
The Nearest Colored Node in a Tree∗

Paweł Gawrychowski† Gad M. Landau‡ Shay Mozes§ Oren Weimann¶

Abstract

We start a systematic study of data structures for the nearest colored node problem on trees.
Given a tree with colored nodes and weighted edges, we want to answer queries (v, c) asking for
the nearest node to node v that has color c. This is a natural generalization of the well-known
nearest marked ancestor problem. We give an O(n)-space O(log log n)-query solution and show
that this is optimal. We also consider the dynamic case where updates can change a node’s
color and show that in O(n) space we can support both updates and queries in O(log n) time.
We complement this by showing that O(polylogn) update time implies Ω(logn

log logn) query time.
Finally, we consider the case where updates can change the edges of the tree (link-cut operations).
There is a known (top-tree based) solution that requires update time that is roughly linear in
the number of colors. We show that this solution is probably optimal by showing that a strictly
sublinear update time implies a strictly subcubic time algorithm for the classical all pairs shortest
paths problem on a general graph. We also consider versions where the tree is rooted, and the
query asks for the nearest ancestor/descendant of node v that has color c, and present efficient
data structures for both variants in the static and the dynamic setting.

Dedicated to Professor Costas S. Iliopoulos, on the occasion of his 60th birthday.

1 Introduction

We consider a number of problems on trees with colored nodes. Each of these problems can be either
static, meaning the color of every node of a tree T on n nodes is fixed, or dynamic, meaning that an
update can change a node’s color (but the tree itself does not change). The edges of T may have
arbitrary nonnegative lengths and dist(u, v) denotes the total length of the unique path connecting u
and v. Depending on the version of the problem, given a node u and a color c we are interested in:

The nearest colored ancestor: the first node v on the u-to-root path that has color c.

The nearest colored descendant: the node v of color c such that the v-to-root path goes through
u and the distance from u to v is as small as possible.

The nearest colored node: the node v of color c such that the distance from u to v is as small
as possible.

∗A preliminary version of this paper appeared in CPM 2016.
†University of Haifa, gawry@mimuw.edu.pl. Partially supported by Israel Science Foundation grant 794/13.
‡University of Haifa and New York University, landau@cs.haifa.ac.il. Partially supported by ISF grant 571/14

and BSF grant 2014028.
§IDC Herzliya, smozes@idc.ac.il. Partially supported by Israel Science Foundation grant 794/13.
¶University of Haifa, oren@cs.haifa.ac.il, Partially supported by Israel Science Foundation grant 794/13.

1

In the static case, if the number of colors is k, then there is a trivial solution for all three problems
with O(nk)-space and O(1)-query (in fact, for k ≤ log n there is an O(n)-space and O(1)-query
solution [8]). In the word RAM model with word size w, the nearest colored ancestor problem can
be solved in O(n + nk/w)-space and O(1)-query [7]. For an arbitrary number of colors, a lower
bound of Ω(log log n)-query for any O(n polylogn)-space solution to each of these problems (in fact,
even on strings) follows from a simple reduction from the well known predecessor problem. For
the nearest colored ancestor problem, a tight O(n)-space O(log log n)-query solution was given by
Muthukrishnan and Müller [17]. We show how to achieve these same bounds for the other two
problems (for completeness, we also describe a simple nearest colored ancestor solution). To achieve
this, as was done in [17], for every color c we construct a separate tree T (c). If there are total s
nodes of color c then T (c) is only of size O(s) but (after augmenting it with appropriate additional
data) it captures for all n nodes of the original tree their nearest node of color c.

In the dynamic case, the nearest colored ancestor problem has been studied by Alstrup-Husfeldt-
Rauhe [3] who gave a solution with O(n)-space, O(logn

log logn)-query, and O(log log n)-update. They
also gave a lower bound stating that O(polylogn)-update requires Ω(logn

log logn)-query. This holds
even when the number of colors is only two (then a node is either marked or unmarked and the
problem is known as the marked ancestor problem). We show that this lower bound (with the
same statement and only two colors) extends to both the nearest colored node and the nearest
colored descendant. For upper bounds, we show that the nearest colored node problem can be solved
with O(n)-space, O(log n)-update, and O(log n)-query. Our solution can be seen as a variant of the
centroid decomposition tweaked to guarantee some properties of top-trees.

The original top-trees of Alstrup-Holm-de Lichtenberg-Thorup [2] were designed for only two
colors (i.e., for the nearest marked node problem). They achieve O(log n) query and update and
also support updates that insert and delete edges (i.e., maintain a forest under link-cut operations).
The straightforward generalization of top-trees from two to k colors increases the space dramatically
to O(nk). We believe it is possible to improve this to O(n) using similar ideas to those we present
here. However, because we do not allow link-cut operations, compared to top-trees our solution is
simpler. Moreover, our query time can be improved to (optimal) O(logn

log logn) at the cost of increasing
the update time by a logε n factor and the space by a log1+ε n factor. Whether such an improvement
is possible with top trees remains open. We note that in both the O(nk) and the O(n) space
solutions with top-trees, while queries and color-changes require O(log n) time the time for link/cut
is O(k · log n). This can be significant since k can be as large as n (we emphasise that our solution
does not support link/cut at all). We show that Õ(k) is probably optimal by showing that O(k1−ε)
query and update time implies an O(n3−ε) solution for the classical all pairs shortest paths problem
on a general graph with n vertices. The non existence of such an algorithm has recently been widely
used as an assumption with various consequences [22].

