The Fine-Grained Complexity of Episode
Matching

June 24, 2022

Philip Bille, Inge Li Ggrtz, Shay Mozes, Teresa Anna Steiner, Oren Weimann

Episode Matching

P = ANANAS
S =BATMAN AND ANNA SING NANANANA AND EAT BANANAS
0 5) 10 15 20 25 30 85 40

Episode Matching

P = ANANAS
S =BATMAN AND ANNA SING NANANANA AND EAT BANANAS
0 5 10 15 20 25 30 85 40

e Find minimal substrings of S containing P as a subsequence

Episode Matching

P = ANANAS
S = BATMAN AND - ANNA ~SING NANANANA AND EAT BANANAS
0 5 10 15 20 25 30 85 40

e Find minimal substrings of S containing P as a subsequence

e The minimal substrings of S which contain P as a
subsequence are shown in blue: 5[6,16] and S[39, 44]

Teresa
Bleistift

Episode Matching

P = ANANAS
S =BATMAN AND ANNA SING NANANANA AND EAT BANANAS
0 5 10 15 20 25 30 85 40

e Find minimal substrings of S containing P as a subsequence

e The minimal substrings of S which contain P as a
subsequence are shown in blue: 5[6,16] and S[39, 44]

e We consider a version of the problem where the goal is to find
the length of the shortest substring of S containing P as a

subsequence

Complexities - Algorithms

e |[Pl=m, [S]=n

Complexities - Algorithms

e |[Pl=m, [S]=n
e (Old) upper bound: O(nm/logn) (Das et al. [DFG*97])

Complexities - Algorithms

e |[Pl=m, [S]=n
e (Old) upper bound: O(nm/logn) (Das et al. [DFG*97])

e This work: no O(nm'=€) or O(n'~¢m) algorithm assuming
OVH

Complexities - Data structures

e Our OV reduction + Equi et al. [EMT21]: polynomial time

preprocessing does not help

Complexities - Data structures

e Our OV reduction + Equi et al. [EMT21]: polynomial time
preprocessing does not help

e Time/Space tradeoffs:

Complexities - Data structures

e Our OV reduction + Equi et al. [EMT21]: polynomial time
preprocessing does not help

e Time/Space tradeoffs:

Complexities - Data structures

e Our OV reduction + Equi et al. [EMT21]: polynomial time
preprocessing does not help

e Time/Space tradeoffs:

‘ space ‘ time ‘
[AA02] O(n) O(X, dist_occ(P;) - i)
This work | O(n+ (f)k) O(k - 7 -loglog n) m = k fixed
This work | Q(nk-ké-o(1)) O(n%) m = k fixed

Complexities - Data structures

e Our OV reduction + Equi et al. [EMT21]: polynomial time
preprocessing does not help

e Time/Space tradeoffs:

‘ space ‘ time ‘
[AA02] O(n) O(X, dist_occ(P;) - i)
This work | O(n+ (f)k) O(k - 7 -loglog n) m = k fixed
This work | Q(nk-ké-o(1)) O(n%) m = k fixed

e dist_occ(P;) is the number of distinct minimal substrings
containing P[1]... P[i] as a subsequence

Complexities - Data structures

e Our OV reduction + Equi et al. [EMT21]: polynomial time
preprocessing does not help

e Time/Space tradeoffs:

‘ space ‘ time ‘
[AA02] O(n) O(X, dist_occ(P;) - i)
This work | O(n+ (f)k) O(k - 7 -loglog n) m = k fixed
This work | Q(nk-ké-o(1)) O(n%) m = k fixed

e dist_occ(P;) is the number of distinct minimal substrings
containing P[1]... P[i] as a subsequence

e Conditional lower bound based on hardness of k—Set
Disjointness

Complexities - Special case |P| =2

e This work: Faster preprocessing for decision version using
min-plus matrix multiplication

Orthogonal Vectors

e Two sets A,B of d-dimensional, binary vectors, each set has
size n

e Problem: Decide if there is a vector in A that is orthogonal to
a vector in B

e OVH: There is no algorithm running in time O(n?>~€poly(d))

OV— Episode Matching

e build P from B: for b € B, seperate each coordinate by new
letter x
eg: 101 — 1x0x1

OV— Episode Matching

e build P from B: for b € B, seperate each coordinate by new
letter x
eg: 101 — 1x0x1
e concatenate and separate by new letter y
eg: B ={101,111,110},
P =1x0x1y1x1x1y1x1x0

OV— Episode Matching

e build P from B: for b € B, seperate each coordinate by new
letter x
eg: 101 — 1x0x1
e concatenate and separate by new letter y
eg: B ={101,111,110},
P =1x0x1y1x1x1y1x1x0

e Length of P = O(nd)

