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Abstract

We consider a subset matching variant of the Dictionary Query problem. Con-
sider a dictionary D of n strings, where each string location contains a set of char-
acters drawn from some alphabet Σ = {1, ..., |Σ|}. Our goal is to preprocess D so
when given a query pattern p, where each location in p contains a single character
from Σ, we answer if p matches to D. p is said to match to D if there is some s ∈ D

where |p| = |s| and p[i] ∈ s[i] for every 1 ≤ i ≤ |p|.
To achieve a query time of O(|p|), we construct a compressed trie of all pos-

sible patterns that appear in D. Assuming that for every s ∈ D there are at
most k locations where |s[i]| > 1, we present two constructions of the trie that
yield a preprocessing time of O(nm + |Σ|kn log(min{n,m})), where n is the num-
ber of strings in D and m is the maximum length of a string in D. The first
construction is based on divide and conquer and the second construction uses ideas
introduced in [2] for text fingerprinting. Furthermore, we show how to obtain
O(nm + |Σ|kn + |Σ|k/2n log(min{n,m})) preprocessing time and O(|p| log log |Σ|+
min{|p|, log(|Σ|kn)} log log(|Σ|kn)) query time by cutting the dictionary strings and
constructing two compressed tries.

Our problem is motivated by haplotype inference from a library of genotypes [13,
16]. There, D is a known library of genotypes (|Σ| = 2), and p is a haplotype.
Indexing all possible haplotypes that can be inferred from D as well as gathering
statistical information about them can be used to accelerate various haplotype
inference algorithms.

1 Introduction

In the Dictionary Query problem, one is given a set D of strings s1, . . . , sn and subsequent
queries ask whether a given query pattern p appears in D. In [5], this paradigm was
broaden to allow a bounded number of mismatches, or allow a bounded number of “don’t
care” characters. We further extend dictionary queries to support a restricted version
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of subset matching. In subset matching, the characters are subsets of some alphabet
Σ. A pattern p is said to match a string s of the same length if p[i] ⊆ s[i] for every
1 ≤ i ≤ |p|. The subset matching problem of finding all occurrences of a pattern string p in
a text string t was solved in O(N log2 N) deterministic time [6] and (N log N) randomized
time [21], where N is the sum of sizes of the sets in p and t.

In this paper we consider the problem of indexing a dictionary for subset matching
queries. We focus on a relaxed version of subset matching requiring that the query
pattern is over single characters from Σ rather than subsets of Σ. Formally, the problem
we consider is defined as follows. We are given a dictionary D of strings s1, . . . , sn where
each string character is a subset of some alphabet Σ. A query p is a string over the
alphabet Σ, and we say that p matches to si if |p| = |si| and p[j] ∈ si[j] for every
1 ≤ j ≤ |p|. Our goal is to preprocess D for queries of the form “does p match to a string
in D?”.

Let m denote the length of the longest string in D and let D′ be the set of all
strings that match to a string in D. For example, if D contains two strings, ab{c, d} and
ab{c, d}g{a, b, c}ad, then D′ = {abc, abd, abcgaad, abcgbad, abcgcad, abdgaad, abdgbad,
abdgcad}. Notice that |D′| is bounded by O(|Σ|kn). By storing the dictionary D′ in
a trie we can efficiently answer membership queries in O(|p|) time for a pattern p. A
compressed trie (i.e. a trie whose internal nodes all have more than one child and whose
edges correspond to strings rather than single characters) can be naively constructed in
O(|Σ|knm) time and O(|Σ||D′|) space, assuming every s ∈ D has at most k locations in
which |s[i]| > 1. The techniques of Cole et al. [5] can be used to solve the problem with
O(nm log(nm) + n logk n/k!) preprocessing time, and O(m + logk n log log n) query time.
For small |Σ|, this approach is less efficient than the compressed trie approach.