Finally, for the nearest colored descendant problem, we give a solution with O(logn
log logn)-query

and O(log2/3+ε n)-update by reducing the problem to 3-sided emptiness queries on points in the
plane. We then show that the O(polylogn)-update Ω(logn

log logn)-query lower bound of [3] also applies
to the nearest colored descendant problem by giving a reduction from nearest colored ancestor to
nearest colored descendant.

Related work. The approximate version of the nearest colored node problem (where we settle for
approximate distances) has recently been studied (as the vertex-to-label distance query problem) in
general graphs [9, 13, 15] and in planar graphs [1, 14, 16]. In fact, the query-time in [16] is dominated
by a O(log log n) nearest colored node query on a string (which we now know is optimal).

2

Preliminaries. A predecessor structure is a data structure that stores a set of n integers S ⊆ [0, U],
so that given x ∈ [0, U] we can determine the largest y ∈ S such that y ≤ x. It is known [18] that
for U = n2 any predecessor structure of O(n polylogn)-space requires Ω(log log n)-query, and that
linear-size structures with such query-time exist [19,21].

A Range Minimum Query (RMQ) structure on an array A[1, . . . , n] is a data structure for
answering queries min{A[i], . . . , A[j]}. When the array A is static, RMQ can be optimally solved in
O(n)-space and O(1) query [5,6,12]. In the dynamic case, we allow updates that change the value of
array elements. When the query range is restricted to be a suffix A[i, . . . , n] we refer to the problem
as the Suffix Minimum Query (SMQ) problem.

A Lowest Common Ancestor (LCA) structure on a rooted tree T is a data structure for finding
the common ancestor of two nodes u, v with the largest distance from the root. For static trees,
LCA is equivalent to RMQ and thus can be solved in O(n)-space and O(1)-query.

A perfect hash structure stores a collection of n integers S. Given x we can determine if x ∈ S
and return its associated data. There exists O(n)-space, O(1)-query perfect hash structure [11],
which can be made dynamic with O(1)-update (expected amortized) [10].

2 Static Upper Bounds

We root the tree at node 1 and assign pre- and post-order number pre(u), post(u) ∈ [1, 2n] to every
node u. All these numbers are distinct, [pre(u), post(u)] is a laminar family of intervals, and u is
an ancestor of v if and only if pre(v) ∈ (pre(u), post(u)). We order edges outgoing from every node
according to the preorder numbers of the corresponding nodes.

We assume the colors are represented by integers in [1, n]. We will construct a separate additional
structure for every possible color c. The size of the additional structure will be always proportional
to the number of nodes of color c, which sums up to O(n) over all colors c. Below we describe the
details of the additional structure for every version of the problem.

Nearest colored descendant. Let v1, v2, . . . , vs be all nodes of color c sorted so that pre(v1) <
pre(v2) < . . . < pre(vs). We insert the preorder numbers of all these nodes into a predecessor
structure, so that given an interval [x, y] we can determine the range vi, vi+1, . . . , vj consisting
of all nodes with preorder numbers from [x, y] in O(log log n) time. Additionally, we construct
an array D[1..s], where D[i] = dist(1, vi). The array is augmented with an RMQ structure. To
answer a query, we use the predecessor structure to locate the range consisting of nodes v such
that pre(v) ∈ [pre(u), post(u)]. Then, if the range is nonempty, a range minimum query allows us to
retrieve the nearest descendant of u with color c. The total query time is hence O(log log n).

Nearest colored ancestor. Let v1, v2, . . . , vs be all nodes of color c. We insert all their pre- and
postorder numbers into a predecessor structure. Additionally, for every i we store (in an array) the
nearest ancestor with the same color for the node vi (or null if such ancestor does not exist). To
answer a query, we use the predecessor structure to locate the predecessor of pre(u). There are two
cases:

1. The predecessor is pre(vi) for some i. Because [pre(v), post(v)] create a laminar family, either
pre(u) ∈ [pre(vi), post(vi)] and vi is the answer, or u has no ancestor of color c.

2. The predecessor is post(vi) for some i. Consider an ancestor u′ of u with the same color. Then
pre(u′) < post(vi), so u′ is also an ancestor of vi. Similarly, consider an ancestor v′ of vi with

3

the same color, then post(v′) > pre(u) so v′ is also an ancestor of u. Therefore, the nearest
ancestor of color c is the same for u and vi, hence we can return the answer stored for vi.

The query time is hence again O(log log n).

