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Abstract. The Local Alignment problem is a classical problem with applications in biology. Given
two input strings and a scoring function on pairs of letters, one is asked to find the substrings of the two
input strings that are most similar under the scoring function. The best algorithms for Local Alignment
run in time that is roughly quadratic in the string length. It is a big open problem whether substantially
subquadratic algorithms exist. In this paper we show that for all ε > 0, an O(n2−ε) time algorithm for
local alignment on strings of length n would imply breakthroughs on three longstanding open problems:
it would imply that for some δ > 0, 3SUM on n numbers is in O(n2−δ) time, CNF-SAT on n variables
is in O((2 − δ)n) time, and Maximum Weight 4-Clique is in O(n4−δ) time. Our result for CNF-SAT
also applies to the easier problem of finding the longest common substring of binary strings with don’t
cares. We also give strong conditional lower bounds for the more general Multiple Local Alignment
problem on k strings, under both k-wise and SP scoring, and for other string similarity problems such
as Global Alignment with gap penalties and normalized Longest Common Subsequence.

1 Introduction

Many basic string and pattern matching problems have overwhelming importance in current bioin-
formatics research. A well known such problem is the Local Alignment problem which asks to find
the two substrings of two given strings that are most similar, under some given similarity measure.
The fastest theoretical algorithm for this problem runs in time O(n2/ log n) [17,41,9] on n-length
strings, and is not much faster than the classical dynamic programming algorithm of Smith and
Waterman [53] which runs in O(n2) time. A faster algorithm for this problem, one that runs in, say
O(n1.5) time, would have tremendous impact, as witnessed by the 49,000 citations to the paper in-
troducing the practical BLAST (Basic Local Alignment Search Tool) algorithm [4]. However, there
seems to be very little optimism in the computational biology community that Local Alignment and
other important string problems admit such “truly subquadratic” algorithms, i.e. running in time
O(n2−ε) for ε > 0. Yet, the theoretical computer science community has not provided any evidence
for this impossibility, and in particular, it is yet to give an answer to this pressing question: can
Local Alignment be solved in truly subquadratic time?

Perhaps the main reason for this lack of an answer, is that we do not have a clear technique for
providing negative answers to such questions. The state of the art on unconditional lower bounds
seems far from proving any significant superlinear lower bounds in the near future. The theory
of NP-completeness cannot distinguish between quadratic upper bounds and n1.5 ones. The W [t]-
hardness approach of parameterized complexity requires parameterization, and like NP-hardness,
does not distinguish between differing polynomial runtimes. Another approach is to prove lower
bounds for a restricted family of algorithms. However, it is unclear what an appropriate candidate
family would be, and either way, a restricted model lower bound only gives a partial answer to the
question.

Our approach. We follow an approach that can be viewed as a refinement of NP-hardness. The
importance of showing NP-hardness for a certain problem lies in the consequence that a polynomial



time algorithm for this problem would also imply a polynomial time algorithm for many other
problems that are widely believed to require superpolynomial solutions. The goal of this work
and previous works that are mentioned below is to develop such theory that is able to prove that
improving the exact running times of certain problems would also imply surprising algorithms for
many other problems and is therefore unlikely.

Using this approach we are able to provide the following answer to our pressing question, which
is stated more formally in our theorems: A truly subquadratic algorithm for Local Alignment is
unlikely because it would also give truly faster algorithms for other famous problems like CNF-
SAT, 3-SUM and Max-Weight-4-Clique, implying breakthroughs in three different areas of computer
science: the satisfiability algorithms and circuit lower bounds, the computational geometry and the
graph algorithms communities!

To provide such answers, to this and other important questions about the optimality of current
upper bounds for string problems, we devise careful reductions to the string problems from famous
problems that are widely believed to require certain running times, not necessarily quadratic.

1.1 3-SUM Hardness

The most prominent example of this approach is the theory of 3-SUM hardness which was intro-
duced by Gajentaan and Overmars [27] and has been used to show that subquadratic upper bounds
for many problems in Computational Geometry are unlikely.

In the 3-SUM problem we are given three lists of n numbers and are asked whether we can
pick a number from each list so that the sum is 0. A simple algorithm solves the problem in Õ(n2)
time, and Baran, Demaine and Pǎtraşcu [7] were able to get a O(n2/ log2 n) solution, yet any
improvement beyond this seems unlikely and it is a widely believed conjecture that a polynomial
improvement on the upper bound is impossible. Support for this belief comes from the Ω(n2) lower
bound for the depth of an algebraic decision tree for the problem [25].

Conjecture 1 (3-SUM Conjecture) In the Word RAM model with words of O(log n) bits, any
algorithm requires n2−o(1) time in expectation to determine whether three sets A,B,C ⊂ {−n3, . . . , n3}
with |A| = |B| = |C| = n integers contain three elements a ∈ A, b ∈ B, c ∈ C with a+ b+ c = 0.

Since [27], there have been many papers proving the hardness of computational geometry prob-
lems, based on 3SUM, e.g. [21,40,24,14,8]. More recently, the 3-SUM Conjecture has been used
in surprising ways to show polynomial lower bounds for purely combinatorial problems in dy-
namic algorithms [45,2] and Graph algorithms [45,34,54]. The only previous work relating 3-SUM
to a Stringology problem, to our knowledge, is the result of Chen et al. [13] showing that under
the 3-SUM Conjecture, when the input strings are encodings of much longer strings, using Run-
Length-Encoding, then the string matching with don’t cares problem requires time that is quadratic
in the lengths of the compressions. This string problem, however, is strongly related to geometric
problems and is less “combinatorial” than the problems we consider here (e.g. it is solvable by a
sweep-line algorithm). Thus our reductions require different techniques.

We expand the list of 3-SUM hard problems, showing a reduction from 3-SUM to the Local
Alignment problem, proving that a truly subquadratic algorithm for Local Alignment is impossible
under the 3-SUM Conjecture, provided the alphabet is large enough.

Theorem 1. If for some ε > 0, δ ∈ (0, 1), one can solve the Local Alignment problem on two
strings of length n over an alphabet of size n1−δ in time O(n2−δ−ε), then the 3-SUM Conjecture is
false.
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To prove Theorem 1 we combine a recent reduction from k-SUM to k-Vector-SUM [1] with an
efficient self reduction for 3-SUM using hashing [7,45], then we carefully construct a scoring scheme.
The details are given in Section 3.