In Sections 2 and 3 we present two faster constructions of the trie. The first construc-
tion is based on divide and conquer and requires O(nm+ |Σ|kn log n) preprocessing time.
The second construction uses ideas introduced in [2] for text fingerprinting and requires
O(nm + |Σ|kn log m) preprocessing time. The space complexity is O(|Σ||D′|), and it can
be reduced to O(|D′|) by using suffix tray [7] ideas. Intuitively, a suffix tray is a combina-
tion of a suffix tree and a suffix array where in some suffix tree nodes we store and array of
length |Σ| of children pointers and in some nodes we store two pointers to appropriate in-
tervals in the suffix array. The save in space comes at the cost of O(|p| + log log |Σ|)
query time. In Section 4 we show that by cutting the dictionary strings and con-
structing two tries we can obtain O(nm + |Σ|kn + |Σ|k/2n log(min{n, m})) preprocessing
time at the cost of O(|p| log log |Σ| + min{|p|, log |D′|} log log |D′|) = O(|p| log log |Σ| +
min{|p|, log(|Σ|kn)} log log(|Σ|kn)) query time.

An important feature of our first two trie constructions is that they can calculate the
number of appearances in D of each pattern in D′ (i.e., which is most common? which
is least common? etc.). This feature is useful in the application of Haplotype Inference
that we next describe according to the presentation of Gusfield [12].

1.1 A haplotype trie from a genotype dictionary

In diploid organisms such as humans, there are two non-identical copies of each chromo-
some (except for the sex chromosome). A description of the data from a single copy is
called a haplotype while a description of the conflated (mixed) data on the two copies is
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called a genotype. The underlying data that forms a haplotype is either the full DNA
sequence in the region, or more commonly the values of only DNA positions that are
Single Nucleotide Polymorphisms (SNP’s). A SNP is a position in the genome at which
exactly two (of four) nucleotides occur in a large percentage of the population. If we
consider only the SNP positions, each position can have one of two nucleotides and a
haplotype can thus be represented as a 0/1 vector. A genotype can be represented as
a 0/1/2 vector, where 0 means that both copies contain the first nucleotide, 1 means
that both copies contain the second nucleotide and 2 means that the two copies contain
different nucleotides (but we don’t know which copy contains which nucleotide).

The next high-priority phase of human genomics will involve the development and
use of a full Haplotype Map of the human genome [20]. Unfortunately, it is prohibitively
expensive to directly determine the haplotypes of an individual. As a result, almost all
population data consists of genotypes and the haplotypes are currently inferred from raw
genotype data. The input to the haplotype inference problem consists of n genotypes
(0/1/2 vectors), each of length m. A solution to the problem associates every genotype
with a pair of haplotypes (binary vectors) as follows. For any genotype g, the associated
binary vectors v1, v2 must both have value 0 (respectively 1) at any position where g has
value 0 (respectively 1); but for any position where g has value 2, exactly one of v1, v2

must have value 0, while the other has value 1. The haplotypes inference problem has
been studied extensively, e.g. [1, 4, 9, 10, 12, 15, 17, 19, 24, 26, 27, 32].

In our settings, the dictionary D corresponds to the library of genotypes, where every
genotype location that has the value 2 is replaced by the set {0, 1}. This way, |Σ| = 2
and D′ consists of all the possible haplotypes that can be part of a pair inferred from
D. Our trie stores all haplotypes in D′ and we can calculate the number of appearances
in D of each such haplotype while constructing the trie. The trie can then be used to
accelerate haplotype inference algorithms based on the “pure parsimony criteria”, greedy
heuristics such as “Clarks rule”, and EM based algorithms.

2 An O(nm + |Σ|kn log n) time construction

In this section we present an O(nm + |Σ|kn log n) time construction for the compressed
trie of D′. To simplify the presentation, for the rest of the paper we assume without loss
of generality that all strings in D have the same length m. We say that string s is the
longest common prefix (LCP) of strings x and y if s is the longest string that is a prefix
of both x and y.