Nearest colored node. We define the subtree induced by color c, denoted T (c), as follows. Let
v1, v2, . . . , vs be all nodes of color c. T (c) consists of all nodes vi together with the lowest common
ancestor of every pair of nodes vi and vj . The parent of u ∈ T (c) is defined as the nearest ancestor
v of u ∈ T such that v ∈ T (c) as well; if there is no such node, u is the root of T (c) (there is at most
one such node). Thus, an edge (u, v) ∈ T (c) corresponds to a path from u to v in T .

Lemma 2.1. T (c) consists of at most 2s− 1 nodes and can be constructed in O(s) time assuming
that we are given a list of all nodes of color c sorted according to their preorder numbers and a
constant time LCA built for T .

Proof. Let v1, v2, . . . , vs be the given list of nodes of color c. By assumption, pre(v1) < pre(v2) <
. . . < pre(vs). We claim that T (c) consists of all nodes vi and the lowest common ancestor of every vi
and vi+1. To prove this, consider two nodes vi and vj such that i < j such that their lowest common
ancestor u is different than vi and vj . Then, u is a proper ancestor of vi and vj , and furthermore vi
is a descendant of ua and vj a descendant of ub, where a < b and u1, u2, . . . , u` is an ordered list of
the children of u. vi can be replaced by the node vi′ of color c with the largest preorder number in
the subtree rooted at ua. Then the lowest common ancestor of vi′ and vi′+1 is still u, so it is indeed
enough to include only the lowest common ancestor of such pairs of nodes and the bound of 2s− 1
follows.

To construct T (c) we need to determine its set of nodes and edges. Determining the nodes is
easy by the above reasoning. To determine the edges, we use a method similar to constructing
the Cartesian tree of a sequence: we scan v1, v2, . . . , vs from the left to right while maintaining the
subtree induced by v1, v2, . . . , vi. We keep the rightmost path of the current subtree on a stack, with
the bottommost edge on the top. To process the next vi+1, we first calculate its lowest common
ancestor with vi, denoted x. Then, we pop from the stack all edges (u, v) such that u and v are both
below (or equal to) x in T . Finally, we possibly split the edge on the top of the stack into two and
push a new edge onto the stack. The amortized complexity of every step is constant, so the total
time is O(s).

The first part of the additional structure is the nearest node of color c stored for every node of
T (c). Given a node u, we need to determine its nearest ancestor u′ such that u′ ∈ T (c) or u′ lies
strictly inside some path corresponding to an edge of T (c). In the latter case, we want to retrieve
the endpoints of that edge. This is enough to find the answer, as any path from u to a node of
color c must necessarily go through u′ (because u′ is the lowest ancestor of u such that the subtree
rooted at u′ contains at least one node of color c, and a simple path from u to a node of color c
must go up as long as the subtree rooted at the current node does not contain any node of color c),
and then either u′ ∈ T (c) and we have the answer for u′ or the path continues towards one of the
endpoints of the edge of T (c) strictly containing u′ (because the subtrees hanging off the inside of
a path corresponding to an edge of T (c) do not contain any nodes of color c). Hence after having
determined u′ we need only constant time to return the answer.

To determine u′, we use the structure for the nearest colored ancestor constructed for a subset of
O(s) marked nodes of T . These marked nodes are all nodes of T corresponding to the nodes of T (c),
and additionally, for every path u1 → u2 → . . .→ u` corresponding to an edge of T (c), the node u2
(where u1 is closer to the root than u` and ` ≥ 2). For every marked node of the second type we

4

store the endpoints (u1, u`) of its corresponding edge of T (c). Then, locating the nearest marked
ancestor of u allows us to determine that the sought nearest ancestor u′ is a node of T (c), or find
the edge of T (c) strictly containing u′. By plugging in the aforementioned structure for the nearest
colored ancestor, we obtain the answer in O(log log n) time with a structure of size O(s).

This concludes the description of our static solution. Before moving on to the dynamic case,
we note that the above solution can be easily extended to the case where every node v ∈ T has an
associated set of colors C(v) and instead of looking for a node of color c we look for a node v such
that c ∈ C(v).

3 Dynamic Upper Bounds

In the dynamic setting, we allow updates to change a node’s color. To be even more general, we
assume that every node v ∈ T has an associated (dynamically changing) set of colors C(v), and an
update can either insert or remove a color c from the current set C(v).

Nearest colored descendant. As in the static case, we construct a separate structure for every
possible color c. We also maintain a mapping from the set of colors to their corresponding structures.
Let v1, v2, . . . , vs be all nodes of color c. We create a set of points of the form (pre(vi), dist(1, vi)).
Then, a nearest colored descendant query can be answered by locating the point with the smallest
y-coordinate in the slab [pre(u), post(u)]× (−∞,∞). We store the points in a fully dynamic 3-sided
emptiness structure of Wilkinson [20]. The structure answers a 3-sided emptiness query by locating
the point with the smallest y-coordinate in a slab [x1, x2]× (−∞,∞) in O(logn

log logn) time and can be
updated by inserting and removing points in O(log2/3+ε n) time, with both the update and the query
time being amortized. Consequently, we obtain the same bounds for the nearest colored descendant.