We note that it is not hard to argue that there is an unconditional lower bound of min{|Σ|2, n2}
for Local Alignment where Σ is the alphabet. When |Σ| = n1−δ, this lower bound is Ω(n2−2δ). Our
lower bound for such alphabets is essentially n2−δ which is a polynomial improvement over n2−2δ.
Nevertheless, our reduction requires alphabet size at least nε for some arbitrarily small but constant
ε > 0, and the really interesting case of Local Alignment is when the alphabet size is constant, e.g.
4 for DNA and RNA sequences and 20 for protein sequences. We are not able to use the 3-SUM
Conjecture to conclude a lower bound for this case. To handle the constant alphabet case, we turn
to the presumed hardness of CNF-SAT to prove a lower bound even for binary strings.

1.2 Strong ETH Hardness

Despite hundreds of papers on faster exponential algorithms for NP-Hard problems in recent years
(see the surveys by Woeginger for an exposition [59]), and despite the remarkable effort put into
obtaining faster satisfiability algorithms, the best upper bounds for CNF-SAT on n variables and m
clauses remain of the form 2n−o(n)poly (m) (e.g. [30,47,52]). The Strong Exponential Time Hypoth-
esis (Strong ETH) of Impagliazzo, Paturi and Zane, which has received a lot of attention recently,
states that better algorithms do not exist.

Conjecture 2 (Strong ETH) For every ε > 0, there exists a k, such that SAT on k-CNF for-
mulas on n variables cannot be solved in O∗(2(1−ε)n) time.

Strong ETH is an extremely popular conjecture in the exact exponential time algorithms com-
munity [12,20,38,19], and Cygan et al. [18] even showed it to be equivalent to assuming that several
other NP-hard problems essentially require exhaustive search. Recently, many surprising lower
bounds in several different areas were shown to hold under the SETH, including lower bounds
for approximating the diameter of a sparse graph [51], for maintaining the number of strongly
connected components in a dynamic graph [2], and for the 3-party communication complexity of
Set-Disjointness [49].

We show a reduction from CNF-SAT to the longest common substring with don’t cares problem,
which is one of the simplest string problems for which truly subquadratic algorithms are not known
and is a very restricted version of the Local Alignment problem.

Definition 1 (The longest common substring with don’t cares problem). Given a string
S over alphabet Σ = {0, 1} and a string T over Σ ∪ {?}, find the length of the longest string that
is a substring of both S and T , where a ? in T can be treated as either 0 or 1.

If don’t care letters are not allowed, the problem can be solved using a generalized suffix tree in
O(n) time [29]. If instead of looking for the longest common substring, one wants to check whether
a binary string with don’t cares appears as a substring in a length n binary string, then there
are O(n log n) time algorithms based on the Fast Fourier Transform [26,33,35]. Thus only slight
variations of the longest common substring with don’t cares problem admit almost linear time
solutions, yet our reduction implies that a truly subquadratic algorithm for it refutes Strong ETH!

Theorem 2. If for some ε > 0 one can solve either the Local Alignment problem on two binary
strings of length n, or the longest common substring with don’t cares problem in time O(n2−ε), then
Strong ETH is false.
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To prove Theorem 2 we represent a partial assignment to the variables of our formula with a
substring, and we make sure that two substrings will match if and only if the two partial assignments
satisfy all the clauses of our formula. The details are given in Section 2.

1.3 Multiple Sequence Alignment

In Gusfield’s book [29], algorithms for comparing multiple strings are called “the holy grail” of
current research in computational biology. One of the important tasks is the Multiple Local Align-
ment (MLA) problem [36] defined as follows. Given k strings T1, . . . , Tk over some alphabet, find
substrings S1, . . . , Sk (where Si is a substring of Ti) whose alignment has maximum score. There
are multiple ways to define the alignment score between k substrings but we focus on two options,
the most general k-wise scoring scheme and the most popular Sum of Pairs (SP) scoring scheme
[6].

The k-wise scoring function s(·, . . . , ·) which is given as a k dimensional matrix with (|Σ|)k
entries. This case is called k-wise scoring, and the score of an alignment of k strings s1, . . . , sk is∑

i s(s1[i], . . . , sk[i])
3. The second option, which is called sum of pairs (SP) scoring, is to use a

pairwise scoring function s(·, ·) and to define the score of an alignment to be
∑

i

∑
k<` s(sk[i], s`[i]).

The MLA problem on k ≥ 3 strings can be defined using either k-wise scoring or SP scoring.
Local Alignment is the k = 2 case and both scoring rules coincide.

For both scoring schemes, unsurprisingly, the best upper bound for the problem is O(nk) using
dynamic programming. The reduction of Wang and Jiang [56] from the shortest common superstring
problem on k strings to a polynomial number of instances of the (global or local) alignment problem
on k+2 strings with SP scoring implies that our problem is NP-hard when the number of strings is
unbounded. Moreover, the W[1]-hardness results of Bodlaender et al. [11] for unbounded alphabets
and of Pietrzak [48] for constant size alphabets also carry on to our problems, implying that upper
bounds of the form f(k) · nc for a constant c independent of k and n are unlikely. Huang [31]
strengthens Pietrzak’s reduction from k-clique to the shortest common superstring problem and
shows that no(k) algorithms for our problems are not possible under the plausible Exponential Time
Hypothesis [32].

These negative results deliver an important message to biologists, showing that an efficient
algorithm for optimally aligning a hundred strings is not likely to exist, yet another pressing question
remains widely open: is there an algorithm running in time O(nk−1) or even O(nk/5) for MLA?4

Such algorithms would imply a major advance in our ability to analyze biological data.
We extend our reduction from CNF-SAT to show that Strong ETH implies a negative answer

to our question, when we are interested in k-wise scoring, even when the strings are binary.

Theorem 3. If for some ε > 0 the MLA on k binary strings of length n with k-wise scoring can
be solved in time O(nk−ε), then Strong ETH is false.