OV— Episode Matching

e build S from A: for a € A,

0—-01
1 — 00

separate each coordinate by letter x
eg: 100 — 00x01x01

OV— Episode Matching

e build S from A: for a € A,

0—-01
1 — 00

separate each coordinate by letter x
eg: 100 — 00x01x01

OV— Episode Matching

e build S from A: for a € A,

0—-01
1 — 00

separate each coordinate by letter x
eg: 100 — 00x01x01

e let by =010, by =110, a =100

OV— Episode Matching

e build S from A: for a € A,

0—-01
1 — 00

separate each coordinate by letter x
eg: 100 — 00x01x01

e let by =010, by =110, a =100

e b; and a are orthogonal

OV— Episode Matching

e build S from A: for a € A,

0—-01
1 — 00

separate each coordinate by letter x
eg: 100 — 00x01x01

e let by =010, by =110, a =100
e b; and a are orthogonal

e 0x1x0 is a subsequence of 00x01x01

OV— Episode Matching

e build S from A: for a € A,

0—-01
1 — 00

separate each coordinate by letter x
eg: 100 — 00x01x01

e let by =010, by =110, a =100
e b; and a are orthogonal
e 0x1x0 is a subsequence of 00x01x01

e by and a are not orthogonal

OV— Episode Matching

e build S from A: for a € A,

0—-01
1 — 00

separate each coordinate by letter x
eg: 100 — 00x01x01

e let by =010, by =110, a =100

e b; and a are orthogonal

e 0x1x0 is a subsequence of 00x01x01
e by and a are not orthogonal

e 1x1x0 is not a subsequence of 00x01x01

OV— Episode Matching

5(a)
01x00x01

b
010

p(b)
0x1x0

a
010

e to build S as follows:

OV— Episode Matching

5(a)
01x00x01

b
010

p(b)
0x1x0

a
010

e to build S as follows:

e let z be the d-dimensional 0 vector

OV— Episode Matching

5(a)
01x00x01

a
010

b
010

p(b)
0x1x0

e to build S as follows:
e let z be the d-dimensional 0 vector

e = s(z) =01x01x...x01

OV— Episode Matching

5(a)
01x00x01

a
010

b
010

p(b)
0x1x0

e to build S as follows:
e let z be the d-dimensional 0 vector
e = s(z) =01x01x...x01
e S=
s(a1)ys(z)ys(a2)ys(z)y ...s(an)ys(z)ys(a1)ys(z)y...s(n)

OV— Episode Matching

5(a)
01x00x01

a
010

b
010

p(b)
0x1x0

e to build S as follows:

let z be the d-dimensional 0 vector

= s(z) =01x01x...x01

e S =

s(a1)ys(z)ys(a2)ys(z)y ...s(an)ys(z)ys(a1)ys(z)y...s(n)
Length of S = O(nd)

OV— Episode Matching

5(a)
01x00x01

a
010

b
010

p(b)
0x1x0

e to build S as follows:

let z be the d-dimensional 0 vector

= s(z) =01x01x...x01

e S=

s(a1)ys(z)ys(a2)ys(z)y ...s(an)ys(z)ys(ar)ys(z)y ...s(n)
Length of S = O(nd)

o [PIISI* = O(P~<d>~<)

|PI=€]S] = O(n?€d?-€)

OV— Episode Matching

010 | 01x00x01 | 010 | Ox1x0 | 000 | 01x01x01

a s(a)

b | p(b) | z s(2)

No orthogonal vectors:

y s(z) y s(a-1) y s(z2) y s(a) y s(z) ys(ais)
y p(bj-1) y p(bj) y p(bjs1)

10

OV— Episode Matching

a s(a)
010 | 01x00x01

b p(b) z s(z)
010 | Ox1x0 | 000 | 01x01x01

aj, bj orthogonal:
y s(z2) y s(a-1) y s(z2) y s(ai) y s(2) ys(aiv)
y p(bj-2) y p(bi-1) y p(b) y p(bj:1)

11

OV— Episode Matching

S =s(a1)ys(z)ys(a2)ys(2)y...s(an)ys(z)ys(a1)ys(z)y...s(an)

® a Lb;
e j < i: "overflow” to the right

e j > i: “overflow” to the left

12

OV— Episode Matching

o o0 P(bZ)/P(Ls)y P(b‘P)Q”
5 =s(al)ys(z)ys(a2)ys(2)y ...s(an)ys(z)ys(a1)ys(z)y . ..s(an)