Nearest colored ancestor. This has been considered by Alstrup-Husfeldt-Rauhe [3]. The query
time is O(logn

log logn) and the update time O(log logn). While not explicitly stated in the paper, the
total space is linear.

Nearest colored node. Our data structure is based on a variant of the centroid decomposition.
That is, we recursively decompose the tree into smaller and smaller pieces by successively removing
nodes. The difference compared to the standard centroid decomposition is that each of the obtained
smaller trees has up to two appropriately defined boundary nodes (similarly to the decomposition
used in top-trees).1

The basis of our recursive decomposition is the following well-known fact.

Fact 1. In any tree T on n nodes there exists a node c ∈ T such that T \ {c} is a collection of trees
of size at most n

2 each.

We apply it recursively. The input to a single step of the recursion is a tree T on n nodes with
at most two distinguished boundary nodes. We use Fact 1 to find node c1 ∈ T such that T \ {c1} is
a collection of smaller trees T1, T2, Each neighbor of c1 in the original tree becomes a boundary
node in its smaller tree Ti. A boundary node u ∈ T such that u 6= c1 is also a boundary node in
its smaller tree Ti. Because T contains at most two boundary nodes, at most one smaller tree Ti
contains three boundary nodes, while all other smaller trees contain at most two boundary nodes. If

1Using standard centroid decomposition leads to update time of O(log2 n), compared to O(logn) when controlling
the number of boundary nodes.

5

such Ti containing three boundary nodes u1, u2, u3 exists, we further partition it into even smaller
trees T ′1, T ′2, This is done by finding a node c2 ∈ Ti which, informally speaking, separates all
u1, u2, u3 from each other. Formally speaking, we take c2 to be any node belonging to all three paths
u1 − u2, u1 − u3, u2 − u3 (intersection of such three paths is always nonempty). Then, Ti \ {c2} is a
collection of trees T ′1, T ′2, . . . such that each T ′j contains at most one of the nodes u1, u2, u3. Finally,
each neighbor of c2 in Ti becomes a boundary node in its smaller tree T ′j ; see Figure 1.

Figure 1: Schematic depiction of a single step of our centroid decomposition. After removing the
grayed out node and its adjacent edges we obtain 6 pieces. One of them contains three boundary
nodes and hence needs to be further partitioned into 4 smaller pieces.

Lemma 3.1. Given a tree T on n nodes with at most two boundary nodes b1, b2, we can find two
nodes c1, c2 ∈ T , called the centroids of T , such that T \ {c1, c2} is a collection of trees T1, T2, . . .
with the property that each Ti consists of at most n

2 nodes and contains at most two boundary nodes,
which are defined as nodes corresponding to the original boundary nodes of T or nodes adjacent to c1
or c2 in T .

Let T0 denote the original input tree. We apply Lemma 3.1 to T0 recursively until the tree is
empty. The resulting recursive decomposition of T0 can be described by a decomposition tree T
as followed. Each node of T corresponds to a subtree of T0. The root r of T corresponds to T0.
The children of a node u ∈ T , whose corresponding subtree of T0 is T , are the recursively defined
decomposition trees of the smaller trees Ti obtained by removing the centroid nodes from T with
Lemma 3.1. For a node u ∈ T whose corresponding subtree is T we define C(u) to be C(c1) ∪ C(c2),
where c1 and c2 are the centroids of T . Because the size of the tree decreases by a factor of two in
every step, the depth of T is at most log n. We will sometimes abuse notation and say that a tree T
in the decomposition is the parent of T ′ if the node of T whose corresponding tree is T is the parent
of the node of T whose corresponding tree is T ′. This concludes the description of our recursive
decomposition.

We now describe the information maintained in order to implement dynamic nearest colored
node queries. We will henceforth assume that the degree of every node in T is at most 3. This can
be achieved by standard ternarization with zero length edges. For every tree T in the decomposition,
every boundary node b of T , and every color c such that c ∈ C(v) for some v ∈ T , we store the node
of T with color c that is nearest to b. Observe that, since the degree is bounded, this information
can be used to compute in constant time the nearest node with color c to each centroid ci of T , by
considering the nearest nodes with color c to each of the adjacent (to c1 or to c2) boundary nodes of
the children Ti of T in T .

For every node v ∈ T0 we store a pointer to the unique node of T in which v is a centroid. We
also preprocess the original tree T0 so that the distance between any two nodes can be calculated in

6

constant time: we root the tree at node 1, construct an LCA structure, and store dist(1, v) for every
v ∈ T0. Such preprocessing actually allows us to compute the distance between any two nodes in
any of the smaller trees in the decomposition.

Queries. Given a tree T in the decomposition, a node v ∈ T and a color c, we need to find the
node u ∈ T with color c that is nearest to v.