As is stressed in Gusfield’s book [29], the less general case of SP scoring has more applications in
Bioinformatics. Our reduction from CNF-SAT requires the computation of an OR function, which
is easy with k-wise scoring yet does not seem possible with SP scoring. We show, however, that the
Weighted-k-Clique problem can explain the hardness of getting faster algorithms even for the SP
case of MLA.
3 In a more general alignment, one can align alphabet symbols with spaces, and the scoring function can take that

into account. In this paper, we prove hardness even for the easier alignment problem where no spaces are allowed.
4 In the reduction of Bodlaender et al. [11] k increases to k2 and in Pietrzak’s [48] reduction n increases to n7.
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Weighted k-Clique. The Max-Weight k-Clique problem is as follows. Given a graph G = (V,E) with
integer edge weights, find a k-clique of maximum total weight, or determine that no k-clique exists.
Since k-Clique is a special case of the problem, the Max-Weight k-Clique problem is NP-complete
and W [1]-hard. The unweighted k-Clique admits an O(n0.792k) time algorithm using matrix mul-
tiplication [44]. When the edge weights are small, one can obtain O(nk−ε) time algorithms for
Max-Weight k-Clique as well, by reducing to a small number of instances of k-Clique. However,
when the weights are larger than nk, the trivial O(nk) algorithm is essentially the best known
(ignoring no(1) improvements).

We show a tight reduction from Max-Weight 2k-Clique to MLA on k strings with SP scoring,
showing that improving on nk time for MLA would also imply that Max-Weight 2k-Clique has
faster than n2k algorithms.

Theorem 4. If for some ε > 0 the MLA on k strings of length n over an alphabet of size
√
n with

SP scoring can be solved in time O(nk−ε), then Max-Weight 2k-Clique on n nodes graphs can be
solved in time O(n2k−ε).

We prove the above theorem in Section 4. An immediate corollary of this theorem is a conditional
lower bound for the Local Alignment problem for two strings, based on the assumption that Max-
Weight 4-Clique does not have improved algorithms.

Corollary 1. If for some ε > 0 the Local Alignment on two strings of length n over an alphabet of
size
√
n can be solved in time O(n2−ε), then Max-Weight 4-Clique on n nodes graphs can be solved

in time O(n4−ε).

We note that the special case of Max-Weight k-clique for k = 3 is especially interesting. The
Max-Weight 3-Clique problem on n-node graphs is known to be essentially equivalent to the All
Pairs Shortest Paths (APSP) problem, in the sense that if Max-Weight 3-Clique has a truly subcubic
algorithm, so does APSP, and vice versa. It is a longstanding open problem whether APSP on
n-node graphs can be solved in O(n3−ε) time [58]. It is thus a major open problem whether Max-
Weight 3-Clique is in O(n3−ε) time for some ε > 0. Our current reductions show that a O(n1.5−ε)
time algorithm for Local Alignment on two strings would give O(n3−ε) time for APSP, but we
suspect that they can be strengthened to show a tighter relationship

Extensions. In Section 5 we also show quadratic lower bounds for well-known generalizations of
the Global Alignment problem like Alignment with Gap penalties [28] and Alignment with moves
[39], and for other string problems like Normalized LCS [5,23] and Partial Match [15,50,10].

2 From CNF-SAT to Alignment

In this section we give a reduction from CNF-SAT on n variables and m clauses to the longest
common substring with don’t cares problem on binary strings of length N = O(2n/2 ·m) in O∗(2n/2 ·
m) time. Thus, given an algorithm for this problem that runs in time O(N2−ε) for some ε > 0, we
can solve CNF-SAT in time O∗((2n/2 ·m)2−ε) = O∗(2(1−ε/2)n ·poly (m)), refuting Strong ETH. We
then explain how to get a reduction to Local Alignment on binary strings, proving Theorem 2, and
give the extension to MLA on k strings to prove Theorem 3.

Our reduction follows the split and list technique introduced by Williams [57]. In particular, our
reduction from CNF-SAT to the longest common substring problem can be obtained by combining
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his reduction from CNF-SAT to the orthogonal vectors problem on binary vectors and a simple
reduction from the latter problem to the longest common substring problem. Below we present a
direct reduction from CNF-SAT that makes our extension to MLA on k strings follow more clearly.

Lemma 1. CNF-SAT over formulas on n variables and m clauses can be reduced to the longest
common substring with don’t cares problem over strings of length O(2n/2 · m) and constant-size
alphabet in O∗(2n/2 ·m) time.

Proof. Let V = {x1, . . . , xn} be the n variables of the input CNF formula ϕ. We split V into two
sets of n/2 variables, U = {x1, . . . , xn/2} and V \ U . Let A = {α1, . . . , αN} and B = {β1, . . . , βN}
be the sets of all N = 2n/2 partial assignments of boolean values to the variables in U and V \ U ,
respectively. Combining two partial assignments α ∈ A and β ∈ B gives an assignment (α · β)
to all the variables in the formula. We say that a partial assignment α satisfies a clause C if α
either assigns TRUE to a variable that appears in C as a positive literal or it assigns FALSE to
a variable that appears in C as a negative literal. The key idea of the reduction is the following
simple observation, which gives a way of checking the satisfiability of φ: The formula φ is satisfiable
if and only if there are two partial assignments α ∈ A, β ∈ B such that for every clause C in the
formula at least one of α and β satisfies the clause C.

The reduction will generate two strings S and T . The string S will have N segments of length
5m corresponding to the N partial assignments in A and each segment will encode which clauses
are satisfied by the partial assignment. Similarly, T will encode the partial assignments in B. A
common substring of S and T will have to be entirely contained in these segments, and it will be
able to be the whole segment only if the two corresponding assignments satisfy all the clauses of the
formula. Therefore, the longest common substring will be of length 5m if and only if φ is satisfiable.

Let C1, . . . , Cm be the clauses of our CNF formula φ. For α ∈ A we define the segment string
Sα to contain a different symbol in the (5j − 2)th position Sα[j] according to whether α satisfies
Cj . Then, ∀j ∈ [m] :

Sα[(5j − 4) . . . (5j)] = [01xj01],where xj = 1 if α satisfies Cj , and 0 otherwise.

Similarly, for β ∈ B we define the segment Tβ as follows. ∀j ∈ [m] :

Tβ[(5j − 4) . . . (5j)] = [?1yj ? 1],where yj = ? if β satisfies Cj , and 1 otherwise.

Note that we can construct these strings for every α ∈ A and β ∈ B given φ in O∗(2n/2m)
time. Finally, we create S by concatenating all the segment strings Sαi for all αi ∈ A and placing
“unmatchable” [000] segments between them, and we create T similarly by concatenating the Tβi
segment strings and placing [111] segments between them.

