Distributed Maximum Flow in Planar Graphs

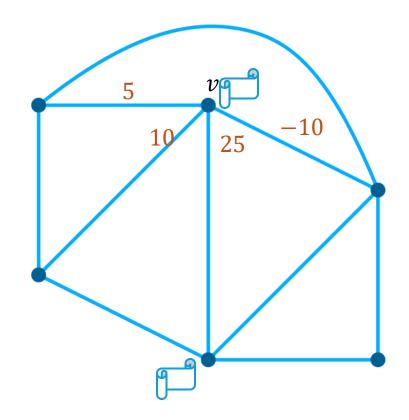
Yaseen Abd-Elhaleem¹,

Michal Dory¹, Merav Parter² and Oren Weimann¹

¹University of Haifa ²Weizmann Institute of Science

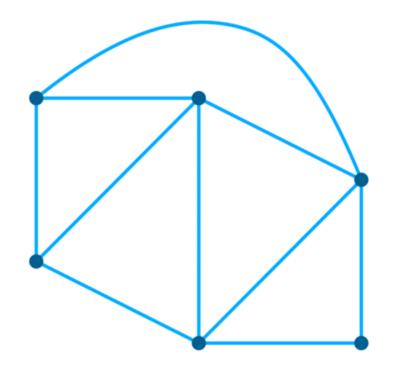
CONGEST

- Vertices = computational units
- Unique Θ(log *n*)-bit ID for vertex
- Synchronous rounds
- Message size = $\Theta(\log n)$ -bits
- Complexity = #rounds
- Graph is planar
- $D \coloneqq G$'s hop-diameter
- I/O is local



Motivation

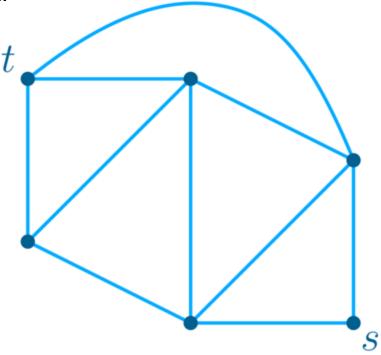
- In general graphs, for various problems (e.g., Max-Flow, MST, Min-Cut):
 - $\tilde{O}(D + \sqrt{n})$ upper bound
 - $\widetilde{\Omega}(D + \sqrt{n})$ existential lower bound
- Planar graphs:
 - Circumvent lower bound topology
 - Rich structure



Maximum *st*-flow

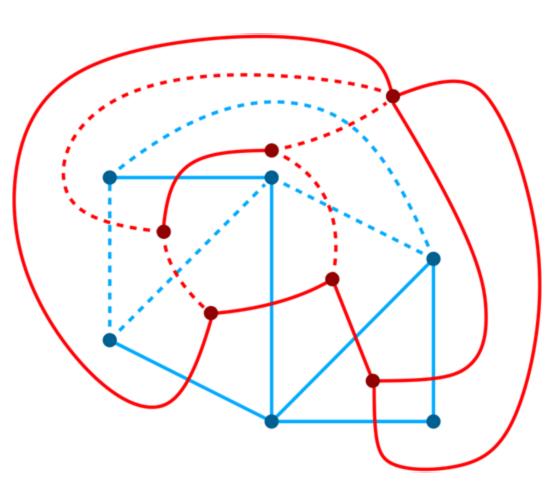
Find max-flow that can be pushed from s to t in graph with edge capacities.

This work	Planar	Directed	Exact	$\tilde{O}(D^2)$
	Planar	Undirected, <i>s,t</i> on same face	$1-\epsilon$ approximation	$D \cdot n^{o(1)}$
[GKK+'15]	General	Undirected	1 + o(1) approximation	$(D+\sqrt{n})n^{o(1)}$
[Vos'23]	Planar	Directed	Exact	$D \cdot n^{1/2+o(1)}$



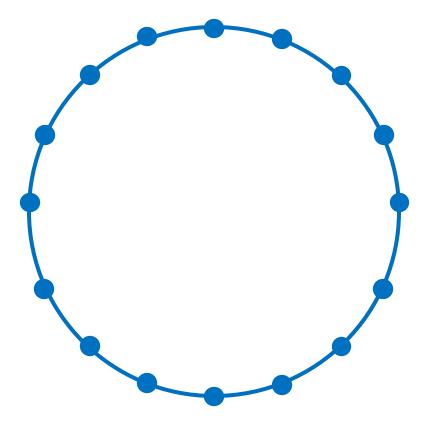
General approach: *duality*!