We first describe an algorithm for merging two compressed tries T1 and T2.

1. If one of the tries T1 or T2 has a single vertex, then return a copy of the other trie.

2. If both the roots of T1 and T2 have degree 1, and the labels of the edges leaving the
roots of T1 and T2 have a common first letter, then find the longest common prefix
(LCP) p of these labels. Remove the string p from T1, that is, if the label of the
edge e that leaves the root of T1 is equal to p, remove the edge e and the root from
T1, and otherwise remove p from the label of e. Additionally, remove p from T2.

Next, recursively merge the two modified tries T1 and T2, and let T be the result
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of the merge. Add a new root r to T and connect it by an edge to the old root of
T , where the label of the edge is p.

3. If the two cases above do not occur, then split the trie T1 as follows. For every edge
e = (r, v) that leaves the root r of T1, create a new trie that contains r, v, and all
the descendents of v in T1. This trie will be denoted T a

1 , where a is the first letter
in the label of e. Similarly, split the trie T2 and create tries T a

2 .

For each letter a ∈ Σ, recursively merge the tries T a
1 and T a

2 if these two tries exist.
Finally, merge the roots of the merged tries.

If the LCP of two edge labels can be obtained in O(1) time, then the time complexity of
this algorithm is O(|T1|+|T2|), where |T | denotes the number of vertices in the compressed
trie T . To perform such LCP queries in O(1) time, we make use of generalized suffix tree.

Given a set X of n strings each of length bounded by m, a generalized suffix tree
is a compressed trie containing all O(nm) suffixes of the strings in X. strings in X. A
generalized suffix tree can be built in O(nm) time (e.g. [11,22,25,29,31]). By building a
lowest common ancestor data structure (such as [18]) on the generalized suffix tree, we
can support O(1)-time LCP queries between pairs of suffixes in X.

We now present the algorithm for building a compressed trie of D′.

1. For every string in D, replace every character that is a set of size greater than one
with a new symbol φ.

2. Build a generalized suffix tree T̂ for D.

3. Build compressed tries T1, . . . , Tn, where Ti is a compressed trie containing all the
patterns that match si (recall that D = {s1, . . . , sn}).

4. Repeat ⌈log n⌉ times:

(a) Partition the compressed tries into pairs, except at most one trie.

(b) Merge each pair of tries into a single trie.

Constructing T̂ requires O(nm) time. Each edge label b in some trie that is built during
the algorithm, matches a substring si[j..j + |b|−1] of some string si in D. It is important
to notice that |si[l]| = 1 for every j +1 ≤ l ≤ j + |b|−1. Using the generalized suffix tree
T̂ , computing the LCP of two edge labels takes O(1) time. Therefore, the merging of two
compressed tries in the algorithm is performed in linear time. In each iteration of line 4,
the total work is linear in the total sizes of the current tries, which is O(|D′|) = O(|Σ|kn).
Thus, the overall time complexity of the algorithm is O(nm + |Σ|kn log n).

3 An O(nm + |Σ|kn log m) time construction

In this section we present an O(nm + |Σ|kn log m) time construction for the compressed
trie of D′. Consider the lexicographical ordering of all the strings in D′. Notice that if we
knew this ordering and the length of the LCP of every adjacent strings in this ordering,
then we could construct the trie in O(|D′|) = O(|Σ|kn) time by adding the strings in

4



25
9 17

1 2 3 1

a b c b b c a b

(a)

37

13 17
1 1 3 1

a b a b b c a b

(b)

Figure 1: Figure (a) shows a possible naming table for the string p = abcbbcab. Note
that the first and last cell in the third row have the same name as the names of the cells
below these cells are the same (a and b). Figure (b) shows a possible naming table for
the string q = ababbcab that differs from p in one location. The cells of the naming table
of q that differ from the corresponding cells of the naming table of p are marked in bold.

order. We next describe how to obtain the required ordering and LCP information in
O(nm + |Σ|kn log m) time.