S = Sα1 ◦ 03 ◦ Sα2 ◦ · · · ◦ 03 ◦ SαN , T = Tβ1 ◦ 13 ◦ Tβ2 ◦ · · · ◦ 13 ◦ TβN

Claim 1 The longest common substring of S and T is of length 5m iff there are α ∈ A, β ∈ B
such that every clause Cj in φ is satisfied by at least one of α, β.

Proof. For the first direction, assume that there are some α ∈ A and β ∈ B such that every clause
is satisfied by one of them. Observe that in this case, Sα and Tβ match, since by construction, every
coordinate matches except for maybe the (5j − 2)th for j ∈ [m], but these coordinates must also
match because of the following. For any j ∈ [m], either Tβ[5j − 2] = 1 and β does not satisfy Cj in

6



which case α must satisfy Cj and Sα[5j − 2] = 1 as well, or Tβ[5j − 2] = ? in which case Tβ[5j − 2]
matches Sα[5j − 2]. Therefore, Sα is a substring of S of length 5m that appears in T . By noting
that any substring of S of length 5m+ 1 cannot appear in T , we get that in this case, the longest
common substring is of length exactly 5m.

For the other direction, assume that there is a substring X of S that appears in T and has
length |X| = 5m. Our careful construction implies that X cannot contain any letter from the
“unmatchable” region of S and it cannot appear in T in any part that contains an “unmatchable”
region. Therefore, X must correspond to a segment Sα for some α ∈ A that appears in T as a
segment Tβ for some β ∈ B. We show that this can only happen if the pair α, β satisfies all the
clauses. This follows since for every j ∈ [m] there are two cases: either β satisfies Cj , or Tβ[5j−2] = 1
which then implies that Sα[5j − 2] must be 1 as well and α satisfies Cj . �

This completes the proof of Lemma 1. �

2.1 The reduction to Local Alignment on binary strings

To get a reduction from CNF-SAT to Local Alignment on binary strings we note that in our
reduction, the string T does not have any 0 letters, and therefore we can replace the ? symbols by
0’s, while treating them as a don’t cares in our scoring function. Thus, the scoring function will be
defined as s(0, 0) = s(1, 1) = s(1, 0) = 1 and s(0, 1) = −∞. It is easy to verify that the optimal
local alignment corresponds to the longest common substring. If one cares about the symmetry of
the scoring function, then it seems that the alphabet needs to be of size 3 for the reduction to Local
Alignment to work.

2.2 Generalizing to MLA with k-wise scoring

To prove Theorem 3 we reduce CNF-SAT to MLA on k binary strings of length N = O(2n/km),
showing that an algorithm that runs in time O(Nk−ε) for some ε > 0 implies an algorithm that
runs in time O∗(2(1−ε/k)npoly (m)) for CNF-SAT, refuting Strong ETH. The scoring scheme needs
to be k-wise.

The reduction is quite similar to the reduction to the longest common substring with don’t
cares problem, but here we split the variables of our CNF formula to k sets of size n/k and we
define k sets of 2n/k partial assignments A1, . . . , Ak. The task is to find k partial assignments
α1 ∈ A1, . . . , αk ∈ Ak such that every clause in our formula is satisfies by at least one of them.
Again, we define a segment Sα for every partial assignment α. This time the segments will be of
length 3m and will be defined as follows, ∀j ∈ [m] :

Sα[(3j − 2) . . . (3j)] = [1xj1],where xj = 1 if α satisfies Cj , and 0 otherwise.

The strings that we give to our instance of MLA will be made of concatenating the segments with
“unmatchable” [000] segments between them. The scoring function will make sure that these parts
are in fact unmatchable, and that aligned substring correspond to partial assignments for which
at least one satisfies the current clause, by setting the score s(0, 0, . . . , 0) to be −∞. For any other
combination of letters the score will be set to +1. It is not hard to verify that the score of the optimal
local alignment of these k strings is exactly 3m if and only if there is a satisfying assignment to our
formula.
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3 From 3-SUM to Alignment

In this section we prove Theorem 1 by proving the following lemma.

Lemma 2. For any 0 < δ < 1, the 3-SUM problem on n numbers can be reduced in n2−δ+o(1) time
to nδ+o(1) instances of the local alignment problem on two strings of length Õ(n) over an alphabet
Σ of size Õ(n1−δ).

Proof. Given three lists A,B,C ⊆ {−n3, . . . , n3} of n numbers each, we want to find a triple of
numbers a ∈ A, b ∈ B, c ∈ C that sum to 0. We start by applying a hashing scheme that is due
to Dietzfelbinger [22] and that has been used in recent works on 3-SUM [7,45,3,55]. Let R = n1−δ.
There is a simple family H of hash functions h : {−n3, . . . , n3} → [R] such that if we pick a function
h ∈ H from the family at random, and hash each element x in our input sets A ∪ B ∪ C to the
bucket B(h(x)), we get the following properties:5

– Almost linearity. For any three numbers a, b, c, if a+ b+ c = 0 then (h(a) +h(b) +h(c)) modulo
R is either 0 or 1.

– Good load balancing. The average number of elements x hashed into a bucket B(x) is 3n/R and,
in expectation, at most O(R) elements are hashed to buckets with load exceeding 9n/R.

The reduction picks a random hash function h ∈ H and hashes each element x in our lists to
a bucket B(h(x)). For the O(R) elements that fall in overloaded buckets we can run a brute force
check to see if they participate in a 3-sum in O(nR) time. Therefore, we can assume that we have
at most R buckets B(1), . . . , B(R), each containing at most t = 9n/R = O(nδ) elements. We order
the elements in these buckets B(i) = {x1, . . . , xt}, and for each index j from 1 to t, we will have
a separate stage. In stage j we check whether there is any element c in C such that c is the jth

element of its bucket B(h(c)) and a + b + c = 0 for some a ∈ A, b ∈ B. By the “almost linearity”
property, it is enough to search for the pair a ∈ A, b ∈ B among the elements a, b for which either
h(a) + h(b) = −h(c) or h(a) + h(b) = −h(c) + 1 (modulo R). To do these checks in every stage j,
we create no(1) instances of the local alignment problem, as described below. The total number of
instances is therefore t · no(1) = nδ+o(1).