- The dual graph *G**.
 - Faces of *G* are nodes in *G**
 - Adjacent faces of G are connected in G^*
- Properties.
 - Cuts in *G*^{*} are cycles in *G*
 - Distances in *G*^{*} imply flow in *G*

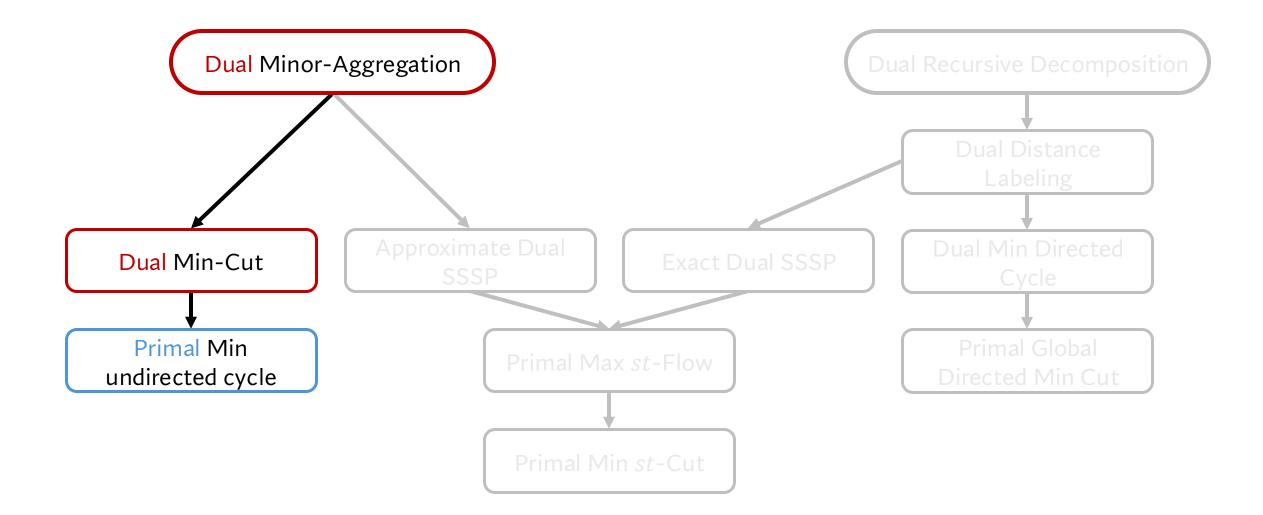


Challenges

- *G*^{*} is not the communication network.
 - Simulate a face?
- The hop-diameter of G^* might be much larger than that of G



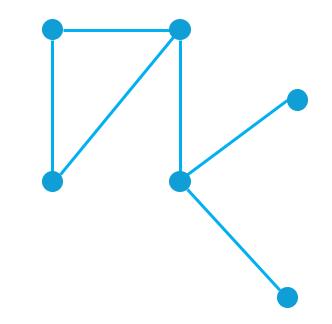
Warm-up: Minimum Weight Cycle



Minor-Aggregation Model

• Round:

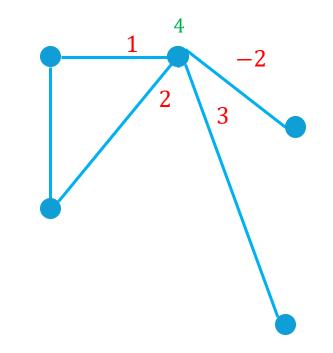
- contract some edges
- compute aggregate operators over vertices' leaving edges
- Aggregate operator:
 - Input: two ℓ -bit strings, a, b
 - Output: a single ℓ -bit string $a \oplus b$
 - E.g. min, +, arg max.



Minor-Aggregation Model

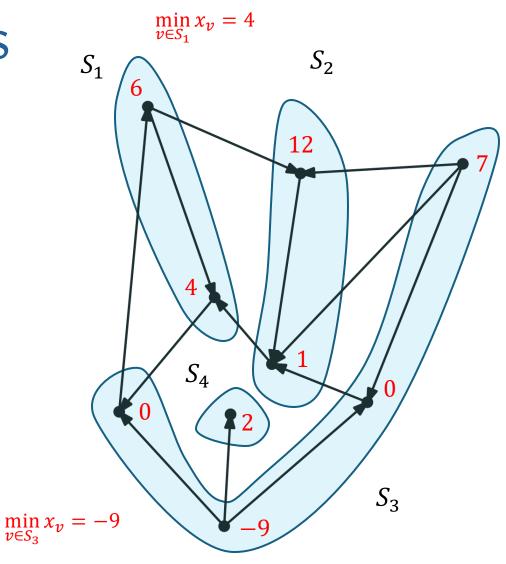
• Round:

- contract some edges
- compute aggregate operators over vertices' leaving edges
- Aggregate operator:
 - Input: two ℓ -bit strings, a, b
 - Output: a single ℓ -bit string $a \oplus b$
 - E.g. min, +, arg max.