We assign a unique integer name to every string in D′ such that the names preserve the
lexicographical order of D′. The names are assigned using a fingerprinting technique [2,
8,23]. The idea behind fingerprinting is that the name of a string p can be computed fast
from the name of a string q that differs from p only in one location.

A naming table of a string p is a table of 1 + log |p| rows, where the i-th row contains
2i−1 cells (without loss of generality |p| is a power of two, otherwise, we can extend p
until |p| is a power of two by concatenating to p a string of a repeated new character).
Each cell in the table is assigned a name. First, the cells in the last row are named by
the characters of p. Next, the cells of the second last row are named. The name of a cell
depends on the names a1 and a2 assigned to the two cells below it. If there was other
cell in the current row such that the blocks below it were also named a1 and a2, then
the name used for that cell is also given for the current cell. Otherwise, a new name is
used. This process is continued with the other rows in the table. See Figure 1(a) for an
example.

The following property is what makes the naming technique appealing in our settings.
Consider two strings p and q that differ only in one location. Then, the naming table of
p differs from the naming table of q only in 1 + log |p| cells (see Figure 1(b)).

Consider all the strings that match a specific string s ∈ D. It is possible to enumerate
these strings in an order s(1), s(2), . . . , s(r) in which two consecutive strings differ in exactly
one location. This means that one can compute names for these strings in O(m+r log m)
time as follows. First build the naming table of s(1) from bottom to top, using a two-
dimensional table B to store the names given so far. More precisely, B[a, b] is the name
given for the pair (a, b), if the pair (a, b) was named. Since checking whether a pair of
names appeared before takes constant time, the time it takes to build the naming table
is linear in the number of cells in the table, which is m + m/2 + m/4 + · · ·+ 1 = 2m− 1.
Next, we build the naming table of s(2) by updating 1 + log m cells in the table of s(1),
which takes O(logm) time. Then, we build the naming table of s(3) using the naming
table of s(2), and so on.

Applying the naming procedure to all strings in D takes O(nm + |Σ|kn log m) time.
The space complexity is O((nm+|Σ|kn log m)2) due to the table B. The space complexity
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can be reduced to O(nm + |Σ|kn log m) as shown in [8]. The algorithm of [8] uses a
different order of filling the naming tables. In the first step, the algorithm computes the
names in the second row from the bottom of the naming tables of all strings in D′. This
is done by taking all pairs of names encountered in the first row of each naming table,
lexicographically sorting these pairs, and then naming the pairs. In the second step, the
algorithm computes the names in the third row from the bottom of the naming tables of
all strings in D′, and so on.

After naming all strings in D′, we sort these strings according to their names. As
noted above, this gives the lexicographical ordering of D′. Furthermore, the LCP of any
two strings in D′ can be computed in O(log m) time by comparing their naming tables
top-down as noticed in [23]. Therefore, we can compute the length of the LCP of every
two consecutive strings in the lexicographic ordering of D′ in O(|Σ|kn log m) time, and
then construct the trie in O(|D′|) = O(|Σ|kn) time by adding the strings in lexicographical
order.

4 An O(nm + |Σ|kn + |Σ|k/2n log(min{n, m})) time con-

struction

In this section we present a different approach for solving the dictionary query problem.
Instead of building one trie, we build two tries. This reduces the construction time, but
gives a penalty in the query time.

Let S be a set of integers. For an integer x, the successor of x in S is the minimal
element y ∈ S such that y ≥ x. A successor data-structure for the set S supports
answering queries of the form “Given an integer x, what is the successor of x in S?”.
A successor data-structure for a set S ⊆ {1, . . . , U} can be built in O(|S|) time and
space such that successor queries are answered in O(log log U) time (such a construction
is obtained, for example, by combining the van Emde Boas data-structure [30] with the
static dictionary of Hagerup et al. [14]).