In a recent result by Abboud, Lewi and Williams (Lemma 3.1 in [1]), the authors show that
we can construct a set of simple N = nO(1/ log logn) = no(1) mappings f1, . . . , fN from numbers
in {−n3, . . . , n3} to vectors in {−p, . . . , p}d where p = log n and d = O(log n/ log logn) with the
following useful property6. If three elements a, b, c ∈ {−n3, . . . , n3} sum to 0, then for some i ∈ [N ],
the vectors fi(a), fi(b), fi(c) will sum to the all-zero vector 0, while if three numbers a, b, c do not
sum to 0, then for every i ∈ [N ], the vectors fi(a), fi(b), fi(c) will not sum to the all-zero vector.
Note that the entries in each coordinate of our vectors are very small since p = log n.

For every triple of numbers (i, j, z) where i ∈ [N ], j ∈ [t], z ∈ {0, 1} we create an instance of
the Local Alignment problem, i.e. two strings S, T over alphabet Σ and a scoring function s(·, ·).
The optimal solution to the (i, j, z) local alignment instance will determine whether there are three
numbers a ∈ A, b ∈ B, c ∈ C such that

1. c is the jth element in its bucket B(h(c)),

5 The value h(x) is computed by taking a random odd integer a and returning the logR most significant bits from
the number a · x.

6 The idea is simple: each number is mapped to a vector containing the base-p representation of the number, then
enumerate over all guesses for the carries when summing k numbers in their base-p representation.
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2. h(a) + h(b) + h(c) = z (mod R), and
3. fi(a) + fi(b) + fi(c) = 0.

If we find a triple satisfying these conditions then we have found a 3-sum, since by the property of
the mappings from numbers to vectors described above, condition 3 can only happen if a+b+c = 0.
On the other hand, if there is a 3-sum a ∈ A, b ∈ B, c ∈ C, a + b + c = 0 in our input set, then
for some (i, j, z) ∈ [N ] × [t] × {0, 1}, the above three conditions will hold and we will find this
3-sum. To see this, note that by the property of the mappings there must exist an i ∈ [N ] for
which condition 3 holds, and by choosing j ∈ [t] to be such that c is the jth element in its bucket
B(h(c)) we satisfy condition 1, and finally, by the “almost linearity” property of our hash function,
z = h(a) + h(b) + h(c) (mod R) is in the set {0, 1} and condition 2 holds as well.

We now describe the Local Alignment instances that we generate for each triple (i, j, z) ∈
[N ] × [t] × {0, 1}. Our alphabet Σ will contain a letter (h, y) for every pair of integers h ∈ [R]
(which will be used to indicate the value of a hash of a number) and y ∈ {−p, . . . , p} (which will
represent the value in a coordinate of our vectors). We also add two symbols $1 and $2 to the
alphabet. Note that by our choices of p = log n and R = n1−δ, we get that |Σ| = Õ(n1−δ). As in
the reduction from CNF-SAT, the strings will be composed of segments. For every number a in A
we create the segment Sa which will have length d and in its `th coordinate it will contain the letter
(h(a), fi(a)[`]). This letter encodes both the hash of a and the value in the `th entry of the vector
fi(a) (corresponding to a in our current mapping i). Similarly, for every number b in B we define the
segment Tb so that Tb[`] = (h(b), fi(b)[`]) for every ` ∈ [d]. The strings S, T of our instance (i, j, z)
are constructed by concatenating the segments with $ signs between them. Let A = {a1, . . . , an}
and B = {b1, . . . , bn}, then S = Sa1 ◦$1◦Sa2 ◦$1◦· · ·◦$1◦San and T = Tb1 ◦$2◦Tb2 ◦$2◦· · ·◦$2◦Tbn .

The scoring function s(·, ·) is defined as follows. Given two letters (h1, y1) and (h2, y2), the
scoring function will lookup c ∈ C, where c is the jth element in bucket number −(h1 + h2) + z
(mod R), and return a score of 1 if fi(c) = −(y1 + y2). In any other case, the returned score is −∞.
Formally, for any pair of letters (h1, y1), (h2, y2) ∈ [R]× {−p, . . . , p},

s ((h1, y1), (h2, y2)) =


1 if c ∈ C is the jth element in B((−(h1 + h2) + z) mod R)

and fi(c) = −(y1 + y2).

−∞ otherwise

We also disallow $ symbols and gaps in the optimal alignment by giving a score of −∞ to any pair
containing them.

We now prove the following claim which shows that our construction will find a 3-sum if it
exists, which completes the proof.

Claim 2 There are two substrings of S, T in the (i, j, z) instance achieving a score of d if and only
if there is a triple a ∈ A, b ∈ B, c ∈ C satisfying conditions 1 to 3 above.

Proof. For the first direction, let a ∈ A, b ∈ B, c ∈ C be a triple satisfying conditions 1 to 3, and
consider the score achieved by Sa and Tb under the scoring function s(·, ·) in the (i, j, z) instance.
In each coordinate ` ∈ [d] of the segments, the score is

s(Sa[`], Tb[`]) = s((h(a), fi(a)[`]), (h(b), fi(b)[`])).

By condition 1 we know that c is the jth element in its bucket, but by condition 2, we know that c is
hashed to bucketB(h(c)) where h(c) = −(h(a)+h(b))+z moduloR and therefore c is the jth element
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of bucket −(h(a) +h(b)) + z. Thus, by definition of our scoring function s(·, ·), for every dimension
` ∈ [d], the score s((h(a), fi(a)[`]), (h(b), fi(b)[`])) is equal to 1 whenever fi(c) = −(fi(a) + fi(b))
which is true for every ` ∈ [d] by condition 3. Therefore, the total score achieved by Sa and Tb is d.

For the other direction, let X,Y be two substrings achieving a score of d. The “unmatchable”
$ signs imply that the lengths of X and Y cannot be larger than d, and since the maximum score
for a pair of letters under s(·, ·) is 1, the lengths of our substrings must be larger than (d − 1).
Therefore, X must correspond to a segment Sa for some a ∈ A and Y must correspond to a segment
Tb for some b ∈ B. Now, consider c, the jth element of the bucket −(h(a) + h(b)) + z modulo R.
Since the total score is d we know that in every coordinate ` ∈ [d] the contribution is 1,

s(Sa[`], Tb[`]) = s((h(a), fi(a)[`]), (h(b), fi(b)[`])) = 1,

which by definition of the scoring function implies that

fi(c)[`] = −(fi(a)[`] + fi(b)[`]).

