to obtain an
LCS mappingM ′ between F(i′) and G[j′..k′] of weight weight(p′). We then extendM ′ into the desired matchingM according
to the type of the edge e. The arguments are similar to those used in the proof of Lemma 2. Note that in the case when e
is an edge of the fourth type, all the vertices in F that are matched in M ′ are proper descendants of xi (as F(i) is a tree and
i′ = i− 1), and all the vertices in G that are matched inM ′ are proper descendants of yk (as G[j′..k′] = Gyk − yk). Therefore,
M = M ′ ∪ {(xi, yk)} is the desired LCS mapping for that case.
We next prove the opposite direction. We show that for an LCS mapping M between F(i) and G[j..k] of maximum size,

there is a path p from some vertex (0, l, l) to (i, j, k)withweight at least |M|. We consider several cases according towhether
xi and yk are matched inM . If both xi and yk are matched inM then we consider two cases according to whether xi is on the
main path of F . In each case we choose M ′ ⊆ M such that there is a path of weight at least |M ′| from some vertex (0, l, l)
to some vertex (i′, j′, k′), and from the construction of the graph there is an edge (i′, j′, k′) → (i, j, k) of weight at least
|M| − |M ′|. �

Klein’s algorithm computes the maximum weight path that ends at each vertex in BF ,G using dynamic programming, and
returns the maximum weight of a path from some vertex (0, l, l) to (n, 1, 2m), which is equal to LCS(F ,G). The path
decompositionP is selected in order tominimize the total size of the alignment graph BF ,G and the alignment graphs created
by the recursive calls of the algorithm. Using heavy path decomposition [13], the time complexity of Klein’s algorithm is
O(nlg n ·m2).
Now,we present an algorithm for computing the LCS based on the sparsity of EF ,G. Recall that the score of an edge e ∈ EF ,G

is the maximum weight of a path in BF ,G from some vertex (0, l, l) to head(e) that passes through e.

Lemma 6. Let e be an edge in EF ,G and denote head(e) = (i, j, k). If i ∈ Iright then score(e) = LCSR(F(i),G[j..k]), and otherwise
score(e) = LCSL(F(i),G[j..k]).

We omit the proof of Lemma 6 as it is similar to the proof of Lemma 3. Knowing the scores of the edges gives us LCS(F ,G)
as LCS(F ,G) = score((n− 1, 1, 2m− 1)→ (n, 1, 2m)). In fact, additional LCS values can be obtained from the scores:

Lemma 7. For every match pair x ∈ F , y ∈ G such that x is on the main path of F there is an edge e ∈ EF ,G such that
LCS(Fx,Gy) = score(e).

Proof. Let i be the index such that x = xi, and let eG(k) < k be the indices of the two characters in the Euler string of
G that correspond to y. Suppose that i ∈ Iright. Then, e = (i − 1, eG(k), k − 1) → (i, eG(k), k) is an edge in EF ,G. By
Lemma 6, score(e) = LCSR(F(i),G[eG(k)..k]). Both F(i) = Fx and G[eG(k)..k] = Gy are trees, so from Lemma 1 we have
that score(e) = LCS(Fx,Gy). The case of i ∈ Ileft is similar. �

A high-level description of the algorithm for computing the LCS of F and G is:

Algorithm ComputeLCS
1: Build a path decomposition P of F .
2: for every node x in F in postorder do
3: if x is the first node on some path P ∈ P then
4: Build the set EFx,G.
5: Compute the scores of the edges in EFx,G.
6: Output score((n− 1, 1, 2m− 1)→ (n, 1, 2m)).

We will explain how to construct the path decompositionP in step 1 later. For now note just thatP is used when building
each of the sets EFx,G in step 4. To build EFx,G, we need a path decomposition of Fx. We use the path decomposition that is
induced from the path decomposition P . In order to build EFx,G one needs to know the values of LCS(Fx′ ,Gy) for pairs of
nodes x′ and y, where x′ is a node of Fx that is not on the main path of Fx. By Lemma 7, the value of LCS(Fx′ ,Gy) is equal to the
score of an edge from EFx′′ ,G where x

′′ is the first vertex on the path p ∈ P that contains x′ (x′′ can equal x′). Since the nodes
of F are processed in postorder, the scores of the edges in EFx′′ ,G are known when building EFx,G.
It remains to show how to compute the scores of the edges in EF ,G. The algorithm for computing the scores of the edges

uses 4m successor data-structures S left1 , . . . , S
left
2m and S

right
1 , . . . , Sright2m . Each of these structures stores a subset of EF ,G. The key

of an edge e in some structure Srighti is head(e)3, and the key of an edge e in some structure S lefti is head(e)2.