® a Lb;
e j < i: "overflow” to the right

e j > i: “overflow” to the left

13

Teresa
Bleistift

OV— Episode Matching

eoe ‘1 P(L)I/P(bgfyf’("‘g) K]
S =s(a1)ys(z)ys(a2)ys(2)y...s(an)ys(z)ys(a1)ys(z)y...s(an)

® a Lb;
e j < i: "overflow” to the right

e j > i: “overflow” to the left

14

Teresa
Bleistift

Teresa
Bleistift

Binary alphabet

e replace x and y by binary gadgets

ii5)

Space/time trade-off

e |P| = k fixed at preprocessing
e Upper bound: Space: O(n+ (g)k), Time: O(k -7 - loglog n)
m=k

e Conditional lower bound: Space: Q(n¥k9=°(M)) Time: O(n?)

16

Space/time trade-off, Lower bound

Definition (k-Set Disjointness Problem)
Preprocess m sets S1, So, ..., Sy, of total size 327, |S;| = N drawn

from a universe U such that given (i1, ip,. .., ix) we can quickly
decide whether ﬂjlle Si; = 0.

17

Space/time trade-off, Lower bound

Definition (k-Set Disjointness Problem)
Preprocess m sets S1, So, ..., Sy, of total size 327, |S;| = N drawn

from a universe U such that given (i1, ip,. .., ix) we can quickly
decide whether ﬂjlle Si; = 0.

e Up to log N factors equivalent to the problem where every
element appears in the same number of sets [BGPS21]

17

Space/time trade-off, Lower bound

Definition (k-Set Disjointness Problem)
Preprocess m sets S1, So, ..., Sy, of total size 327, |S;| = N drawn

from a universe U such that given (i1, ip,. .., ix) we can quickly
decide whether ﬂjlle Si; = 0.

e Up to log N factors equivalent to the problem where every
element appears in the same number of sets [BGPS21]

Conjecture (Strong k-Set Disjointness Conjecture)

Any data structure for the k-Set Disjointness Problem that
answers queries in time T must use Q (N¥/T*) space.

17

Space/time trade-off, Lower bound

51 ={1,3,4} a1

S ={2} 02
5={1,2,3,4} a3
54 = {2,4} (07

S5 ={1,3} as

18

Space/time trade-off, Lower bound

51 ={1,3,4} a1

Sz =A{2} @z
5={1,2,3,4} a3
S4={2,4} ay
55 = {1, 3} s

S =aijazas $%% arazas $%% arazas $%% arazas
—— S—— S—— S——
1 % 3 4

18

Space/time trade-off, Lower bound

51 ={1,3,4} a1

Sz =A{2} @z
5={1,2,3,4} a3
S4=12,4} @y
55 = {1, 3} s
S =aijazas $%% arazas $%% arazas $%% arazas
—_— —_— —_— —_—
1 2 3 4

S51NS, =07

18

Space/time trade-off, Lower bound

51 ={1,3,4} a1

Sz =A{2} @z
5={1,2,3,4} a3
S4=12,4} @y
55 = {1, 3} s
S =aijazas $%% arazas $%% arazas $%% arazas
—_— —_— —_— —_—
1 2 3 4

S51NS, =07

P1 = a1a4

18

Space/time trade-off, Lower bound

51 ={1,3,4} a1

S2 =12} as
5={1,2,3,4} a3
54 = {2’ 4} a4
S5 ={1,3} as
S =aijazas $%% arazas $%% arazas $%% arazas
—— S—— S—— S——
1 2 3 4
S51NS, =07
P1 = a1a4

S5 NS =07

18

Space/time trade-off, Lower bound

51 ={1,3,4} a1

S2 =12} as
5={1,2,3,4} a3
54 = {2’4} a4
S5 ={1,3} as
S =aijazas $%% arazas $%% arazas $%% arazas
—— S—— S—— S——
1 % 3 4
S51NS, =07
P1 = a1a4
S5 NS =07

P> = azas

18

Space/time trade-off, upper bound

e Space=0O(n+ (”)k), Time= O(k - 7 - loglog n)

T

19

Space/time trade-off, upper bound

e Space=0O(n+ (”)k), Time= O(k - 7 - loglog n)

T

e Call letters appearing more than 7 times frequent

19

Space/time trade-off, upper bound

e Space=0O(n+ (f)k), Time= O(k - 7 - loglog n)
e Call letters appearing more than 7 times frequent

e For all k—tuples of frequent letters precompute answers

19

Space/time trade-off, upper bound

e Space=0O(n+ (f)k), Time= O(k - 7 - loglog n)
e Call letters appearing more than 7 times frequent
e For all k—tuples of frequent letters precompute answers

e Have a predecessor data structure for each letter (total size =

O(nm)