Let ci (i = 1, 2) be the centroids of T . Either some ci lies on the v-to-u path in T , or v and u
belong to the same child Ti of T . In the former case u is the closest node to ci in T with color c.
Note that this information is already stored. In the latter case, the query is reduced to a query in Ti.

It follows that, in order to find the closest node to v with color c in T0, it suffices to consider the
closest nodes with color c to each of the centroids of each of the trees on the path in T from the
node of T in which v is a centroid to the root of T . There are O(log n) such centroids, and each of
them can be checked in constant time using the stored information.

Updates. Consider adding or removing color c from C(v). We implement the updates in a
bottom-up fashion along the same path used for the query. Subtrees on this path are the only ones
in the decomposition containing v, so only their information should be updated.

Repairing the information for the boundary nodes of a subtree T along the path in T is done in
a similar manner to that of the query. For each boundary node bi of T (i = 1, 2), we need to find
the nearest node u ∈ T with color c. Let cj (j = 1, 2) be the centroids of T . Let Ti denote the child
of T in T that contains bi. Either bi and u both belong to Ti, or u = cj for some j, or u is in some
other child T` of T and some cj lies on the bi-to-u path in T . In all cases we can use the information
stored at the children of T to correctly determine the information stored at T . If bi, u ∈ Ti then
bi is a boundary node of Ti, so we use the information stored for Ti. If u = cj then we verify that
c ∈ C(cj). Finally, in the last case, the closest node to bi with color c in T` is also the closest node
to the boundary node of T` adjacent (in T) to cj , so we use the information stored for T`.

Summary. To summarize, both the query and the update time is O(log n). The space is
O(log n ·

∑
v∈T0 |C(v)|), because every c ∈ C(v) contributes constant space at every level.

Decreasing the space. The space can be reduced to O(n+
∑

v∈T0 |C(v)|). Let T be a tree in
the decomposition. Recall that for each boundary node u ∈ T and color c such that c ∈ C(v) for
some v ∈ T we maintain the nearest node of T with color c. Hence, every c ∈ C(v) might contribute
constant space at every tree T such that v ∈ T . Now we describe how this can be avoided by
maintaining, for every color c, a separate structure of size proportional to the number of nodes with
color c.

Recall that we extend the colors of nodes in the original tree T0 to color sets of nodes of the
decomposition tree T . For a node u ∈ T that is associated with subtree T of T0 we define u’s
color set to be the union of the color sets of the centroids of T . For every color c we maintain the
subtree of T induced by color c (cf. Section 2 for definition of induced), denoted T (c). Before we
describe how these subtrees can be efficiently maintained, we describe how to use T (c) instead of T
to perform queries and updates.

Consider a query (v, c) and let u be the node of T in which v is a centroid. The query traverses
the ancestors of u. At each such ancestor u′ ∈ T , we iterate through the centroids ci (i = 1, 2)
and consider their nearest node with color c as candidate for the answer. The nearest node is
either the centroid itself, or the nearest node with color c to a boundary node of a child u′′ ∈ T
of u′. In the former case, u′ ∈ T (c). In the latter case, u′ /∈ T (c). If also u′′ /∈ T (c) then, by

7

definition of T (c), c /∈ C(u′′) and u′′ has at most one child u′′′ ∈ T containing nodes with color c in
its corresponding subtree of T . Hence instead of iterating through the boundary nodes of u′′ we
can iterate through the boundary nodes of u′′′. By repeating this reasoning, u′′ can be replaced by
its highest descendant belonging to T (c) (such highest descendant is uniquely determined, unless
the subtree of T corresponding to u′′ has no nodes with color c). Consequently, the queries can
be modified to operate on T (c) instead of T : we locate the first ancestor u′ ∈ T of u such that
u′ ∈ T (c) (if there is none, we take the root of T (c) as u′), and then iterate through all ancestors of
u′ in T (c). For each such ancestor u′′, we consider as candidates for the answer its centroid nodes ci
(i = 1, 2) and also the nearest node with color c to every boundary node of each child of u′′ in T (c).
The same reasoning allows us to recalculate, upon an update, the information stored at u ∈ T (c)
using the information stored at all of its children in T (c).

By Lemma 2.1, the size of the subtree induced by color c is at most 2|{v ∈ T : c ∈ C(v)}| − 1.
Summing over all colors we obtain that the total size of all induced subtrees is 2

∑
v∈T0 |C(v)|. We

still need to show how to maintain them and also how to efficiently locate the first ancestor u′ ∈ T
of u such that u′ ∈ T (c). The latter is implemented with a nearest colored ancestor structure. We
only describe how to update T (c) after adding c to some C(v), where v ∈ T0, and do not change
T (c) after removing c (so our trees will be in fact larger than necessary). Whenever the total size
of all maintained subtrees exceeds 4

∑
v∈T0 |C(v)|, we rebuild the whole structure. This does not

increase the amortized complexity of an update and can be deamortized using the standard approach
of maintaining two copies of the structure.

