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e Find minimal substrings of S containing P as a subsequence

e The minimal substrings of S which contain P as a
subsequence are shown in blue: 5[6,16] and S[39, 44]

e We consider a version of the problem where the goal is to find
the length of the shortest substring of S containing P as a

subsequence
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e |[Pl=m, [S]=n
e (Old) upper bound: O(nm/logn) (Das et al. [DFG*97])

e This work: no O(nm'=€) or O(n'~¢m) algorithm assuming
OVH
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Complexities - Data structures

e Our OV reduction + Equi et al. [EMT21]: polynomial time
preprocessing does not help

e Time/Space tradeoffs:

‘ space ‘ time ‘
[AA02] O(n) O(X, dist_occ(P;) - i)
This work | O(n+ (f)k) O(k - 7 -loglog n) m = k fixed
This work | Q(nk-ké-o(1)) O(n%) m = k fixed

e dist_occ(P;) is the number of distinct minimal substrings
containing P[1]... P[i] as a subsequence

e Conditional lower bound based on hardness of k—Set
Disjointness



Complexities - Special case |P| =2

e This work: Faster preprocessing for decision version using
min-plus matrix multiplication



Orthogonal Vectors

e Two sets A,B of d-dimensional, binary vectors, each set has
size n

e Problem: Decide if there is a vector in A that is orthogonal to
a vector in B

e OVH: There is no algorithm running in time O(n?>~€poly(d))
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e build P from B: for b € B, seperate each coordinate by new
letter x
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e concatenate and separate by new letter y
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e Length of P = O(nd)
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e build S from A: for a € A,

0—-01
1 — 00

separate each coordinate by letter x
eg: 100 — 00x01x01

e let by =010, by =110, a =100

e b; and a are orthogonal

e 0x1x0 is a subsequence of 00x01x01
e by and a are not orthogonal

e 1x1x0 is not a subsequence of 00x01x01
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5(a)
01x00x01

a
010

b
010

p(b)
0x1x0

e to build S as follows:

let z be the d-dimensional 0 vector

= s(z) =01x01x...x01

e S=

s(a1)ys(z)ys(a2)ys(z)y ...s(an)ys(z)ys(ar)ys(z)y ...s(n)
Length of S = O(nd)

o [PIISI* = O(P~<d>~<)

|PI=€]S] = O(n?€d?-€)



OV— Episode Matching

010 | 01x00x01 | 010 | Ox1x0 | 000 | 01x01x01

a s(a)

b | p(b) | z s(2)

No orthogonal vectors:

y s(z) y s(a-1) y s(z2) y s(a) y s(z)  ys(ais)
y p(bj-1) y p(bj) y p(bjs1)
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OV— Episode Matching

a s(a)
010 | 01x00x01

b p(b) z s(z)
010 | Ox1x0 | 000 | 01x01x01

aj, bj orthogonal:
y s(z2) y s(a-1) y s(z2) y s(ai) y s(2)  ys(aiv)
y p(bj-2) y p(bi-1) y  p(b) y p(bj:1)
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OV— Episode Matching

o o0 P(bZ)/P(Ls)y P(b‘P)Q”
5 =s(al)ys(z)ys(a2)ys(2)y ...s(an)ys(z)ys(a1)ys(z)y . ..s(an)

® a Lb;
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Binary alphabet

e replace x and y by binary gadgets

ii5)



Space/time trade-off

e |P| = k fixed at preprocessing
e Upper bound: Space: O(n+ (g)k), Time: O(k -7 - loglog n)
m=k

e Conditional lower bound: Space: Q(n¥k9=°(M)) Time: O(n?)

16
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Space/time trade-off, Lower bound

Definition (k-Set Disjointness Problem)
Preprocess m sets S1, So, ..., Sy, of total size 327, |S;| = N drawn

from a universe U such that given (i1, ip,. .., ix) we can quickly
decide whether ﬂjlle Si; = 0.

e Up to log N factors equivalent to the problem where every
element appears in the same number of sets [BGPS21]

Conjecture (Strong k-Set Disjointness Conjecture)

Any data structure for the k-Set Disjointness Problem that
answers queries in time T must use Q (N¥/T*) space.
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