Procedure ComputeScoresKlein
1: for i = 1, . . . , n do
2: for every e ∈ EF ,G with tail(e)1 = i do
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3: j← tail(e)2, k← tail(e)3
4: score(e)← weight(e)+max(score(pred(Srightj , k)), score(succ(S leftk , j)))
5: for every e ∈ EF ,G with head(e)1 = i do
6: j← head(e)2, k← head(e)3
7: if i ∈ Iright and score(e) > score(pred(S

right
j , k)) then

8: insert(Srightj , e)
9: while succ(Srightj , k+ 1) 6= NULL and score(succ(Srightj , k+ 1)) ≤ score(e) do
10: delete(Srightj , succ(Srightj , k+ 1))
11: if i ∈ Ileft and score(e) > score(succ(S leftk , j)) then
12: insert(S leftk , e)
13: while pred(S leftk , j− 1) 6= NULL and score(pred(S

left
k , j− 1)) ≤ score(e) do

14: delete(S leftk , pred(S
left
k , j− 1))

We call an edge e with head(e)1 ∈ Iright a right edge. Let e1, e2, . . . be the edges of EF ,G according to the order in which they
are processed in line 5.

Lemma 8. The scores of all nonzero weight edges are computed correctly by procedure ComputeScoresKlein. Moreover, for
every t, just after et is processed in lines 5–14, for all j and k, score(pred(S

right
j , k)) (resp., score(succ(S leftk , j))) is equal to the

maximum weight of a t-relevant path from some vertex (0, l, l) to (head(e)1, j, k) whose last nonzero weight edge is a right
(resp., left) edge.

We omit the proof since it is very similar to the proof of Lemma 4.
Just as in the previous section, using the successor data-structure of van Emde Boas [26] we have that computing

the scores of the edges in EF ,G takes O(|EF ,G|lg lgm) time. The time for computing the LCS between F and G is therefore
O(
∑
x∈LP |EFx,G|lg lgm), where LP is the set of the first nodes of the paths in P . In order to minimize

∑
x∈LP |EFx,G|, we build

P similar to a heavy path decomposition but where heavy is determined by the number of matches and not by size. This
is done as follows. We begin building the main path. We start at the root of F and then we repeatedly extend the path
by moving to a child w of the current node that maximizes the number of matches between Fw and G (ties are broken
arbitrarily). After obtaining the main path, we remove its nodes from F and then recursively build a path decomposition of
each of the remaining trees. The decompositionP that is obtained has the property that for each node x ∈ F , the number of
nodes in LP that are ancestors of x is at most lg r + 1.

Lemma 9.
∑
x∈LP |EFx,G| ≤ 2mr(lg r + 1).

Proof. Every edge in EF ,G corresponds to a match pair x ∈ F , y ∈ G. A fixed match pair x ∈ F , y ∈ G generates edges in the
sets EFx′ ,G for every node x

′
∈ LP that is an ancestor of x. In each set EFx′ ,G the match pair x, y generates at most 2m edges.

Therefore
∑
x∈LP |EFx,G| ≤

∑
match pairs 2m(lgr + 1) ≤ 2mr(lg r + 1). �

We have therefore shown an algorithm that computes the LCS of two trees in O(mr lg r · lg lgm) time.

5. An O(Lr lg r · lg lgm) algorithm

In this section we improve the algorithm of the previous section. Notice that in the alignment graph of the previous
section each match pair generates up to O(m) edges (while in the alignment graph of Section 3, each match pair generates
exactly one edge). Therefore, the time of processing a match pair is O(m lg lgm). We will show how to process each group
of edges of a match pair in O(Llg lgm) time by exploiting additional sparsity properties of the problem.
Formally, we partition the edges of EF ,G into groups, where each group is the edges that correspond to some match pair:

For i ∈ Iright let EF ,G,i,a = {e ∈ EF ,G head(e)1 = i, head(e)3 = a}, and for i ∈ Ileft let EF ,G,i,a = {e ∈ EF ,G head(e)1 = i,
head(e)2 = a}. The total number of groups EF ′,G,i,a for all the alignment graphs BF ′,G that are built by the algorithm is at most
r(lg r + 1).
Consider some group EF ,G,i,k for i ∈ Iright. Let s = eG(k). We have that EF ,G,i,k = {e1, . . . , es} where head(ej) = (i, j, k).