In order to build a dictionary query data-structure, we split every string in D into
two parts. For each si ∈ D define s′i to be the longest prefix of si that contains at most
⌈k/2⌉ sets of size greater than 1. Also, define s′′i to be the prefix of sR

i (i.e. the string
si reversed) of length m − |s′i|. For example, if k = 2 and s1 = ab{c, d}g{a, b, c}ad then
s′1 = ab{c, d}g and s′′1 = da{a, b, c}.

Let D1 = {s′1, . . . , s
′
n} and D2 = {s′′1, . . . , s

′′
n}. For i = 1, 2, let D′

i be the set of all
strings that match to one of the strings in Di. We wish to reduce the problem of matching
a string p against the dictionary D to matching a prefix p′ of p against D1, and matching
a prefix p′′ of pR against D2, with |p′′| = m − |p′|. However, there are two issues that
need to be addressed: (1) It is possible that p′ matches a string s′i, while p′′ matches to
a string s′′j with i 6= j. This of course does not imply that p matches to a string in D.
(2) We do not know the length of p′, so we need to check all prefixes of p that match to
a string in D1.

Let T1 be a compressed trie for D′
1 and T2 be a compressed trie for D′

2. For each vertex
of T2 assign a name which is an integer from the set {1, . . . , |T2|}. The name assigned to
a vertex v is denoted name(v). For now we assume that all the names are distinct.

The string that corresponds to a vertex v in a trie is the concatenation of the edge
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a b

a ba

a bb

a b

b c

(a)

a b

aa b

a b

c

(b)

v Lv Sv (1) Sv (2)
x1 ∅ ∅ ∅
x2 {1} {7, 8} {1, 2}
x3 {1} {7, 8} {1, 2}
x4 ∅ ∅ ∅
x5 {2} {5, 6} {3, 4}
x6 {2} {5, 6} {3, 4}
x7 {3} {2, 3} {1, 5}
x8 ∅ ∅ ∅
x9 {3} {2, 3} {1, 5}
x10 {4} {1} {1}
x11 {5} {1} {1}

(c)

v Lv

y1 {4, 5}
y2 {3}
y3 {3}
y4 ∅
y5 {2}
y6 {2}
y7 {1}
y8 {1}

(d)

Figure 2: An example of the data-structure for the input strings s1 = {a, b}{a, b}aaa,
s2 = a{a, b}a{b, c}a, s3 = aa{a, b}b{a, b}, s4 = aaaab, and s5 = aaaac. The tries T1 and
T2 are shown in Figures (a) and (b), respectively. The sets Lv for vertices of T1 and T2

are shown in Figures (c) and (d), respectively. Moreover, Figure (c) shows the sets Sv for
v ∈ T1, where the naming of the vertices is done according to two naming schemes: (1)
name(yi) = i (2) naming according to the heavy path decomposition Q1 = [y1, y2, y4, y8],
Q2 = [y7], Q3 = [y5], Q4 = [y6], and Q5 = [y3] of T2.

labels in the path from the root to v. The depth of a vertex v in a trie is the length of the
strings that corresponds to v. We say that the vertices v ∈ T1 and w ∈ T2 are paired if
the sum of their depths is m. For a vertex v in T1 (respectively T2) whose corresponding
string is s, let Lv be the set of all indices i such that s matches to s′i (respectively s′′i ).
For a vertex v ∈ T1, let Sv = {name(w)|w ∈ T2 and Lv ∩ Lw 6= ∅}. See Figure 2 for an
example.

The data-structure for the dictionary query problem consists of the tries T1 and T2,
and each vertex v ∈ T1 has a successor data-structure on the set Sv. Answering a query
is done as follows.

1. Find the longest path P1 in T1 that corresponds to a prefix of the query pattern p,
and the longest path P2 in T2 that corresponds to prefix of pR.

2. Find all paired vertices v ∈ P1, w ∈ P2 by traversing P1 from top to bottom, while
concurrently traversing P2 from bottom to top (note that a vertex v ∈ P1 is paired
with at most one vertex w ∈ P2).