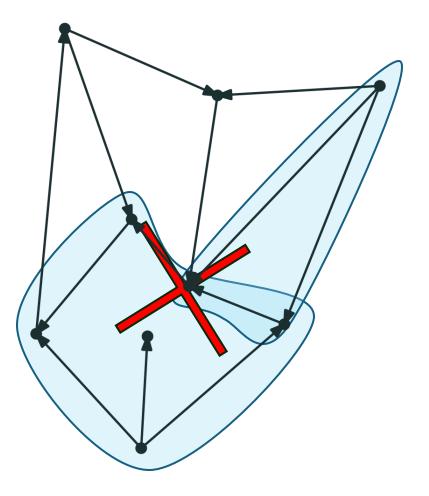
Primal Minor-Aggregations

- Part-wise aggregation.
 - Input: disjoint connected subgraphs $S_1, S_2, ...;$ and inputs x_v for $v \in G$
 - Output: vertices in S_i know $\bigoplus_{v \in S_i} x_v$ for all i
 - $\tilde{O}(D)$ rounds via low-congestion shortcuts [GH'16] in planar graphs
- Minor-aggregation round = $\tilde{O}(1)$ part-wise aggregations [ZGY+'22] = $\tilde{O}(D)$ rounds



Dual Minor-Aggregations

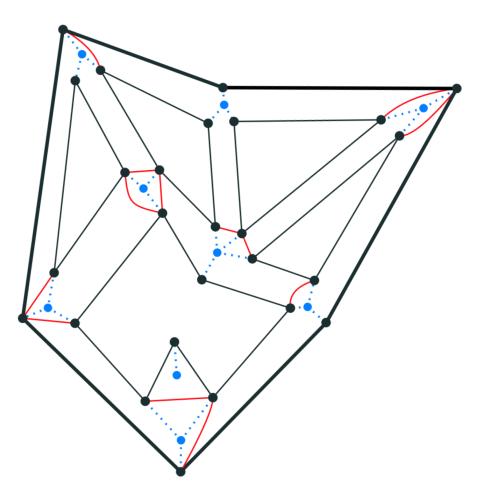
- Aggregation on faces?
 - Set each S_i to be a face?
 - Faces are not disjoint
 - ⇒Challenge
- Solution: related graph \hat{G} [GP'17]
 - faces of G = disjoint subgraphs of \hat{G}
 - \hat{G} has small diameter
 - \hat{G} is planar



Dual Minor-Aggregations

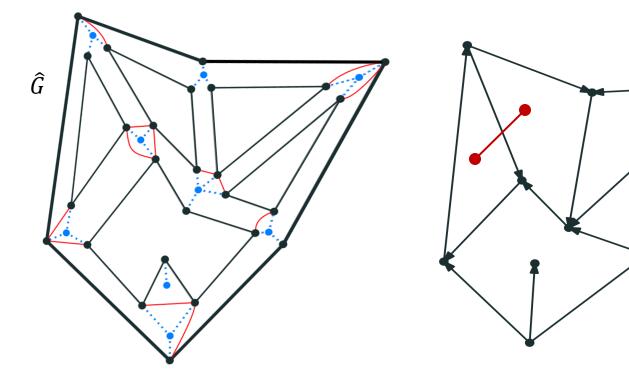
• Aggregation on faces?

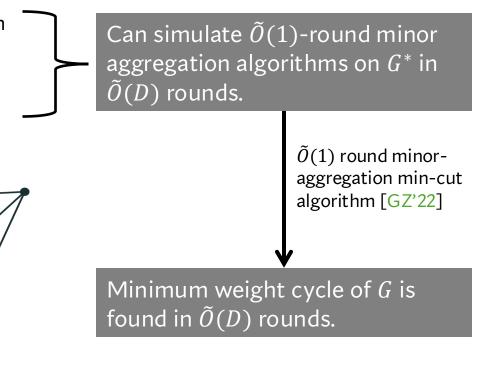
- Set each S_i to be a face?
- Faces are not disjoint
- ⇒Challenge
- Solution: related graph \hat{G} [GP'17]
 - faces of G = disjoint subgraphs of \hat{G}
 - \hat{G} has small diameter
 - \hat{G} is planar