Denote l1 = score(es) = weight(es) and l2 = score(e1). By Lemma 6, score(e1) ≥ score(e2) ≥ · · · ≥ score(es). Moreover,
for all j, score(ej) ∈ {0, . . . , L} and score(ej) − score(ej+1) ∈ {0, 1}. Therefore, there are indices jl1 = s, jl1+1, . . . , jl2 such
that score(ejl) = l and score(ejl+1) = l−1 (if l 6= l1) for all l. These indices are called the compact representation of the scores
of EF ,G,i,k.
To improve the algorithm of the previous section, instead of processing individual edges, we will process groups. For

each group, we will compute the compact representation of its scores. The time to process each group will be O(L lg lgm) so
the total time complexity will be O(Lr lg r · lg lgm).
We define two-dimensional arrays A1, . . . , An, where Ai[j, k] is the maximum weight of path from some vertex (0, l, l)

to (i, j, k). By Lemma 5, every array Ai has the following properties.

1. Each row of Ai is monotonically increasing.
2. Each column of Ai is monotonically decreasing.
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3. The difference between two adjacent cells in Ai is either 0 or 1.
4. Each cell of Ai is an integer from {0, . . . , L}.

The properties above are the same as the properties of the dynamic programming table for string LCS. Following the approach
of [15], we define the l-contour of Ai (for 1 ≤ l ≤ L) to be the set of all pairs (j, k) such that Ai[j, k] = l, Ai[j + 1, k] < l (or
j = 2m), and Ai[j, k − 1] < l (or k = 1). By properties (1) and (2) of Ai we have that for two pairs (j, k) and (j′, k′) in the
l-contour of Ai we have either j < j′ and k < k′, or j > j′ and k > k′.
The algorithm processes each i from 1 to n. Again, iteration i consists of two stages: (1) updating the l-contours according

to the groups EF ,G,i,a for all a (2) computing the compact representation of the scores for each group EF ,G,i′,a such that the
edges e ∈ EF ,G,i′,a satisfy tail(e)1 = i. We next explain each of the two stages in detail.
Computing the l-contours of Ai for all l is done by updating the l-contours of Ai−1 that were computed in the previous

iteration. The l-contour of Ai for the current value of i is kept using two successor data-structures S1l and S
2
l . The key of a pair

(j, k) in S1l is j, while the key of (j, k) in S
2
l is k.

Suppose that i ∈ Iright (handling i ∈ Ileft is similar). In order to compute the l-contours of Ai, we process the groups EF ,G,i,k
for all k. Consider some fixed EF ,G,i,k, and let jl1 , jl1+1, . . . , jl2 be the compact representation of the scores of EF ,G,i,k (which
was computed in a prior iteration of the algorithm). Updating the l-contours according to the scores of the edges in EF ,G,i,k
is done by:

Procedure UpdateContours
1: for l = l1, . . . , l2 do
2: if pred(S2l , k) = NULL or pred(S

2
l , k)1 < jl then

3: p← (jl, k)
4: insert(S1l , p)
5: insert(S2l , p)
6: while succ(S2l , k+ 1) 6= NULL and succ(S

2
l , k+ 1)1 ≤ jl do

7: p← succ(S2l , k+ 1)
8: delete(S1l , p)
9: delete(S2l , p)

It remains to describe stage (2), which computes the compact representation of the scores of some group EF ,G,i′,k′ such that
the edges e ∈ EF ,G,i′,k′ satisfy tail(e)1 = i. Suppose that i′ ∈ Iright and denote EF ,G,i′,k′ = {e1, . . . , es} where ej = (i, j, k)
→ (i′, j, k′). All the edges in EF ,G,i′,k′ have the same weight w. Suppose that xi′ is not on the main path of F . Clearly,
score(ej) = w + Ai[j, k]. Therefore the compact representation of the scores of EF ,G,i′,k′ can be computed using S21 , . . . , S

2
L :

1: jw ← s
2: for l = 1, . . . , L do
3: if pred(S2l , k) 6= NULL then jl+w ← pred(S2l , k)1
If xi′ is on the main path of F then score(e1) = · · · = score(es) = 1+ Ai[s, k], and computing the compact representation of
the scores is done similarly. The computation of the compact representation of the scores of a group EF ,G,i′,j′ with i ∈ Ileft is
done similarly using the structures S11 , . . . , S

1
L .

We have established the following theorem:

Theorem 10. The tree LCS problem can be solved in time O(Lr lg r · lg lgm).