3. Check whether name(w) ∈ Sv for some paired vertices v ∈ P1 and w ∈ P2 (by
checking whether the successor of name(w) in Sv is equal to name(w)).

Answering a dictionary query requires at most |P1| ≤ m queries on the successor
data-structures, where each such query takes O(log log |D′|) time. Therefore, the time to
answer a query is O(m log log |D′|).

We now discuss the time complexity of building the tries. The tries T1 and T2 are
built using the algorithms in Sections 2 and 3 in O(nm+ |Σ|k/2n log(min(n, m))) time. In
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order to build the sets Sv for all v, compute the intersections Lv∩Lw for all v and w. This
is done as follows. For each i from 1 to n, go over all vertices v ∈ T1 such that i ∈ Lv.
For each such v, go over all w ∈ T2 such that i ∈ Lw, and add the pair (name(w), i) to
a list Iv that is stored at v. Then, for each v ∈ T1, lexicographically sort the list Iv and
obtain all the intersections involving v. Therefore, computing all the intersections and
building the successor data-structures takes O(|Σ|kn) time. The total preprocessing time
is O(nm + |Σ|kn + |Σ|k/2n log(min{n, m})).

In order to speed up the query time, we use the technique of fractional cascading [3].
Fractional cascading is a method for efficiently searching for the same element in several
successor data structures. Using a variant of this technique that is described in the
next section, we can preprocess T1 such that performing a successor query x on all the
successor data structures of the vertices of some path P in T1 is done in O(|P | log log |Σ|+
log log |D′|) time. Recall that in order to answer a query, we need to query for name(w)
in the successor data-structures of v for every paired vertices v ∈ P1 and w ∈ P2. In
order to use the fractional cascading speedup, we need to decrease the number of names
assigned to the vertices of P2. Note that we can assign the same name to several vertices
of T2 if their corresponding strings have different lengths. Thus, we partition the vertices
of T2 into paths Q1, . . . , Qr using a heavy path decomposition [18].

A heavy path decomposition T2 is as follows. For each node v define its size to be the
size of the subtree rooted at v. For every internal node v we pick a child of maximum
size and classify it as heavy. The remaining children are light. An edge to a light child
is a light edge. Removing the light edges we obtain the decomposition of T2 into paths.
This decomposition has the important property that a path from some vertex of T2 to
the root passes through at most log |T2| different paths in the decomposition.

We now assign names to the vertices of T2 according to the heavy path decomposition:
The name of a vertex w is the index i such that w ∈ Qi.

Now, answering a query is done as follows.

1. Find the longest path P1 in T1 that corresponds to a prefix of the query pattern p,
and the longest path P2 in T2 that corresponds to prefix of pR.

2. For i = 1, . . . , r, let vhigh
i (respectively vlow

i ) be the highest (respectively lowest)
vertex in P1 that is paired with a vertex w ∈ P2 ∩ Qi, if there is such a vertex.

3. For every i such that vhigh
i is defined, let P1,i be the path from vhigh

i to vlow
i ,

4. For every path P1,i, perform a successor query with the integer i on the successor
data-structures of the vertices in P1,i using fractional cascading.

For example, consider the query p = aaaaa on the structure in Figure 2. We have that
P1 = [x1, x2, x4, x6, x8] and P2 = [y1, y2, y4, y7]. Moreover, vhigh

1 = x4, vlow
1 = x6, and

vhigh
2 = vlow

2 = x2, so P1,1 = [x4, x6, x8] and P1,2 = [x2].
We have that there are at most min{m, log |T2|} = O(min{m, log |D′|}) different

names assigned to the vertices of P2. Therefore, the number of P1,i paths is O(min{m, log |D′|}).
Since the P1,i paths are disjoint, it follows that the time to answer a dictionary query is
O(m log log |Σ| + min{m, log |D′|} log log |D′|).
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4.1 Fractional cascading

Let T be a rooted tree of maximum degree d. Each vertex v of T has a set Cv ⊆ {1, . . . , U}.
The goal is to preprocess T in order to answer the following queries “given a connected
subtree T ′ of T and an integer x, find the successor of x in Cv for every v ∈ T ′”. The
fractional cascading technique of [3] gives search time of O(|T ′| log d + log log U), with
linear time preprocessing. We now present a variant of fractional cascading that gives
O(|T ′| log log d + log log U) search time (our construction is similar to the one in [28]).

