Near Linear Time Construction of an Approximate Index for All Maximum Consecutive Sub-Sums of a Sequence Ferdinando Cicalese Oren Weimann Eduardo Laber Raphael Yuster ## The Maximum Consecutive Subsums Problem (MCSP) Given a sequence X of n non-negative integers $$X = X_1 X_2 X_3 ... X_n$$ let s_{ℓ} be the maximum subsum of ℓ consecutive elements $$s_{\ell} = \max_{j=1...n} (x_j + x_{j+1} + ... + x_{j+\ell-1})$$ We want to compute all maximum consecutive subsums: s₁, s₂,..., s_n $$X = 23321043$$ $$X = 23321043$$ $$X = 23321043$$ | 4 | 7 | | | | | | | |----------------|------------|------------|------------|------------|------------|-----------------------|------------| | S ₁ | S 2 | S 3 | S 4 | S 5 | S 6 | S ₇ | S 8 | $$X = 23321043$$ | 4 | 7 | 8 | | | | | | |----------------|------------|------------|------------|------------|------------|-----|------------| | S ₁ | S 2 | S 3 | S 4 | S 5 | S 6 | \$7 | S 8 | $$X = 23321043$$ | 4 | 7 | 8 | 10 | | | | | |----------------|------------|------------|------------|------------|------------|-----|------------| | S ₁ | S 2 | S 3 | S 4 | S 5 | S 6 | \$7 | S 8 | $$X = 23321043$$ | 4 | 7 | 8 | 10 | 11 | | | | |----------------|------------|------------|-----|------------|------------|-----|------------| | S ₁ | S 2 | S 3 | \$4 | S 5 | S 6 | \$7 | S 8 | $$X = 23321043$$ | 4 | 7 | 8 | 10 | 11 | 13 | | | |----------------|------------|------------|-----|------------|------------|-----|------------| | S ₁ | S 2 | S 3 | \$4 | S 5 | S 6 | \$7 | S 8 | $$X = 23321043$$ | 4 | 7 | 8 | 10 | 11 | 13 | 16 | 18 | |----------------|---|---|----|----|----|----|----| | S ₁ | | | | | | | | Consider the following sequence of length 8 $$X = 23321043$$ | 4 | 7 | 8 | 10 | 11 | 13 | 16 | 18 | |----------------|-----------------------|------------|------------|-------------|------------|------------|------------| | S ₁ | S ₂ | S 3 | S 4 | \$ 5 | S 6 | S 7 | S 8 | The table can be trivially computed in O(n²) time each maximum subsum can be computed in O(n) by a linear scan #### State of the Art The Maximum Consecutive Subsums Problem Given a sequence X of n non-negative integers $X = x_1 \times x_2 \times x_3 \dots \times x_n$ compute the table of all maximum consecutive subsums s_1 , s_2 ,..., s_n #### The best known constructions are $\Theta(n^2/polylog n)$ - O(n²/log n) via (min,+)-convolution - O(n²/log² n) in the word RAM model #### State of the Art The Maximum Consecutive Subsums Problem Given a sequence X of n non-negative integers $X = x_1 \times x_2 \times x_3 \dots \times x_n$ compute the table of all maximum consecutive subsums s_1 , s_2 ,..., s_n #### The best known constructions are $\Theta(n^2/polylog n)$ - O(n²/log n) via (min,+)-convolution - O(n²/log² n) in the word RAM model The only known lower bound is $\Omega(n)$ #### State of the Art The Maximum Consecutive Subsums Problem Given a sequence X of n non-negative integers $X = x_1 \times x_2 \times x_3 \dots \times x_n$ compute the table of all maximum consecutive subsums s_1 , s_2 ,..., s_n #### The best known constructions are $\Theta(n^2/polylog n)$ - O(n²/log n) via (min,+)-convolution - O(n²/log² n) in the word RAM model The only known lower bound is $\Omega(n)$ Can we close this gap? #### Our Result: a nearly linear approximation The Maximum Consecutive Subsums Problem Given a sequence X of n non-negative integers $X = x_1 \times x_2 \times x_3 \dots \times x_n$ compute the table of all maximum consecutive subsums s_1 , s_2 ,..., s_n #### Theorem For any ϵ , $\eta > 0$, we can compute in time $O(k n^{1+\eta})$ values \hat{s}_{ℓ} ($\ell=1,...,n$) such that $s_{\ell} \leq \hat{s}_{\ell} \leq (1+\epsilon) s_{\ell}$ where k depends only on ϵ and η . We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,..., n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$ We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,..., n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$ We partition the Subsum table into √n intervals We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,..., n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$ We partition the Subsum table into √n intervals We compute exactly the values s_{ℓ} at the extremes of each interval $(\ell = \sqrt{n}, 2\sqrt{n}, 3\sqrt{n}, ..., n)$ We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,..., n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$ We partition the Subsum table into √n intervals We compute exactly the values s_{ℓ} at the extremes of each interval $(\ell = \sqrt{n}, 2\sqrt{n}, 3\sqrt{n}, ..., n)$ Time = $$O(n \times \sqrt{n})$$ We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,..., n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$ We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,..., n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$ We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,..., n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$ We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,..., n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$ We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,..., n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$ 1. If $$s_{(j+1)}\sqrt{n}/s_j\sqrt{n} \leq \alpha$$ We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,...,n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$ 1. If $$s_{(j+1)} / n / s_{j} / n \le \alpha$$ set $\hat{s}_{\ell} = s_{(j+1)} / n$ for each ℓ in the interval We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,...,n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$ 1. If $$s_{(j+1)} / n / s_j / n \le \alpha$$ set $\hat{s}_{\ell} = s_{(j+1)} / n$ for each ℓ in the interval therefore $\hat{s}_{\ell} / s_{\ell} = s_{(j+1)} / n / s_{\ell} \le s_{(j+1)} / n / s_j / n \le \alpha$ We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,..., n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$ - 1. If $s_{(j+1)}\sqrt{n}/s_{j}\sqrt{n} \le \alpha$ set $\hat{s}_{\ell} = s_{(j+1)}\sqrt{n}$ for each ℓ in the interval therefore $\hat{s}_{\ell}/s_{\ell} = s_{(j+1)}\sqrt{n}/s_{\ell} \le s_{(j+1)}\sqrt{n}/s_{j}\sqrt{n} \le \alpha$ - 2. If $s_{(j+1)}\sqrt{n}/s_{j}\sqrt{n} > \alpha$ we compute exactly s_{ℓ} for each ℓ in the interval We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,..., n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$ - 1. If $s_{(j+1)} \sqrt{n} / s_{j} \sqrt{n} \le \alpha$ set $\hat{s}_{\ell} = s_{(j+1)} \sqrt{n}$ for each ℓ in the interval therefore $\hat{s}_{\ell} / s_{\ell} = s_{(j+1)} \sqrt{n} / s_{\ell} \le s_{(j+1)} \sqrt{n} / s_{j} \sqrt{n} \le \alpha$ - 2. If $s_{(j+1)}\sqrt{n}/s_{j}\sqrt{n} > \alpha$ we compute exactly s_{ℓ} for each ℓ in the interval Each big gaps (case 2.) requires $O(n \sqrt{n})$ We compute a table of Approximate Subsums \hat{s}_{ℓ} ($\ell=1,...,n$) such that $1 \le \hat{s}_{\ell}/s_{\ell} \le \alpha = (1+\sqrt{5})/2$ - 1. If $s_{(j+1)} / n / s_{j} / n \le \alpha$ set $\hat{s}_{\ell} = s_{(j+1)} / n$ for each ℓ in the interval therefore $\hat{s}_{\ell} / s_{\ell} = s_{(j+1)} / n / s_{\ell} \le s_{(j+1)} / n / s_{j} / n \le \alpha$ - 2. If $s_{(j+1)} \sqrt{n} > \alpha$ we compute exactly s_{ℓ} for each ℓ in the interval Big gaps (case 2.) happen at most once! Big gap: $s_{j \sim n}/s_{(j+1) \sim n} < 1/\alpha$ There is at most one Big Gap Big gap: $s_{j,n}/s_{(j+1),n} < 1/\alpha$ --> $s_{,n}/s_{i,n} < 1/\alpha$ Big gap: $s_{j,n}/s_{(j+1),n} < 1/\alpha$ --> $s_{n}/s_{i,n} < 1/\alpha$ There is at most one Big Gap Big gap: $s_{j,n}/s_{(j+1),n} < 1/\alpha$ --> $s_{n}/s_{i,n} < 1/\alpha$ There is at most one Big Gap We recursively apply the above ideas - We recursively apply the above ideas - let k s.t. the solution to α = 1+1/α^k is ≤ 1+ε - We recursively apply the above ideas - let k s.t. the solution to α = 1+1/α^k is ≤ 1+ε - the above argument gives now (1+ε)-approximation but we need to process up to k big gaps - We recursively apply the above ideas - let k s.t. the solution to α = 1+1/α^k is ≤ 1+ε - the above argument gives now (1+ε)-approximation but we need to process up to k big gaps - \odot We partition into $n^{1/a}$ intervals of size $n^{1-1/a}$ - We recursively apply the above ideas - let k s.t. the solution to α = 1+1/α^k is ≤ 1+ε - the above argument gives now (1+ε)-approximation but we need to process up to k big gaps - We partition into n^{1/a} intervals of size n^{1-1/a} - partition big gaps into n^{1/a} subintervals and recurse (up to a-1 times, a>1) ---> O(k^an^{1+1/a}) #### Related Work and Applications - Approximate Pattern Matching Constant time for Parikh vector membership queries in binary strings [Burci et. al., FUN 2010, Moosa-Rahman, JDA 2012] - Finding large empty regions in data sets [Berkvist-Damaschke, Pattern Recognition 2006] #### Indexes for Parikh vector membership queries - Given a sequence X of n bits, - let s_1 , ..., s_n (resp. r_1 , ..., r_n) be the maximum (minimum) subsums - then X has a substring of length m with exactly k ones if and only if $$r_m \leq k \leq s_m$$ #### Indexes for Parikh vector membership queries - Given a sequence X of n bits, - let s₁, ..., s_n (resp. r₁, ..., r_n) be the maximum (minimum) subsums - then X has a substring of length m with exactly k ones if and only if $$r_m \leq k \leq s_m$$ Let \hat{s}_1 , ..., \hat{s}_n (resp. \hat{r}_1 , ..., \hat{r}_n) be the ϵ -approximate max (min) subsums. Then, X has a substring of length m with exactly k ones if $$\hat{r}_{m}/(1-\epsilon) \leq k \leq \hat{s}_{m}/(1+\epsilon)$$ and only if $$\hat{r}_m \leq k \leq \hat{s}_m$$ #### Conclusions and Open Problems - The existence of exact linear algorithms remains open even in the binary case - Lower bounds - Parikh vector membership queries for binary strings - can we turn our approach into a Las Vegas algorithm? - extension to the case of general alphabets ### Thank You