Near Linear Time Construction of an Approximate Index for All Maximum Consecutive Sub-Sums of a Sequence

Ferdinando Cicalese Oren Weimann

Eduardo Laber Raphael Yuster

The Maximum Consecutive Subsums Problem (MCSP)

Given a sequence X of n non-negative integers

$$X = X_1 X_2 X_3 ... X_n$$

let s_{ℓ} be the maximum subsum of ℓ consecutive elements

$$s_{\ell} = \max_{j=1...n} (x_j + x_{j+1} + ... + x_{j+\ell-1})$$

We want to compute all maximum consecutive subsums: s₁, s₂,..., s_n

$$X = 23321043$$

$$X = 23321043$$

$$X = 23321043$$

4	7						
S ₁	S 2	S 3	S 4	S 5	S 6	S ₇	S 8

$$X = 23321043$$

4	7	8					
S ₁	S 2	S 3	S 4	S 5	S 6	\$7	S 8

$$X = 23321043$$

4	7	8	10				
S ₁	S 2	S 3	S 4	S 5	S 6	\$7	S 8

$$X = 23321043$$

4	7	8	10	11			
S ₁	S 2	S 3	\$4	S 5	S 6	\$7	S 8

$$X = 23321043$$

4	7	8	10	11	13		
S ₁	S 2	S 3	\$4	S 5	S 6	\$7	S 8

$$X = 23321043$$

4	7	8	10	11	13	16	18
S ₁							

Consider the following sequence of length 8

$$X = 23321043$$

4	7	8	10	11	13	16	18
S ₁	S ₂	S 3	S 4	\$ 5	S 6	S 7	S 8

The table can be trivially computed in O(n²) time each maximum subsum can be computed in O(n) by a linear scan

State of the Art

The Maximum Consecutive Subsums Problem

Given a sequence X of n non-negative integers $X = x_1 \times x_2 \times x_3 \dots \times x_n$ compute the table of all maximum consecutive subsums s_1 , s_2 ,..., s_n

The best known constructions are $\Theta(n^2/polylog n)$

- O(n²/log n) via (min,+)-convolution
- O(n²/log² n) in the word RAM model

State of the Art

The Maximum Consecutive Subsums Problem

Given a sequence X of n non-negative integers $X = x_1 \times x_2 \times x_3 \dots \times x_n$ compute the table of all maximum consecutive subsums s_1 , s_2 ,..., s_n

The best known constructions are $\Theta(n^2/polylog n)$

- O(n²/log n) via (min,+)-convolution
- O(n²/log² n) in the word RAM model

The only known lower bound is $\Omega(n)$

State of the Art

The Maximum Consecutive Subsums Problem

Given a sequence X of n non-negative integers $X = x_1 \times x_2 \times x_3 \dots \times x_n$ compute the table of all maximum consecutive subsums s_1 , s_2 ,..., s_n

The best known constructions are $\Theta(n^2/polylog n)$

- O(n²/log n) via (min,+)-convolution
- O(n²/log² n) in the word RAM model

The only known lower bound is $\Omega(n)$

Can we close this gap?

Our Result: a nearly linear approximation

The Maximum Consecutive Subsums Problem

Given a sequence X of n non-negative integers $X = x_1 \times x_2 \times x_3 \dots \times x_n$ compute the table of all maximum consecutive subsums s_1 , s_2 ,..., s_n

Theorem

For any ϵ , $\eta > 0$, we can compute in time $O(k n^{1+\eta})$ values \hat{s}_{ℓ} ($\ell=1,...,n$) such that $s_{\ell} \leq \hat{s}_{\ell} \leq (1+\epsilon) s_{\ell}$ where k depends only on ϵ and η .

We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,..., n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$

We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,..., n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$

We partition the Subsum table into √n intervals

We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,..., n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$

We partition the Subsum table into √n intervals

We compute exactly the values s_{ℓ} at the extremes of each interval $(\ell = \sqrt{n}, 2\sqrt{n}, 3\sqrt{n}, ..., n)$

We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,..., n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$

We partition the Subsum table into √n intervals

We compute exactly the values s_{ℓ} at the extremes of each interval $(\ell = \sqrt{n}, 2\sqrt{n}, 3\sqrt{n}, ..., n)$

Time =
$$O(n \times \sqrt{n})$$

We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,..., n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$

We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,..., n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$

We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,..., n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$

We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,..., n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$

We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,..., n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$

1. If
$$s_{(j+1)}\sqrt{n}/s_j\sqrt{n} \leq \alpha$$

We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,...,n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$

1. If
$$s_{(j+1)} / n / s_{j} / n \le \alpha$$

set $\hat{s}_{\ell} = s_{(j+1)} / n$ for each ℓ in the interval

We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,...,n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$

1. If
$$s_{(j+1)} / n / s_j / n \le \alpha$$

set $\hat{s}_{\ell} = s_{(j+1)} / n$ for each ℓ in the interval
therefore $\hat{s}_{\ell} / s_{\ell} = s_{(j+1)} / n / s_{\ell} \le s_{(j+1)} / n / s_j / n \le \alpha$

We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,..., n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$