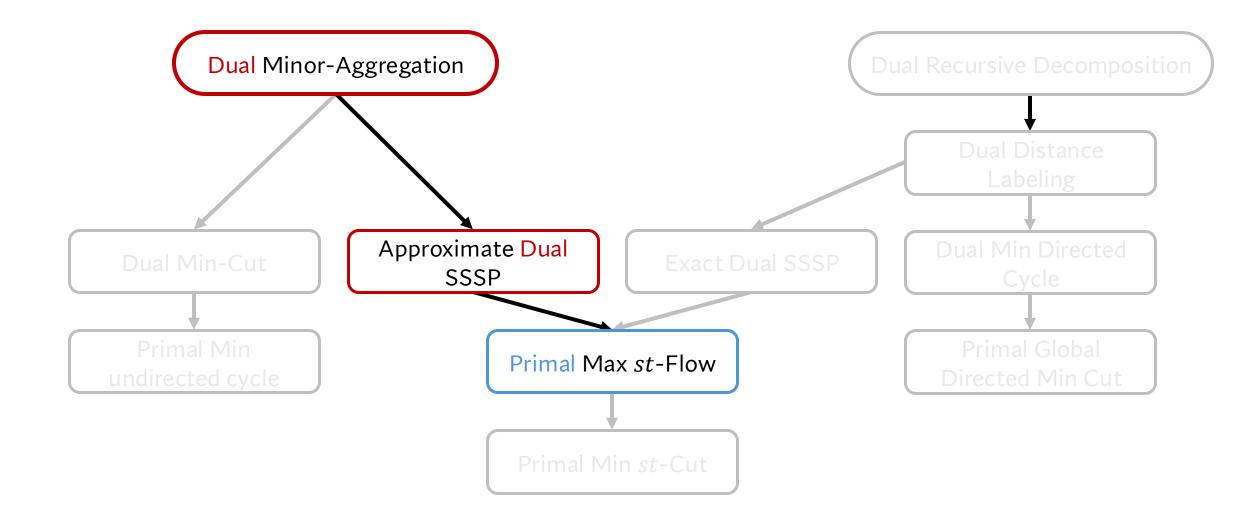
Dual Minor-Aggregations

- [GP'17] implement aggregations on the dual for special cases with \hat{G} in $\tilde{O}(D)$ rounds.
- We generalize \hat{G} to allow aggregations over edges of the dual.

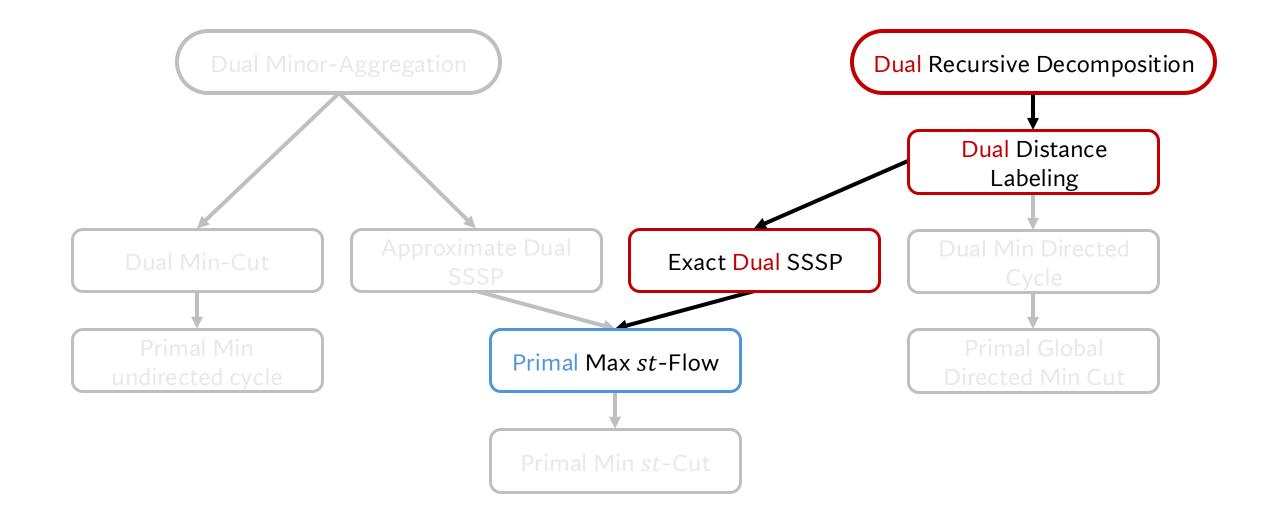




Approximate Maximum st-Flow



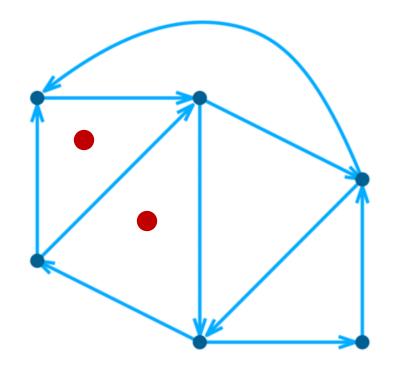
Exact Maximum st-Flow



Maximum *st*-Flow via Dual SSSP

- [Ven'83] (non-trivial):
 - Maximum *st*-flow in $G = \log \lambda$ SSSPs in G^*
 - Positive and negative edge-lengths
 - Arbitrary source

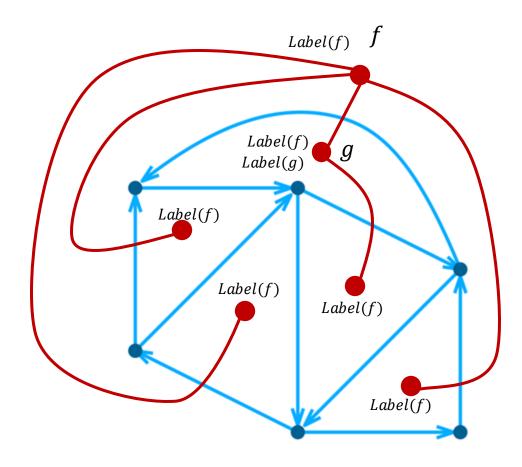
SSSP in G^* within r rounds = max st-flow in G within $\tilde{O}(r)$ rounds