After adding c to some C(v), where v ∈ T0, we might also need to include c in C(u) for some
u ∈ T , thus changing T (c). Inspecting the proof of Lemma 2.1 we see that the change consists of
two parts: we need to include u in T (c), and in particular insert it onto the sorted list of nodes of T
of color c. Then, we might also need to include the lowest common ancestor of u and its predecessor
on the list, and also the lowest common ancestor of u and its successor there. We implement the
list with a balanced search tree, so that all these new nodes can be generated in O(log n) time. We
also need to generate new edges (or, more precisely, split some existing edges into two and possibly
attach a new edge to the new middle node). This is easy to do if we are able to efficiently find the
edge of T (c) corresponding to a path containing a given node u ∈ T . To this end, we also maintain
a list of all nodes of T (c) sorted according to their preorder numbers in T . Then binary searching
over the list gives us the highest descendant of u belonging to T (c). By implementing the list with a
balanced search tree we can hence find such an edge in O(log n) time. Thus, the update and the
query time is still O(log n) and the space linear.

Decreasing the query time. The query time can be decreased to O(logn
log logn), which is optimal,

at the cost of increasing the update time to O(log1+ε n) and the space to O(log1+ε n
∑

v∈T |C(v)|).
For trees of constant degree, Lemma 3.1 decomposes T into a constant number of trees, each of

size at most n
2 , by removing at most two nodes. By iterating the lemma ε log logn times we obtain

the following.

Lemma 3.2. Given a tree T on n nodes with at most two boundary nodes, we can find O(logε n)
centroid nodes c1, c2, . . . ∈ T such that T \ {c1, c2, . . .} is a collection of trees T1, T2, . . . with the
property that each Ti consists of at most n

logε n nodes and contains at most two boundary nodes, which
are defined as nodes corresponding to the original boundary nodes of T or nodes adjacent to any ci
in T .

We apply Lemma 3.2 recursively. Now the depth of the recursion is O(logn
log logn).

Note that, because the number of centroids ci and trees Ti is no longer constant, it is no longer
true that the nearest node to centroid ci with color c in T can be computed in O(1) time from the

8

information stored for boundary nodes of the Tis. Therefore, to implement query (v, c) in O(logn
log logn)

time, we maintain explicitly, for each centroid node ci, its nearest node of T with color c. This allows
us to process the case when v = ci in constant time. If v is not a centroid of T , then v ∈ Tj for some
j. We recurse on Tj . The only remaining possibility is that the sought node u does not belong to
Tj . In such case, the path from v to u must go through one of the boundary nodes of Tj . Each of
these boundary nodes is adjacent to a constant number of the centroid nodes ci of T (because of the
constant degree assumption). We iterate through every such centroid ci and consider its nearest
node with color c as a candidate for the answer in constant total time.

Implementing updates is again done in a bottom-up fashion. However, now we also need to
recalculate the nearest node with color c to every centroid node ci. Recalculating the nearest node
with color c (to either a boundary or a centroid node) takes now O(logε n) time, because we need to
consider boundary nodes of up to O(logε n) subtrees Ti and also O(logε n) centroid nodes. Hence
the total update time at every level of recursion is O(log2ε n). By adjusting ε we get that the total
update time is O(log1+ε n).

4 Lower Bounds

Static nearest colored node, descendant, and ancestor. First we consider the static nearest
colored node. In such case, there is a lower bound stating that O(n polylogn) space requires
Ω(log logn) query time. In fact, the lower bound already applies for paths, and follows easily from
Belazzougui and Navarro [4]: they show (via reduction from predecessor [18]) that any data structure
that uses O(n polylogn) space to represent a string S of length n over alphabet {1, . . . , n} must use
time Ω(log log n) to answer rank queries. A rankσ(i) query asks for the number of times the letter σ
appears in S[1, . . . , i]. The reduction to nearest colored node is trivial: each letter corresponds to a
color, we create a path on n nodes where the color of the i-th node is S[i], and additionally the node
stores rankSi. Then, to calculate an arbitrary rankσ(i), we consider the i-th node and find its
nearest node of color σ. Then, if that nearest node is on the left of i, we return its stored answer,
and otherwise we return its stored answer decreased by one. This also shows that one cannot beat
O(log log n) time with a structure of size O(n polylogn) for the static nearest colored descendant
and ancestor.

In all dynamic problems, the lower bounds hold even if we have only two colors, that is, every
node is marked or not.

Dynamic nearest marked node and ancestor. We next show that the following lower bound
of Alstrup-Husfeldt-Rauhe [3] for marked ancestor also applies to dynamic nearest marked node.
Notice that Theorem 4.1 implies that any O(polylogn) update time requires Ω(logn

log logn) query time.
In the marked ancestor problem, the query is to detect if a node has a marked ancestor, and an
update marks or unmarks a node, so we immediately obtain a lower bound for the dynamic nearest
marked ancestor.