Therefore, in every dimension ` ∈ [d] we have that fi(a)[`] + fi(b)[`] + fi(c)[`] = 0, and condition
3 holds for our triple a ∈ A, b ∈ B and c. Note that c must be in C since otherwise all the scores
would be −∞. Moreover, conditions 1 and 2 clearly hold by our choice of c, and we found a triple
satisfying conditions 1 to 3, as claimed. �

This completes the proof of Lemma 2. �

4 From Weighted Clique to Alignment

In this section we obtain efficient reductions for all k ≥ 2 from the Max-Weight 2k-Clique problem
to the MLA on k strings with SP scoring. We can assume that the input graph is complete, by
making each nonedge have weight −∞.

An interesting observation about our reduction is that the length of the substrings in the optimal
alignment is only O(k+logM), which is quite short, while one could have hoped for faster algorithms
for the restricted problem in which we are only looking for short substrings. With more work, one
can strengthen the reduction to make the length of the optimal substrings only O(log k + logM).
Theorem 4 in the introduction is an immediate consequence of the following Lemma.

Lemma 3. Max-Weight 2k-Clique on a weighted graph with n nodes and m edges can be reduced
in O(mk) time to MLA on k strings of length O(m(k+ logM)) and alphabet of size O(n+ logM).

Proof. Recall that the Max-Weight k-Clique problem is as follows. Given a graph G = (V,E) with
integer edge weights, find a k-clique of maximum total weight, or determine that no k-clique exists.
Notice that we can assume that the input graph is complete, by making each nonedge have weight
−∞. We can replace all −∞ occurrences by −k3M and this won’t change our proof.

The alphabet. For each vertex u in the graph we have two types of letters: u and u′. We
have the letters $ and Λ from before. We also have a letter (b, i) for every b ∈ {0, 1} and i ∈
{0, . . . , logM}. Now, any logM bit integer r can be represented as a string of letters as follows.
Let r[0], . . . , r[logM ] be the bit representation of r. Then the string corresponding to r would be
(r[0], 0), . . . , (r[logM ], logM).
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The scoring function s(·, ·). Intuitively, we want the score between any two strings corresponding
to integers, to be their sum. We accomplish this by setting s((b, i), (b′, i)) = (b + b′) · 2i, and
s((b, i), (b′, j)) = −∞ if i 6= j. The score between an integer letter and a vertex letter is −∞.

We set the scores between vertex letters as follows. s(u′, u) = s(u′, u′) = s(u, u) = −∞, and
for u 6= v, s(u′, v′) = s(u′, v) = w(u, v), and s(u, v) = w(u, v)/(k − 1). (We can assume all edge
weights are in fact divisible by (k − 1) · (k − 2) by premultiplying them by (k − 1) · (k − 2). This
won’t increase our string length by more than a constant factor.) For $ and Λ we set the scores as
follows: s($, a) = s(Λ, a) = −∞ for all a 6= Λ and s(Λ,Λ) = k2M .

The segments. For string j (from 1 to k), we have a segment Suv of length k+1 for each ordered
pair (u, v) of vertices. The segment is as follows: Suv[j] = u′, Suv[0] = u′, and Suv[`] = v otherwise.
At the end of the segment, we have the string corresponding to the integer w(u, v)/(k − 1). We
start and end each segment with Λ. Between any two segments in a string, we put a letter $.

The weight of taking a segment from each string. Consider taking for string j, the segment
corresponding to edge (uj , vj). By construction, if for some i 6= j, we have that the nodes ui, vi, uj , vj
are not distinct, then the weight of taking these segments is −∞. Hence we can assume that the
nodes ui, vi, uj , vj are distinct. Consider the 2k-clique formed by them. We’ll show that its weight
is the same as the value of the chosen segment alignment. The score of the segment alignment is
formed as follows. For any of the

(
k
2

)
choices of the k strings, i, j, the score from aligning their

segments is obtained from aligning
(1) the three pairs u′i, vj , u

′
j , vi and u′i, u

′
j appearing in positions i, j and 0 in the alignment; these

give weight w(ui, vj) + w(vi, uj) + w(ui, uj);
(2) the k−2 pairs vi, vj appearing in positions ` with k ∈ {1, . . . , i−1}∪{i+1, . . . , j−1}∪{j+1, k};
these have weight (k − 2) · w(vi, vj)/(k − 2) = w(vi, vj);
(3) the two number strings after position k in the segments; these give weight w(ui, vi)/(k − 1) +
w(uj , vj)/(k − 1).

The score of the alignment is thus exactly the sum of the edge weights in the 2k clique:∑
ij w(ui, uj) +

∑
ij w(vi, uj) +

∑
ij w(vi, vj) +

∑
i

∑
j 6=iw(ui, vi)/(k − 1) =∑

ij [w(ui, uj) + w(ui, vj) + w(uj , vi) + w(vi, vj)].

The score of any alignment of any substrings of blocks that do not use both Λs is no more than(
k
2

)
· k2M + kM +

(
k
2

)
(k + 1)M < 2

(
k
2

)
k2M which is the score of any alignment that uses both Λs,

and so the optimum alignment uses both Λs. Thus full segments are used, and the optimal value
of an alignment is 2

(
k
2

)
k2M plus the maximum weight of a 2k-clique in G. �

5 Extensions

In this section we show how Local Alignment can be replaced by other natural string problems
in our reductions from CNF-SAT to conclude with tight lower bounds for these problems under
Strong ETH.

5.1 Indexing with don’t cares

The following problem (also known as the Partial Match problem) is a generalization of classical
pattern matching in which the pattern might contain don’t care letters, ?’s which can be treated
as either 0 or 1.
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Definition 2 (The indexing with don’t cares problem). Given a string T of length n over
alphabet Σ = {0, 1}, preprocess T in order to answer, given a query pattern P of length m over
Σ ∪ {?}, whether P appears in T .
A ? in T can be treated as either 0 or 1

Notice that if don’t care letters are not allowed, the problem can be solved optimally with
O(n) preprocessing and O(m) query using a suffix tree. Without preprocessing, checking whether
P appears in T can be done in O(n log n) time with algorithms based on the Fast Fourier Trans-
form [26,33,35,42,16], and it is known that the problem is at least as hard as boolean convolu-
tion [43]. With any polynomial-time preprocessing of T , it is currently not known how to answer
query P in n1−ε time in the worst case for any ε > 0. Solutions that can achieve n1−ε query are
only known for restricted cases such as small number of don’t care letters [15,50,10]. As for lower
bounds, Pǎtraşcu [46] proved (a cell-probe lower bound) that with polynomial space the query-time
must be at least logarithmic. Williams [57] proved that a similar problem requires n1−o(1) query
time if allowed O(n2−ε) preprocessing time, under Strong ETH. We show that even after O(nc)
preprocessing time, for a constant c > 1, the query time must n1−o(1) under Strong ETH.

