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The Maximum Consecutive Subsums
Problem (MCSP)

Given a sequence X of n non-negative integers

X = X1 X2 X3 ... Xn

let sbe the maximum subsum of ¢ consecutive elements

S¢ = MAXj=1..n (Xj+xJ'+1 p LS Xj+€_1)

We want to compute all maximum consecutive subsums: s;, Sz,..., Sn
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The Problem: an example

Consider the following sequence of length 8

X =22 3:3021 043

4 7 8 10 11 13 16 18

S1 S2 S3 SYA S5 Sé S7 S8

The table can be trivially computed in O(n¢) time

each maximum subsum can be computed in O(n) by a linear scan
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The Maximum Consecutive Subsums Problem

Given a sequence X of n non-negative integers X = x1 X2 X3 ... Xn
compute the table of all maximum consecutfive subsums s;, sz,..., Sn

The best known constructions are ©(n%/polylog n)
- 0(n?/log n) via (min,+)-convolution
- 0(n?/log® n) in the word RAM model



State of the Art

The Maximum Consecutive Subsums Problem

Given a sequence X of n non-negative integers X = x1 X2 X3 ... Xn
compute the table of all maximum consecutfive subsums s;, sz,..., Sn

The best known constructions are ©(n%/polylog n)
- 0(n?/log n) via (min,+)-convolution
- 0(n?/log® n) in the word RAM model

The only known lower bound is Q(n)



State of the Art

The Maximum Consecutive Subsums Problem

Given a sequence X of n non-negative integers X = x1 X2 X3 ... Xn
compute the table of all maximum consecutfive subsums s;, sz,..., Sn

The best known constructions are ©(n%/polylog n)
- 0(n?/log n) via (min,+)-convolution
- 0(n?/log® n) in the word RAM model

The only known lower bound is Q(n)



Our Result: a nearly linear approximation

The Maximum Consecutive Subsums Problem

Given a sequence X of n non-negative integers X = x1 X2 X3 ... Xn
compute the table of all maximum consecutfive subsums s;, sz,..., Sn

Theorem

For any €, n > O, we can compute in time O(k n'*")
values §; (P=1,..., n) such that sy < 8 < (1+€) s
where Kk depends only on € and n.
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The Basic Idea:
A golden ratio approx in O(n¥2) time

: SjJn/S(j+1)Jn el o Sn/ Sidn < 1/

SN
&

S1 Sja/n S(j+l)/n e Si/n S(i+1)/n e Sn-/n

e

S(i+1)~/n £ Sidn + Siyn

-->

S(ic0dnlSiin ST+ sy/sinsl +1/0 =



The better approximation and time
bounds

Sja/n S(j+hn .- Siu/n S(i+1)/n ..  Sn-4/n
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The better approximation and time

bounds
S1 Sjd/n S(j+1)vn e Si./n S(i+1)/n e Sn-J/n Sn

@ We recursively apply the above ideas
@ let k s.t. the solution to o = 1+1/a" is < 1+¢

@ the above argument gives now (1+€)-approximation
but we need to process up to k big gaps

@ We partition into n'? intervals of size n!-/

@ partition big gaps into n'/e subintervals and
recurse (up to a-1 times, a>l) ---> O(kén'+/a)



Related Work and Applications

Approximate Pattern Matching

Constant ftime for Parikh vector membership queries in
binary strings

[Burci et. al., FUN 2010, Moosa-Rahman, JDA 2012]

Finding large empty regions in data sets
[Berkvist-Damaschke, Pattern Recognition 2006]



Indexes for Parikh vector membership queries

@ Given a sequence X of n bits,

o let sy, ..., sn(resp. ri, ..., rn) be the maximum (minimum) subsums

@ then X has a substring of length m with exactly k ones
if and only if
m £ K £ Sm




Indexes for Parikh vector membership queries

@ Given a sequence X of n bits,

o let sy, ..., sn(resp. ri, ..., rn) be the maximum (minimum) subsums

@ then X has a substring of length m with exactly k ones
if and only if

itk K g

Let §;, ..., Sn(resp. fy, .

., Tn) be the g-approximate max (min) subsums. |

@ Then, X has a substring of length m with exactly k ones
if

Fl (1=E) € K <5, /(1-£E)

and only if



Conclusions and Open Problems

@ The existence of exact linear algorithms remains open even
in the binary case

@ Lower bounds
@ Parikh vector membership queries for binary strings

@ can we turn our approach into a Las Vegas algorithm?

@ extension to the case of general alphabets