Theorem 4.1 ([3]). For the marked ancestor problem, if tu is the update time and tq is the query
time then

tq = Ω

(
log n

log tu + log log n

)
The lower bound holds under amortization and randomization.

The proof of Theorem 4.1 uses a (probabilistic) sequence of operations (mark/unmark/marked
ancestor query) on an unweighted complete tree T on n leaves and out-degree ≥ 2. To show that the

9

bounds of Theorem 4.1 also apply to dynamic nearest marked node, we add edge weights to T that
increase exponentially with depth: edges outgoing from a node at depth d has weight 2d. This way,
if a node has a marked ancestor, then its nearest marked node is necessarily the nearest marked
ancestor (because in the worst case the distance to the nearest marked ancestor is 20 +21 + . . .+2d−1,
while the distance to any proper descendant is at least 2d). Hence the marked ancestor problem
reduces to nearest marked node. In fact, it is possible to achieve a reduction without using weights
by replacing each weight W with a path of W nodes. Since T is balanced, this will increase the
space of T to be O(n2) which is fine since the bound of Theorem 4.1 is independent of space.

Dynamic nearest marked descendant. We next show that the bounds of Theorem 4.1 also
apply to the case of nearest marked descendant. This requires three simple reductions:

1. dynamic existential marked ancestor → planar dominance emptiness.

Dynamic existential marked ancestor is a simpler variant of the dynamic marked ancestor
problem where a query does not need to find the nearest marked ancestor but only to report if
there exists a marked ancestor. In fact, the proof [3] of the lower bound of Theorem 4.1 is for
the dynamic existential marked ancestor problem. In the planar dominance emptiness problem,
we need to maintain a set S ⊆ [n]2 of points in the plane under insertions and deletions,
such that given a query point (x, y) we can determine if there exits a point (x′, y′) in S that
dominates (x, y) (i.e., x′ ≥ x and y′ ≥ y). As shown in [3], since we can assume the input tree
is balanced, there is a very simple reduction obtained by embedding the tree nodes as points
in the plane where node (x′, y′) is an ancestor of node (x, y) iff x′ ≥ x and y′ ≥ y.

2. planar dominance emptiness → dynamic SMQ.

In the dynamic SMQ problem we are given an array A[1, . . . , n] where each entry A[i] is in
{1, . . . , n}. An update (i, j) changes the value of A[i] to be j, and a suffix maximum query
SMQ(i) returns the maximum value in A[i, . . . , n]. The reduction is as follow: For each x in
{1, . . . , n} we set A[x] to be the largest y s.t (x, y) ∈ S (or zero if there is no (x, y) ∈ S). It
is easy to see that a dominance query (x, y) in S reduces to checking whether SMQ(x) > y.
Upon an insertion or deletion of a point (x, y) we need to update A[x]. For this we need to
maintain for every x the maximum y s.t. (x, y) ∈ S. This can be done in O(log logn) time
and linear space using a predecessor structure for each x.

3. dynamic SMQ → dynamic nearest marked descendant.

The reduction is as follows: Given an array A, we build a tree T of size n2. The tree is
composed of a spine v1, . . . , vn where each vi has two children: the spine node vi+1 and the
unique path vi,n → vi,n−1 → · · · → vi,1. The weight of each spine edge (vi, vi+1) is 1 and
the weight of each non-spine edge (vi,j , vi,j−1) is n (again, we could replace weight n with
n weight-1 edges, which increases |T | to n3). In each path vi,n → vi,n−1 → · · · → vi,1 there
is exactly one marked node: If A[i] = j then the marked node is vi,j . It is easy to see that
SMQ(i) indeed corresponds to the nearest marked descendant of vi.

Dynamic nearest colored node and descendant with link-cut operations. Recall that, to
support insertion and deletion of edges (i.e., maintain a forest under link and cut operations), the
(top-tree based) solution of Alstrup-Holm-de Lichtenberg-Thorup [2] can be extended from two
colors to k colors at the cost of increasing the update time to Õ(k). We show that this is probably
optimal. Namely, we prove (via a simple reduction) that a solution with O(k1−ε) query and update

10

time implies an O(n3−ε) solution for the classical All Pairs Shortest Paths (APSP) problem on a
general graph with n vertices.

Vassilevska Williams and Williams [22] introduced this approach and showed subcubic equivalence
between APSP and a list of seven other problems, including: deciding if a graph has a triangle whose
total length is negative, min-plus matrix multiplication, deciding if a given matrix defines a metric,
and the replacement paths problem. Namely, they proved that either all these problems have an
O(n3−ε) solution or none of them does.

It is well known that in APSP we can assume w.l.o.g that the graph is tripartite. That is, it
has 3n vertices partitioned into three sets A,B,C each of size n. The edges have lengths `(·) and
are all in A × B ∪ B × C. The problem is to determine for every pair (a, c) ∈ A × C the value
minb∈B(`(a, b) + `(b, c)).