Goal: Dual SSSP

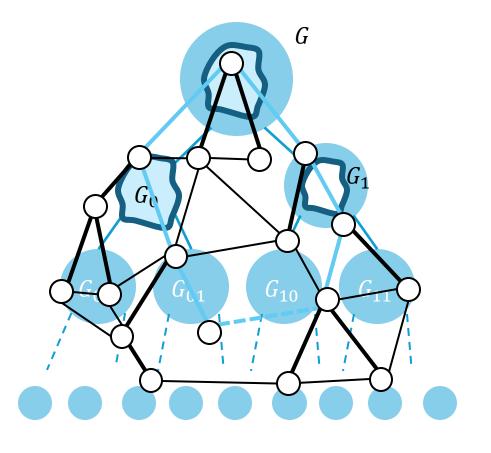
- How?: Distance Labeling
 - Faces assigned ℓ -bits labels

$$\frac{Label(g)}{Label(f)} \rightarrow d(f,g)$$



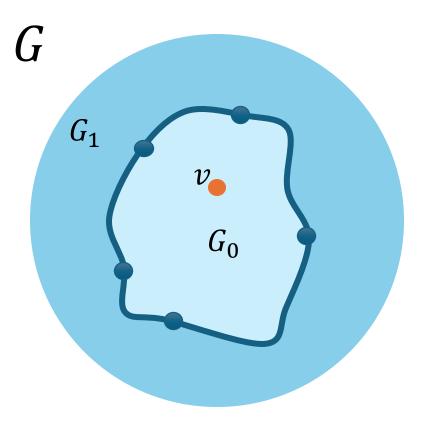
Primal Recursive Separator Decomposition

- Planar Cycle Separators [LT'79, Mil'86]:
 - S = cycle of O(D) vertices
 - $G \setminus S$ is disconnected
 - Components' sizes $\leq \frac{1}{2} |G|$
 - *S* = two paths of a spanning tree + edge *e*
 - Possibly $e \notin E(G)$
- Apply recursively..



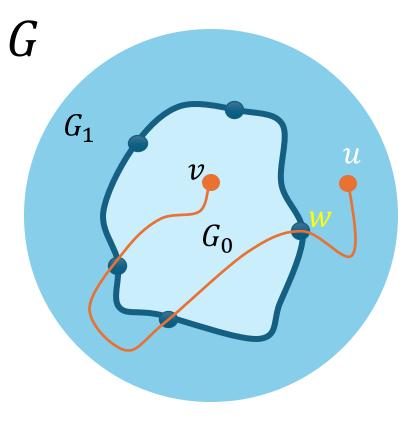
Primal Distance Labeling

- Labels' definition [GPP+'04]:
 - $Label_G(v) = dist(v, s), dist(s, v)$ for all $s \in S$
 - If $v \notin S$, append to the label $Label_{G_i}(v)$
- Label size = $\tilde{O}(D)$



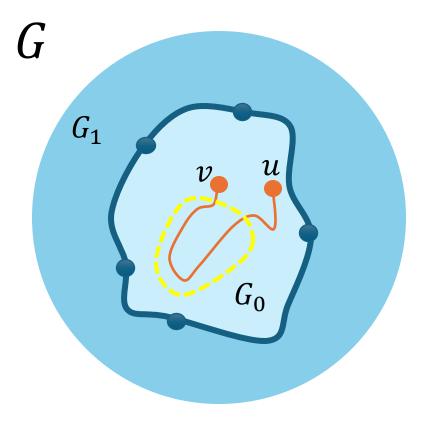
Primal Distance Labeling

- Correctness. Since *S* is a cycle, there are two cases:
 - I. Path crosses *S*



Primal Distance Labeling

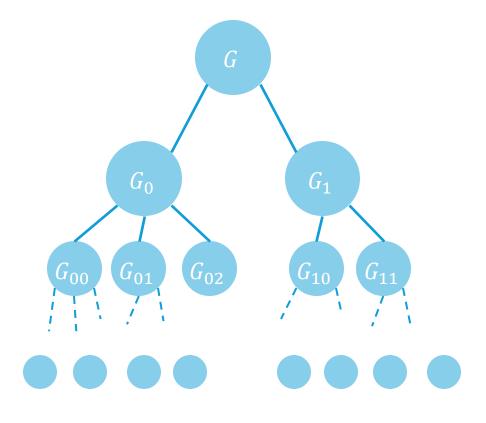
- Correctness. Since *S* is a cycle, there are two cases:
 - I. Path crosses *S*
 - II. Path does not cross *S*



Distributed Primal Labeling Algorithm

- Bounded Diameter Decomposition (BDD) [GP'17, LP'19]:
 - Computed in $\tilde{O}(D)$ rounds
 - Subgraphs are of diameter $\tilde{O}(D)$
 - Same level subgraphs are nearly disjoint
 - \Rightarrow Parallel broadcast of ℓ -bits in all subgraphs of same level in $\tilde{O}(D + \ell)$ rounds