The preprocessing of T is as follows. Traverse the vertices of T in postorder, and for
each vertex v of T construct a list Av whose elements are kept in a non-decreasing order.
For a leaf v, Av contains exactly the elements of Cv. For an internal vertex v, Av contains
all the elements of Cv. Additionally, for every child w of v, Av contains every second
element of Aw. Each element of Av stores a pointer to its successor in the set Cv. An
element of Av which came from a set Aw keeps a pointer to its copy in Aw. This pointer
is called a w-bridge. For every vertex v, the elements of Av are stored in a successor
data-structures.

Handling a query (T ′, x) is done by finding the successor of x in each set Av for v ∈ T ′.
Then, using the successor pointers, the successor of x in each set Cv is obtained. Finding
the successor of x in each set Av for v ∈ T ′ is done by traversing the vertices of T ′ in
postorder. For the root r of T ′, finding the successor of x in Ar is done by making a
successor query on the successor structure of Ar. Suppose we have found the successor y
of x in Av and we now wish to find the successor of x in Aw, where w is a child of v. Let
z be the first element that appears after y in Av that has a w-bridge, and let z′ be the
elements in Aw pointed to by the w-bridge of z. Then, the successor of x in Aw is either
z′ or the element preceding z′ in Aw.

In order to efficiently find the first w-bridge after some element of Av, perform ad-
ditional preprocessing as follows. Partition the elements of each list Av into blocks
B1

v , B
2
v , . . . , B

⌈|Av|/d⌉
v of d consecutive elements each (except perhaps the last block). Let

w1, . . . , wd′ be the children of v. For each block Bi
v build an array Li

v, where Li
v[j] is

the location of the first wj-bridge that appears in the blocks Bi+1
v , Bi+2

v , . . . , B
⌈|Av|/d⌉
v .

Moreover, for all j, build a successor data-structures Si,j
v that contains the indices of the

elements of the block Bi
v that have a wj-bridge.

Find the first wj-bridge after some element of Av takes O(log log d) time. Therefore,
the time complexity of answering a successor query is O(|T ′| log log d + log log U).

5 Conclusion and open problems

We have shown two solutions for the subset dictionary query problem: one based on
building a trie for D′ and one based on building two tries. We conjecture that the trie of
D′ can be built in O(nm + |Σ|kn) time.
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[16] B. V. Halldórsson, V. Bafna, N. Edwards, R. Lippert, S. Yooseph, and S. Is-
trail. A survey of computational methods for determining haplotypes. In Proc.
DIMACS/RECOMB Satellite Workshop on Computational methods for SNPs and
haplotype inference, pages 26–47, 2002.

[17] E. Halperin and R. M. Karp. The minimum-entropy set cover problem. In Proc.
31st International Colloquium on Automata, Languages and Programming (ICALP),
pages 733–744, 2004.

[18] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. on Computing, 13(2):338–355, 1984.

[19] M. E. Hawley and K. K. Kidd. Haplo: A program using the em algorithm to estimate
the frequencies of multi-site haplotypes. J. of Heredity, 86:409–411, 1995.

[20] L. Helmuth. Genome research: Map of human genome 3.0. Science, 5530(293):583–
585, 2001.

[21] P. Indyk. Faster algorithms for string matching problems: Matching the convolution
bound. In Proc. 39th Symposium on Foundations of Computer Science (FOCS),
pages 166–173, 1998.
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