6. An O(rh lg lgm) algorithm for homeomorphic tree LCS

In this section we address the homeomorphic tree LCS problem. For this problem we obtain an O(rh lg lgm) time
algorithm, where h = height(F)+height(G). We start by describing the O(nm) nonsparse algorithm of Amir et al. [2]. Here,
the computation of HLCS(F ,G) is done recursively, in a postorder traversal of F and G. For every pair of nodes v ∈ F and
w ∈ Gwe compute score(v,w)which is equal to HLCS(Fv,Gw). The computation of score(v,w) is based on the previously
computed scores for all children of v andw as follows. Let c(u) denote the number of children of a node u and let u1, . . . , uc(u)
denote the ordered sequence of the children of u. Then

score(v,w) = max
{
max
i≤c(v)
{score(vi, w)}, max

i≤c(w)
{score(v,wi)}, α(v,w)+ 1

}
,

where α(v,w) is defined as follows. If (v,w) is not a match pair then α(v,w) = −1. Otherwise, α(v,w) is the maximum
weight of a non-crossing bipartite matching between the vertices v1, . . . , vc(v) and the vertices w1, . . . , wc(w), where the
weight of matching vi with wj is score(vi, wj). Computing α(v,w) takes O(c(v) · c(w)) time using dynamic programming
on a c(v)× c(w) table.
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In order to obtain a sparse version of this algorithm, there are twogoals to bemet. First, rather than computing score(v,w)
for all nm node pairs, wewill only compute the scores formatch pairs. Second, we need to avoid theO(c(v)·c(w)) time com-
plexity of the dynamic programming algorithm for computing α(v,w) and replace it with sparse dynamic programming.
For every match pair (v,w)we have

score(v,w) = max
{
max
v′
{score(v′, w)},max

w′
{score(v,w′)}, α(v,w)+ 1

}
,

where maxv′ is maximum over all proper descendants v′ of v that have the same label as v, and maxw′ is defined similarly.
Computing the twomaxima above for allmatchpairs is done as follows. First,we initialize score(v,w) = 0 for allmatchpairs
(v,w). After computing score(v,w) for somematch pair (v,w), we perform score(v̂, w)← max{score(v̂, w), score(v,w)}
and score(v, ŵ)← max{score(v, ŵ), score(v,w)}, where v̂ and ŵ are the parents of v andw, respectively. Thus, for some
match pair (v,w), after processing all match pairs (v′, w′) where v′ is a descendant of v and w′ is a descendant of w, we
have that score(v,w) is equal to max

{
maxv′{score(v′, w)},maxw′{score(v,w′)}

}
, so it remains to compute α(v,w).

To compute α(v,w), define Pv,w to be the set of all pairs (vi, wj) such that score(vi, wj) > 0. Applying a sparse dynamic
programming approach to the computation of α(v,w) exploits the fact that Pv,w can be much smaller than c(v) · c(w).
However, note that just querying all pairs of children of v and w to check which ones have a positive score would already
consumeO(c(v)·c(w)) time. But, given the set Pv,w , the cost of computingα(v,w) isO(|Pv,w|lg lgm) instead ofO(c(v)·c(w)).
Thus, in the rest of this section we show how to efficiently construct the sets Pv,w .
Our approach is based on the observation that, even before the scores are computed, a key subset of the match pairs of

Fv and Gw can be identified that have the potential to eventually participate in Pv,w . For every i ≤ c(v) and j ≤ c(w), let
Ŝv,w,i,j be the set of all match pairs (x, y) such that x is a descendant of vi and y is a descendant of wj, and let Sv,w,i,j be the
set of all match pairs (x, y) ∈ Ŝv,w,i,j for which there is no match pair (x′, y′) 6= (x, y) in Sv,w,i,j such that x′ is an ancestor of
x and y′ is an ancestor of y.
The following lemma shows that Pv,w can be built from the sets Sv,w,i,j.