- 1. If $s_{(j+1)}\sqrt{n}/s_{j}\sqrt{n} \le \alpha$ set $\hat{s}_{\ell} = s_{(j+1)}\sqrt{n}$ for each ℓ in the interval therefore $\hat{s}_{\ell}/s_{\ell} = s_{(j+1)}\sqrt{n}/s_{\ell} \le s_{(j+1)}\sqrt{n}/s_{j}\sqrt{n} \le \alpha$
- 2. If $s_{(j+1)}\sqrt{n}/s_{j}\sqrt{n} > \alpha$ we compute exactly s_{ℓ} for each ℓ in the interval

We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,..., n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$

- 1. If $s_{(j+1)} \sqrt{n} / s_{j} \sqrt{n} \le \alpha$ set $\hat{s}_{\ell} = s_{(j+1)} \sqrt{n}$ for each ℓ in the interval therefore $\hat{s}_{\ell} / s_{\ell} = s_{(j+1)} \sqrt{n} / s_{\ell} \le s_{(j+1)} \sqrt{n} / s_{j} \sqrt{n} \le \alpha$
- 2. If $s_{(j+1)}\sqrt{n}/s_{j}\sqrt{n} > \alpha$ we compute exactly s_{ℓ} for each ℓ in the interval Each big gaps (case 2.) requires $O(n \sqrt{n})$

We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,...,n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$

- 1. If $s_{(j+1)} / n / s_{j} / n \le \alpha$ set $\hat{s}_{\ell} = s_{(j+1)} / n$ for each ℓ in the interval therefore $\hat{s}_{\ell} / s_{\ell} = s_{(j+1)} / n / s_{\ell} \le s_{(j+1)} / n / s_{j} / n \le \alpha$
- 2. If $s_{(j+1)} \sqrt{n} > \alpha$ we compute exactly s_{ℓ} for each ℓ in the interval Big gaps (case 2.) happen at most once!

Big gap: $s_{j \sim n}/s_{(j+1) \sim n} < 1/\alpha$

There is at most one Big Gap

Big gap: $s_{j,n}/s_{(j+1),n} < 1/\alpha$ --> $s_{,n}/s_{i,n} < 1/\alpha$

Big gap: $s_{j,n}/s_{(j+1),n} < 1/\alpha$ --> $s_{n}/s_{i,n} < 1/\alpha$

There is at most one Big Gap

Big gap: $s_{j,n}/s_{(j+1),n} < 1/\alpha$ --> $s_{n}/s_{i,n} < 1/\alpha$

There is at most one Big Gap

We recursively apply the above ideas

- We recursively apply the above ideas
 - let k s.t. the solution to α = 1+1/α^k is ≤ 1+ε

- We recursively apply the above ideas
 - let k s.t. the solution to α = 1+1/α^k is ≤ 1+ε
 - the above argument gives now (1+ε)-approximation
 but we need to process up to k big gaps

- We recursively apply the above ideas
 - let k s.t. the solution to α = 1+1/α^k is ≤ 1+ε
 - the above argument gives now (1+ε)-approximation but we need to process up to k big gaps
 - \odot We partition into $n^{1/a}$ intervals of size $n^{1-1/a}$

- We recursively apply the above ideas
 - let k s.t. the solution to α = 1+1/α^k is ≤ 1+ε
 - the above argument gives now (1+ε)-approximation but we need to process up to k big gaps
 - We partition into n^{1/a} intervals of size n^{1-1/a}
 - partition big gaps into n^{1/a} subintervals and recurse (up to a-1 times, a>1) ---> O(k^an^{1+1/a})

Related Work and Applications

- Approximate Pattern Matching Constant time for Parikh vector membership queries in binary strings [Burci et. al., FUN 2010, Moosa-Rahman, JDA 2012]
- Finding large empty regions in data sets [Berkvist-Damaschke, Pattern Recognition 2006]

Indexes for Parikh vector membership queries

- Given a sequence X of n bits,
 - let s_1 , ..., s_n (resp. r_1 , ..., r_n) be the maximum (minimum) subsums
- then X has a substring of length m with exactly k ones if and only if

$$r_m \leq k \leq s_m$$

Indexes for Parikh vector membership queries

- Given a sequence X of n bits,
 - let s₁, ..., s_n (resp. r₁, ..., r_n) be the maximum (minimum) subsums
- then X has a substring of length m with exactly k ones if and only if

$$r_m \leq k \leq s_m$$

Let \hat{s}_1 , ..., \hat{s}_n (resp. \hat{r}_1 , ..., \hat{r}_n) be the ϵ -approximate max (min) subsums.

Then, X has a substring of length m with exactly k ones if

$$\hat{r}_{m}/(1-\epsilon) \leq k \leq \hat{s}_{m}/(1+\epsilon)$$

and only if

$$\hat{r}_m \leq k \leq \hat{s}_m$$

Conclusions and Open Problems

- The existence of exact linear algorithms remains open even in the binary case
- Lower bounds
- Parikh vector membership queries for binary strings
 - can we turn our approach into a Las Vegas algorithm?
 - extension to the case of general alphabets

Thank You