We now describe the reduction: Given a tripartite graph A = {a1, . . . , an}, B = {b1, . . . , bn},
C = {c1, . . . , cn} we pick vertex a1 in A and make it the root of the tree. We set its children to be
b1, b2, . . . , bn where the edge (a1, bj) has the same length `(a1, bj) as in the tripartite graph. Each bj
has n children. The kth child has color ck, and the corresponding edge has length `(bj , ck). We get a
tree that is of size O(n2), and has depth two. We then ask the n queries (a1, ck) where ck is a color.
This completes the handling of a1. I.e., for every ck ∈ C we have found minb∈B(`(a1, b) + `(b, ck)).
We next want to do the same for a2. To this end we do n updates: for each i we change the root-to-bj
edge so that its length becomes `(a2, bj). We then ask n queries, and so on.

Overall we do n2 updates and n2 queries on a tree that is of size N = n2, and k =
√
N colors.

Assuming that APSP cannot be solved in O(n3−ε) time, we get that, for dynamic nearest colored
node on a tree of size N with link-cut operations, the query or the update must take Ω(

√
N) = Ω(k).

Note that, the updates in this reduction do not alter the topology of the tree, but only the edge
lengths. Hence, the lower bound applies even to a dynamic nearest colored node problem with just
edge-weight updates (and no link or cut updates).

References

[1] I. Abraham, S. Chechik, R. Krauthgamer, and U. Wieder. Approximate nearest neighbor search
in metrics of planar graphs. In 18th APPROX/RANDOM, pages 20–42, 2015.

[2] S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup. Maintaining information in fully
dynamic trees with top trees. ACM Transactions on Algorithms (TALG), 1(2):243–264, 2005.

[3] S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor problems. Technical Report DIKU
98-8, Dept. Comput. Sc., Univ. Copenhagen, 1998. (Some of the results needed from here are
not included in the FOCSâĂŹ98 extended abstract).

[4] B. Belazzougui and G. Navarro. Optimal lower and upper bounds for representing sequences.
ACM Transactions on Algorithms (TALG), 11(4):1–21, 2010.

[5] M. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin. Lowest common
ancestors in trees and directed acyclic graphs. Journal of Algorithms, 57(2):75–94, 2005.

[6] O. Berkman and U. Vishkin. Recursive star-tree parallel data structure. SIAM Journal on
Computing, 22(2):221–242, 1993.

[7] P. Bille, P. H. Cording, and I. L. Gørtz. Compressed subsequence matching and packed tree
coloring. Algorithmica, 77(2):336–348, 2017.

11

[8] P. Bille, G. Landau, R. Raman, S. Rao, K. Sadakane, and O. Weimann. Random access to
grammar-compressed strings and trees. SIAM Journal on Computing (SICOMP), 44(3):513–539,
2015.

[9] S. Chechik. Improved distance oracles and spanners for vertex-labeled graphs. In 20th ESA,
pages 325–336, 2012.

[10] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. M. auf der Heide, H. Rohnert, and R. Tarjan.
Dynamic perfect hashing: Upper and lower bounds. SIAM J. Comput., 23(4):738–761, 1994.

[11] M. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with o(1) worst case access
time. J. ACM, 31(3):538–544, 1984.

[12] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM
Journal on Computing, 13(2):338–355, 1984.

[13] D. Hermelin, A. Levy, O. Weimann, and R. Yuster. Distance oracles for vertex-labeled graphs.
In 38th ICALP, pages 490–501, 2011.

[14] M. Li, C. C. Ma, and L. Ning. (1 + ε)-distance oracles for vertex-labeled planar graphs. In
10th TAMC, pages 42–51, 2013.

[15] J. Łącki, J. Oćwieja, M. Pilipczuk, P. Sankowski, and A. Zych. The power of dynamic distance
oracles: Efficient dynamic algorithms for the steiner tree. In 47th STOC, pages 11–20, 2015.

[16] S. Mozes and E. Skop. Efficient vertex-label distance oracles for planar graphs. In 13th WAOA,
pages 97–109, 2015.

[17] S. Muthukrishnan and M. Müller. Time and space efficient method-lookup for object-oriented
programs (extended abstract). In 7th SODA, pages 42–51, 1996.

[18] M. Pǎtraşcu and M. Thorup. Time-space trade-offs for predecessor search. In 38th STOC, pages
232–240, 2006.

[19] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient priority
queue. Mathematical Systems Theory, 10:99–127, 1977. Announced by van Emde Boas at FOCS
1975.

[20] B. Wilkinson. Amortized bounds for dynamic orthogonal range reporting. In 22nd ESA, pages
842–856, 2014.

[21] D. Willard. Log-logarithmic worst-case range queries are possible in space θ(n). Inf. Process.
Lett., 17(2):81–84, 1983.

[22] V. V. Williams and R. Williams. Subcubic equivalences between path, matrix and triangle
problems. In 51st FOCS, pages 645–654, 2010.

12

	Introduction
	Static Upper Bounds
	Dynamic Upper Bounds
	Lower Bounds