Lemma 11. Let (v,w) be a match pair. Let vi be a child of v and wj be a child of w such that (vi, wj) is not a match pair. Then,
score(vi, wj) is equal to the maximum score of a pair in Sv,w,i,j, or to 0 if Sv,w,i,j = ∅.

Proof. Since (vi, wj) is not amatch pair, we have that score(vi, wj) is equal to themaximum score of a pair in Ŝv,w,i,j, or to 0 if
Ŝv,w,i,j = ∅. To finish the proof, wewill show that for everymatch pair (v̂, ŵ) ∈ Ŝv,w,i,j there is amatch pair (v′, w′) ∈ Sv,w,i,j
with score(v′, w′) ≥ score(v̂, ŵ). Let (v̂, ŵ) be a match pair in Ŝv,w,i,j. If (v̂, ŵ) ∈ Sv,w,i,j then we are done. Otherwise, by
the definition of Sv,w,i,j, there is a match pair (v′, w′) ∈ Sv,w,i,j such that v′ is an ancestor of v̂ andw′ is an ancestor of ŵ. We
have that score(v′, w′) = HLCS(Fv′ ,Gw′) ≥ HLCS(Fv̂,Gŵ) = score(v̂, ŵ). �

While it is possible to build the sets Sv,w,i,j, it is simpler to build sets S ′v,w,i,j such that Sv,w,i,j ⊆ S
′

v,w,i,j ⊆ Ŝv,w,i,j. From the
proof of Lemma 11 we have that score(vi, wj) is also equal to the maximum score of a pair in S ′v,w,i,j, or to 0 if S

′

v,w,i,j = ∅.
We build the sets S ′v,w,i,j as follows. For each match pair (x, y) of F ,Gwe build a list Lx of all proper ancestors v of x such that
v is the lowest proper ancestor of xwith label equal to label(v) (the list Lx is generated by traversing the path from x to the
root while maintaining a Boolean array that stores which characters were already encountered). We also build a list Ly of
all proper ancestorsw of y such thatw is the lowest proper ancestor of ywith label equal to label(w). For every v ∈ Lx and
every proper ancestorw of ywith label(w) = label(v), we add the pair (x, y) to S ′v,w,i,j where vi is the child of v which is on
the path from v to x, andwj is the child ofw which is on the path fromw to y. Similarly, for everyw ∈ Ly and every proper
ancestor v of xwith label(v) = label(w), we add the pair (x, y) to S ′v,w,i,j.

Lemma 12. S ′v,w,i,j ⊇ Sv,w,i,j for all match pairs (v,w) and all i and j.

Proof. Suppose conversely that there is a match pair (v,w) and indices i and j such that S ′v,w,i,j 6⊇ Sv,w,i,j. Let (x, y) be a pair
in Sv,w,i,j which is not in S ′v,w,i,j. From the fact that (x, y) /∈ S

′

v,w,i,j we have that there is a vertex v
′ such that v′ is a proper

ancestor of x, v′ is a proper descendant of v, and label(v′) = label(v). Also, there is a vertex w′ such that w′ is a proper
ancestor of y, w′ is a proper descendant of w, and label(w′) = label(w). We obtain that (v′, w′) is a match pair, which
contradicts the assumption that (x, y) ∈ Sv,w,i,j. �

Theorem 13. The homeomorphic tree LCS problem can be solved in O(rh lg lgm) time, where h = height(F)+ height(G).

Proof. The algorithm consists of a preprocessing stage, during which the sets S ′v,w,i,j are constructed for every match pair
(v,w) and every i and j, and a main stage, in which the scores of match pairs are computed.
In the preprocessing stage, handling a match pair (x, y) takes O(h) time. Therefore, the preprocessing stage is done in

O(rh) time. Moreover,
∑
match pair (v,w)

∑
i
∑
j |S
′

v,w,i,j| = O(rh).
During the main stage, score(v,w) is computed for every match pair (v,w). For a single match pair (v,w), this takes

O(|Pv,w|lglgm) time. Since |Pv,w| ≤
∑
i
∑
j |S
′

v,w,i,j|, we conclude that the total work over all match pairs is O(rh lg lgm). �
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