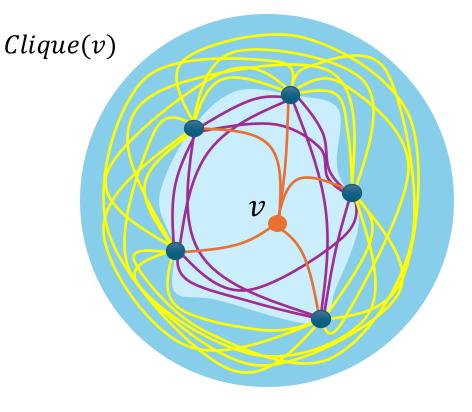
• Application: distance labeling in *G*



Distributed Primal Labeling Algorithm

• Compute the labels bottom-up on BDD:

- Collect leaf subgraphs (locally compute labels)
- Non-leaf subgraphs (recursively):
- 1. Broadcast labels of separator $\tilde{O}(D^2)$ bits
- 2. Locally construct Clique(v)
- 3. Locally compute distances between *v* and separator vertices in *Clique*(*v*)
- $\tilde{O}(D^2)$ rounds

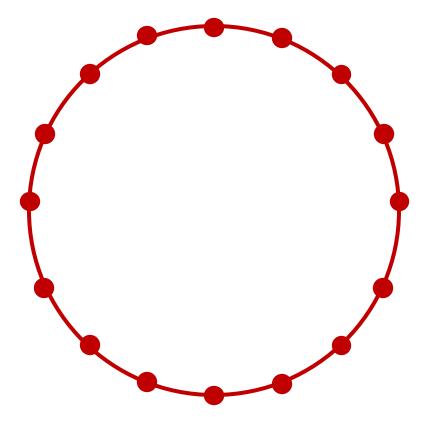


Distributed algorithm for **Dual** Labeling

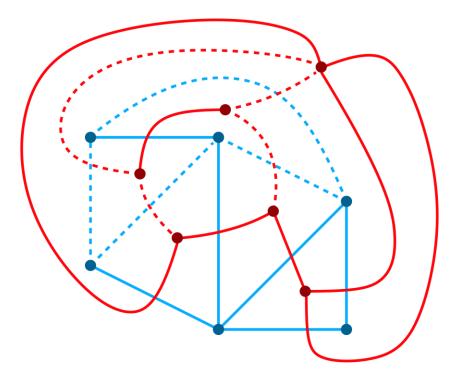
Idea: compute a BDD for the dual and compute Iabeling (??)

Try 1: Naïve approach

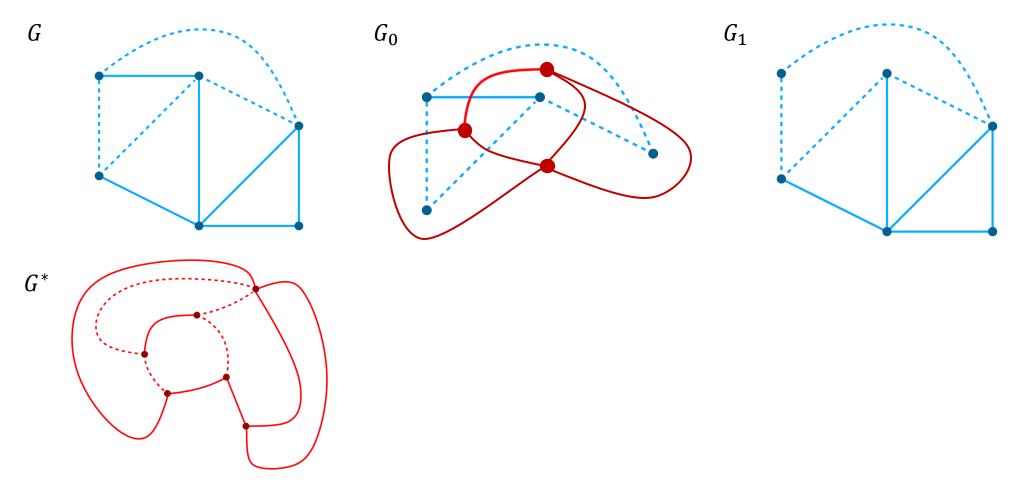
- Run same algorithm on *G**?
 - Not the communication network.
 - The diameter of G^* might be $\Omega(n)$ while D = O(1).
 - => Does not work :/