Theorem 5. If for some ε > 0 there is an algorithm for indexing with don’t cares that preprocesses
a string T of length n over a binary alphabet {0, 1} in polynomial time and then answers whether
a given query string P of length m = O(log n) over {0, 1, ?} appears in T in O(n1−ε) time, then
Strong ETH is false.

Proof. The proof is similar to the proof of Lemma 1 with a few changes. Suppose T is preprocessed
in O(nt) time for some integer t. Choose the smallest number k for which k > t/(1− ε) and n/k is
an integer, and let U = {x1, . . . , xn/k} ⊆ V be the set of first n/k variables in our formula φ. As in
previous proofs, define the sets A and B to be the sets of partial assignments to the variables in U
and V \ U , respectively. Note that now, however, the sizes |A| 6= |B|. In particular, |A| = 2n/k and
|B| = 2(1−1/k)n. Again, we are looking for α ∈ A and β ∈ B such that all the clauses are satisfied.
Here, we define the following segments Tα and Pβ of length 2m.

∀j ∈ [m] : Tα[2j − 1] = 0, Tα[2j] =

{
1 if α satisfies Cj

0 otherwise

∀j ∈ [m] : Pβ[2j − 1] = 0, Pβ[2j] =

{
? if β satisfies Cj

1 otherwise

We construct the string T of length 2n/k · (2m+ 2) as follows.

T = Tα1 ◦ 12 ◦ Tα2 ◦ 12 ◦ · · · ◦ 12 ◦ Tα
2n/k

We check the satisfiability of φ by checking whether for any β ∈ B, the string Pβ appears in T .

Claim 3 The formula φ is satisfiable if and only if for some β ∈ B the string Pβ appears in T .

Proof. For the first direction, assume that there are some α ∈ A and β ∈ B such that every clause
is satisfied by one of them. Observe that in this case, Tα and Pβ match, since for every j ∈ [m],
Pβ[2j − 1] = Tα[2j − 1], and either Pβ[2j] = 1 and β does not satisfy Cj in which case α must
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satisfy Cj and Tα[2j] = 1 as well, or Pβ[2j] = ? in which case Pβ[2j] matches Tα[2j]. Therefore, Pβ
is a substring of P of length 2m that appears in T .

For the other direction, assume that for some β ∈ B the string Pβ appears in T . We claim that
either Pβ appears in T as a segment Tα or Pβ is a substring that starts on the second letter of a
segment and ends with a single ’1’ symbol (i.e., Pβ = Tα[2 . . . (2m− 1)] ◦ 1). This is because every
alternating symbol in Pβ is a ’0’ symbol . We show that in either case, we found a pair α, β such
that every clause is satisfied by one of them. If Pβ = Tα, then we have that for every clause Cj ,
either β satisfies it or Pβ[2j] = 1 which implies that Tα[2j] = 1 and α satisfies it. In the other case,
Pβ = Tα[2 . . . (2m− 1)] ◦ 1 and so for every j ∈ [m− 1], Pβ[2j] = Tα[2j+ 1] and Tα[2j+ 1] = 0, but
Pβ[2j] can be either a ? or a ’1’, and therefore it must be that Pβ[2j] = ? for every j ∈ [m] which
implies that β satisfies all the clauses on its own, and we are done. �

Now, if there is an algorithm that can preprocess T in O(|T |t) time for some integer t and then
answer whether a given string P appears in T in O(|T |1−ε), we can solve CNF-SAT by constructing
and preprocessing the above T and querying the algorithm about Pβ for every β ∈ B. The total
running time is

|T |t + |B| · |T |1−ε = (2n/km)t + 2(1−1/k)n · (2n/km)1−ε

≤ 2(1−ε)nmt + 2(1−ε/k)n ·m = O∗(2(1−ε
′)n),

where ε′ = ε/k > 0, which contradicts Strong ETH. This completes the proof of Theorem 5. �

5.2 Normalized LCS

The well known longest common subsequence (LCS) problem asks to find, given two strings T, P ,
the length of the longest string that is a subsequence of both T and P . This problem also has a
natural O(n2)-time dynamic programming solution. The local version of LCS has Õ(n2)-time [5,23]
solutions and is defined as follows.

Definition 3 (The normalized LCS problem). Given two strings T, P over alphabet Σ and a
positive integer M , find a substring X of T and a substring Y of P such that LCS(X,Y ) ≥ M
and LCS(X,Y )/(|X| + |Y |) is maximized, where LCS(X,Y ) is the length of the longest common
subsequence of X and Y .

Lemma 4. CNF-SAT over formulas on n variables and m clauses can be reduced to the normalized
LCS problem over strings of length O(2n/2 ·m) and constant-size alphabet in O∗(2n/2 ·m) time.

Proof. The reduction will follow the same steps as in the proof of Lemma 1, except that now the
strings T and P that we construct will be such that their normalized LCS value will tell us whether
the input CNF formula φ is satisfiable. Again, we split the variables into two sets U and V \U each
of size n/2 and we let A and B be the sets of all N = 2n/2 partial assignments to U and V \ U
respectively. We can check the satisfiability of φ by looking for a pair α ∈ A and β ∈ B that satisfy
all the clauses.

For any α ∈ A, β ∈ B we define the following two segments of length 4m.

∀j ∈ [m] : Tα[4j − 3, . . . , 4j] =

{
6416 if α satisfies Cj

6406 otherwise
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∀j ∈ [m] : Pβ[4j − 3, . . . , 4j] =

{
6016 if β satisfies Cj

6516 otherwise

Then, we construct the following strings in O∗(2n/2 ·m) time.

T = Tα1 ◦ 2m ◦ Tα2 ◦ 2m ◦ · · · ◦ 2m ◦ TαN
P = Pβ1 ◦ 3m ◦ Pβ2 ◦ 3m ◦ · · · ◦ 3m ◦ PβN

We set M = 3m and prove the following claim which completes the proof.

Claim 4 There are two substrings X,Y of T, P with LCS(X,Y ) ≥M = 3m and LCS(X,Y )/(|X|+
|Y |) ≥ 3/8 if and only if φ is satisfiable.