19

Space/time trade-off, upper bound

e Space=0O(n+ (f)k), Time= O(k - 7 - loglog n)
e Call letters appearing more than 7 times frequent

e For all k—tuples of frequent letters precompute answers

e Have a predecessor data structure for each letter (total size =

O(nm)

e If P contains non-frequent letter, “brute-force” using
predecessor / successor

19

Space/time trade-off, upper bound

e Space=0O(n+ (f)k), Time= O(k - 7 - loglog n)
e Call letters appearing more than 7 times frequent

e For all k—tuples of frequent letters precompute answers

e Have a predecessor data structure for each letter (total size =

O(nm)

e If P contains non-frequent letter, “brute-force” using
predecessor / successor

19

Space/time trade-off, upper bound

e Space=0O(n+ (f)k), Time= O(k - 7 - loglog n)
e Call letters appearing more than 7 times frequent
e For all k—tuples of frequent letters precompute answers

e Have a predecessor data structure for each letter (total size =
O(nm)

e If P contains non-frequent letter, “brute-force” using
predecessor / successor

P = ANANAS
S =BATMAN AND ANNA SING NANANANA AND EAT BANANAS
0 5 10 15 20 25 30 35 40

19

Space/time trade-off, upper bound

e Space=0O(n+ (f)k), Time= O(k - 7 - loglog n)
e Call letters appearing more than 7 times frequent
e For all k—tuples of frequent letters precompute answers

e Have a predecessor data structure for each letter (total size =
O(nm)

e If P contains non-frequent letter, “brute-force” using
predecessor / successor

P = ANANAS
S =BATMAN AND ANNA SING NANANANA AND EAT BANANAS
0 5 10 15 20 25 30 35 40

20

Space/time trade-off, upper bound

e Space=0O(n+ (f)k), Time= O(k - 7 - loglog n)
e Call letters appearing more than 7 times frequent
e For all k—tuples of frequent letters precompute answers

e Have a predecessor data structure for each letter (total size =
O(nm)

e If P contains non-frequent letter, “brute-force” using
predecessor / successor

P = ANANAS
S =BATMAN AND ANNA SING NANANANA AND EAT BANANAS
0 5 10 15 20 25 30 35 40

21

Space/time trade-off, upper bound

e Space=0O(n+ (f)k), Time= O(k - 7 - loglog n)
e Call letters appearing more than 7 times frequent
e For all k—tuples of frequent letters precompute answers

e Have a predecessor data structure for each letter (total size =
O(nm)

e If P contains non-frequent letter, “brute-force” using
predecessor / successor

P = ANANAS
S =BATMAN AND ANNA SING NANANANA AND EAT BANANAS
0 5 10 15 20 25 30 35 40

22

Space/time trade-off, upper bound

e Space=0O(n+ (f)k), Time= O(k - 7 - loglog n)
e Call letters appearing more than 7 times frequent
e For all k—tuples of frequent letters precompute answers

e Have a predecessor data structure for each letter (total size =
O(nm)

e If P contains non-frequent letter, “brute-force” using
predecessor / successor

P = ANANAS
S =BATMAN AND ANNA SING NANANANA AND EAT BANANAS
0 5 10 15 20 25 30 35 40

23

Space/time trade-off, upper bound

e Space=0O(n+ (f)k), Time= O(k - 7 - loglog n)
e Call letters appearing more than 7 times frequent
e For all k—tuples of frequent letters precompute answers

e Have a predecessor data structure for each letter (total size =
O(nm)

e If P contains non-frequent letter, “brute-force” using
predecessor / successor

P = ANANAS
S =BATMAN AND ANNA SING NANANANA AND EAT BANANAS
0 5 10 15 20 25 30 35 40

24

\JWAWAM\

m »/1,
%

Contact: teresa.anna.steiner@univie.ac.at

25

References

[§ Alberto Apostolico and Mikhail J. Atallah.
Compact recognizers of episode sequences.
Inf. Comput., 174(2):180-192, 2002.

E Philip Bille, Inge Li Ggrtz, Max Rishgj Pedersen, and
Teresa Anna Steiner.
Gapped indexing for consecutive occurrences.
In Proc. 32nd CPM, pages 10:1-10:19, 2021.

[Gautam Das, Rudolf Fleischer, Leszek Gasieniec, Dimitrios
Gunopulos, and Juha Karkkainen.
Episode matching.
In Proc. 8th CPM, pages 12-27, 1997.

[] Massimo Equi, Veli Makinen, and Alexandru |. Tomescu.
Graphs cannot be indexed in polynomial time for
sub-quadratic time string matching, unless SETH fails. 26