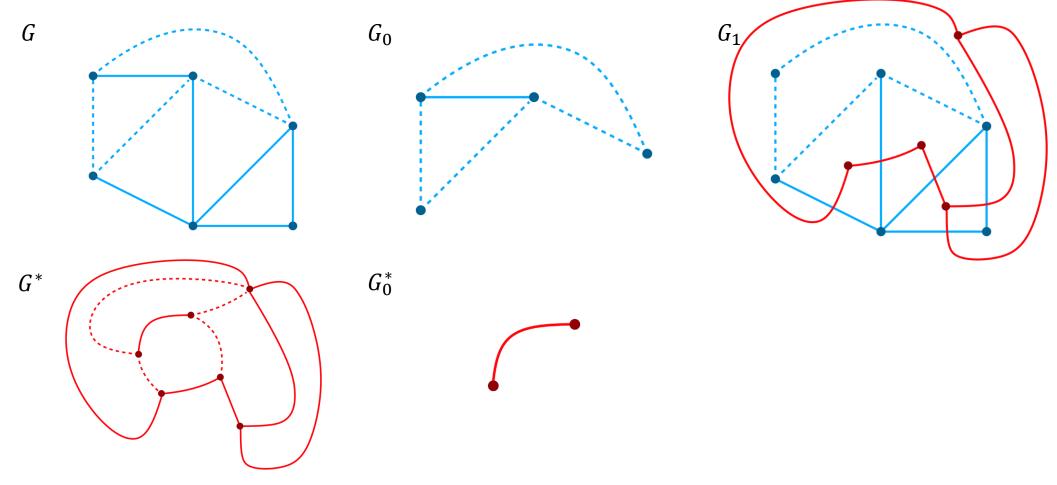
- Key observation: hierarchical decomposition of G is also a decomposition of G^*
 - **Assume** separator S_G is cycle in G
 - Cycle-cut duality => S_G is edge separator of G^*
 - Apply recursively
 - => Has a chance but has difficulties



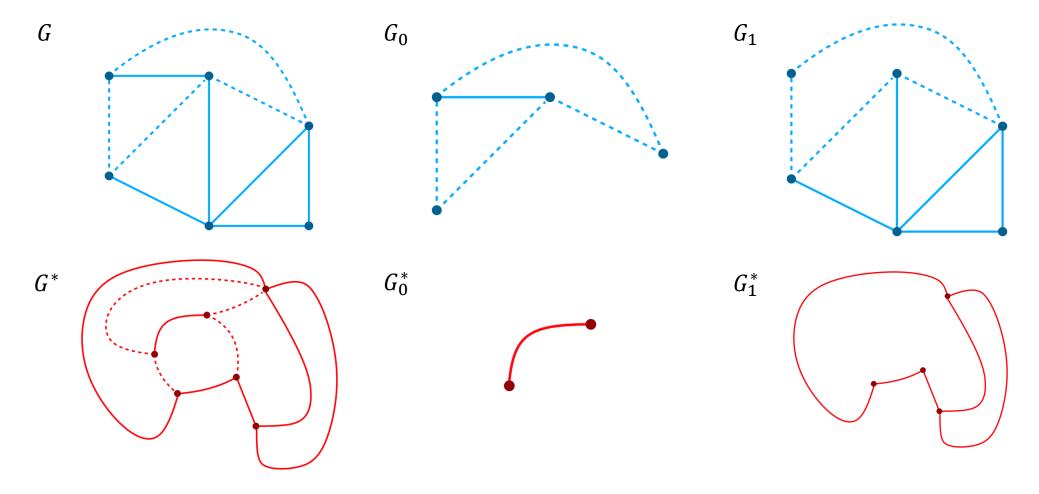
• Dual subgraphs in decomposition ≠ standard dual of primal



• Dual subgraphs in decomposition ≠ standard dual of primal



• Dual subgraphs in decomposition ≠ standard dual of primal

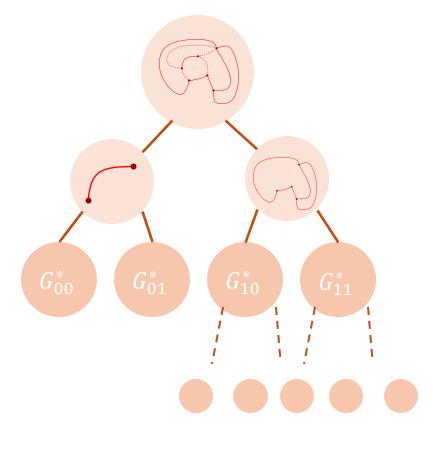


Dual Recursive Separator Decomposition

• Dual separator:

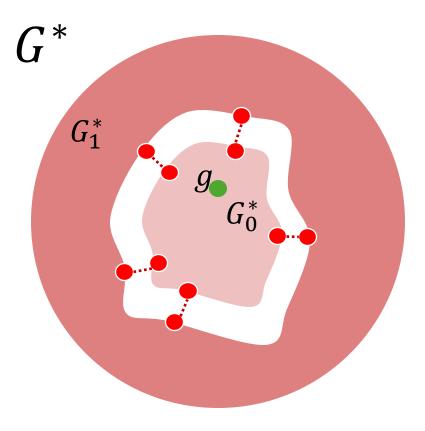
- $F = edges of S in G^*$
- $G^* \setminus F$ is disconnected
- Components are constant factor smaller

• Apply recursively..