Proof. For the first direction, let α ∈ A and β ∈ B be two partial assignments that satisfy all the
clauses. We show that the segments Tα and Pβ are substrings of T, P that satisfy LCS(Tα, Pβ) =
3m = M and LCS(Tα, Pβ)/(|Tα| + |Pβ|) = 3/8. To see that LCS(Tα, Pβ) = 3m, consider the
subsequence S defined as

S[3j − 2] = Tα[4j − 3], S[3j − 1] = Tα[4j − 1], S[3j] = Tα[4j], for all j ∈ [m].

Clearly, S is a subsequence of Tα. To see that S is also a subsequence of Pβ, notice that whenever
S[3j − 1] = 1 we can pick Pβ[4j − 1] which is always 1 and whenever S[3j − 1] = 0 we know that
α does not satisfy the clause Cj and therefore β must satisfy it and so Pβ[4j − 2] is 1

For the other direction, assume that X,Y are substrings of T, P for which LCS(X,Y ) ≥ 3m
and LCS(X,Y )/(|X| + |Y |) ≥ 3/8. We show that X,Y must correspond to two segments Tα, Pβ
for which α, β satisfies all the clauses. First, we note that we can assume w.l.o.g. that the first and
last letters in X and Y match, since otherwise we can decrease the length of one of them by 1, This
will not change the value of the LCS but it will increase the ratio so we will have another pair of
substrings X ′, Y ′ that satisfy our assumptions. Second, we claim that the length of both X and Y
cannot be larger than 4m, since otherwise they will contain the ’2’ and ’3’ areas which cannot be
matched and the ratio LCS(X,Y )/(|X|+ |Y |) will be less than 3/8. Therefore, X and Y are some
segments X = Tα and Y = Pβ. Now we note that any subsequence of length 3m of two segments
Tα, Pβ must match all the ’6’ symbols to one another, and then for every j ∈ [m], Tα[4j − 1] needs
to be matched to either Pβ[4j − 2] or Pβ[4j − 1]. Therefore, by our construction of the segments,
we have that LCS(X,Y ) ≥ 3m can only happen if whenever α does not satisfy a clause Cj (i.e.,
Tα[4j − 1] = 0), Pβ[4j − 2] must be 0 too, which means that β satisfies Cj . �

This completes the proof of Lemma 4. �

5.3 Edit distance with gaps

For global alignment (or edit distance), we can show an n2−o(1) lower bound for two extended
definitions of alignment. The first is global alignment with gap penalties that can be solved in
O(n2) time [28]. This is an extension of global alignment in which aligning k consecutive letters to
spaces costs f(k) for some linear function of k.

Definition 4 (The edit distance with gaps problem). Given two strings T, P over alphabet
Σ, compute their global alignment with a scoring function that allows gap penalties.
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To get a reduction to edit distance with gaps we define segment strings of length m as before:

∀j ∈ [m] : Tα[j] =

{
1 if α satisfies Cj

0 otherwise

Then we let the strings T, P of length O(Nm), where N = 2n/2, over alphabet Σ = {0, 1, $, φ}
be:

T = $ Tα1 $ · · · $ TαN $ φN(m+1) $

P = φN(m+1) $ Tβ1 $ · · · $ TβN $

The scoring function is defined so that φ does not affect the score s(φ, ·) = 0, the $ signs cannot
be aligned with 0 or 1 s($, $) = 0, s($, 0) = s($, 1) = −∞, and then we implement an OR function
s(0, 0) = −∞, s(0, 1) = s(1, 0) = s(1, 1) = +1. The gap scoring function is defined so that starting
a gap sequence costs −(m − 1)/2 but the length of the gap does not matter f(k) = −(m − 1)/2.
Finally, observe that the maximal score of an alignment of T and P is +1 if there is a satisfying
assignment (α · β) to our CNF-formula and 0 otherwise.

5.4 Edit distance with one move

The second extension of global alignment, called edit distance with moves, allows (at a given cost)
to move entire substrings of the input strings. For unbounded number of moves, the problem is
known to be NP-hard [39]. We prove a lower bound for a very restricted version of this problem.

Definition 5 (The one move distance problem). Given two strings T, P over alphabet Σ, is
there a string T ′ that can be obtained from T by moving one block such that the global alignment of
T ′ and P has non-negative score?

To get a reduction to one move distance we define the segments Tα exactly as in the previous
construction, but now the strings T, P of length O(Nm) are different. Below, we abuse notation
and let αi denote the segment Tαi and let βi denote Tβi .

T = α1$α1 $ · · · $ αN−1$αN−1 $ αN$αN $ 1N$1N $ · · · $ 1N$1N

P = 1N$1N $ · · · $ 1N$1N $ β1$β1 $ β2$β2 $ · · · $ βN$βN

The scoring function is defined so that $ can only be aligned with $ while two letters in {0, 1}
can be aligned if their OR is 1: s($, $) = 0 and s($, x) = s(x, $) = −∞ if x ∈ {0, 1}, while
s(0, 0) = −∞, s(1, 0) = s(0, 1) = s(1, 1) = 0. Observe that if there a satisfying assignment (α · β)
then we can move the block (α$α) to be right on top of (β$β) and get an alignment with cost 0,
and otherwise there is no way to move one block in T and get a score that is not −∞.

The above discussion and Lemma 4 allow us to conclude with the following lower bounds.

Theorem 6. If for some ε > 0, normalized LCS, edit distance with gaps, or one move distance,
on two strings and constant size alphabet can be solved in time O(n2−ε), then Strong ETH is false.
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6 Discussion

We showed that under plausible assumptions, our upper bounds for Local Alignment are optimal,
but many important questions remain unsolved. Perhaps the most important one is whether the
Edit Distance problem might be easier, or whether one can prove that a subquadratic algorithm
implies unexpected consequences. It is not hard to show that the local alignment problem is at
least as hard as the global alignment and a very interesting open question is whether one can show
the opposite direction (i.e., reduce the local alignment problem to the global alignment problem).
In fact, any reduction from the problems in Section 5 to Edit distance would imply that our lower
bounds hold for Edit Distance.

The scoring function. Our reductions rely on our ability to choose the scoring function for the
problem. It could be that faster algorithms are achievable when the scoring function is restricted to
be of some sort, and it would be of interest to understand the complexity of the alignment problems
when instantiated with the standard scoring functions, e.g. Levenstein Distance [37] (where the score
is 0 for matching identical characters and 1 otherwise).
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