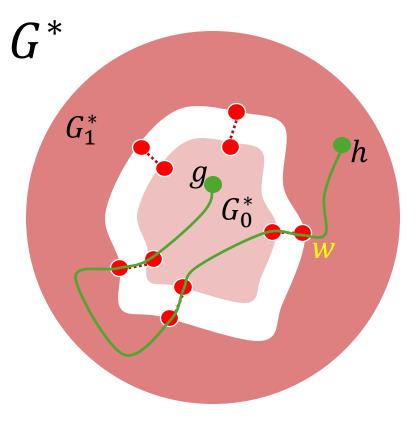
Dual Distance Labeling

- Labels' definition:
 - $Label_{G^*}(g) = dist(g, f), dist(f, g)$ for all $f \in F$
 - If $g \notin F$, append to the label $Label_{G_i}(g)$
- Label size = $\tilde{O}(D)$



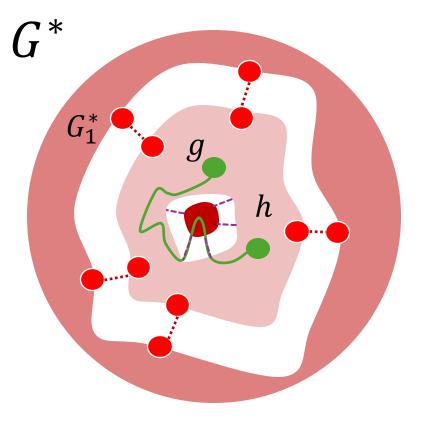
Dual Distance Labeling

- Correctness. Since *F* is a cut, there are two cases:
 - I. Path crosses *F*.



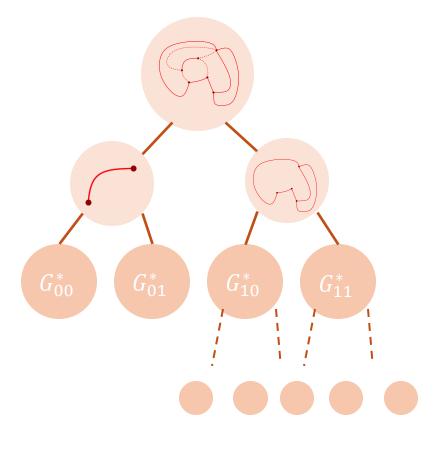
Dual Distance Labeling

- Correctness. Since *F* is a cut, there are two cases:
 - I. Path crosses *F*.
 - II. Path does not cross *F*.



Distributed **Dual** Labeling Algorithm

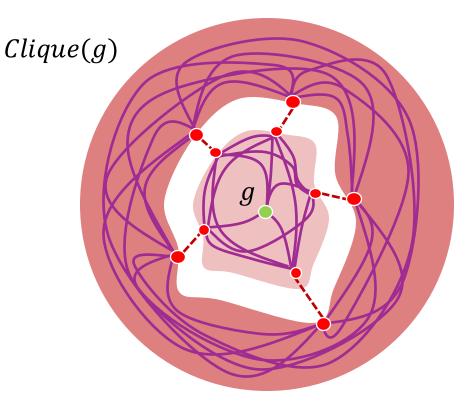
- Dual properties for BDD.
 - Dual separator F of size $\tilde{O}(D)$
 - Can be learned in $\tilde{O}(D)$ -rounds
 - Takes care of complications
- Application: distance labeling in G^* \Rightarrow Max *st*-Flow in *G*



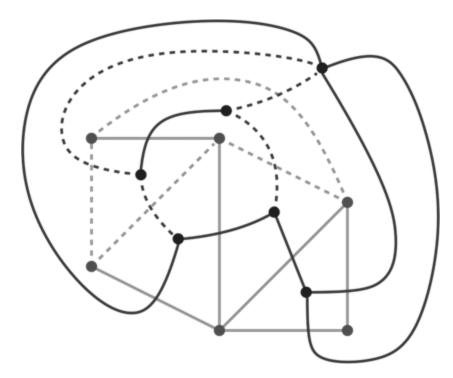
Distributed Dual Labeling Algorithm

• Compute the labels bottom-up on Extended BDD:

- Collect leaf subgraphs (locally compute labels)
- Non-leaf subgraphs (recursively):
- 1. Broadcast labels+ **edges** of separator $\tilde{O}(D^2)$ bits
- 2. Locally construct Clique(g)
- 3. Locally compute distances between g and separator vertices in *Clique*(g)
- $\tilde{O}(D^2)$ rounds = primal complexity!

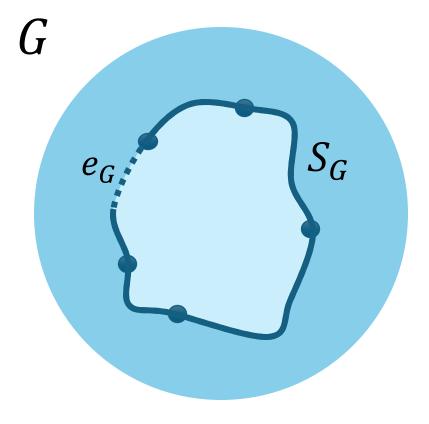


- Key observation: hierarchical decomposition of G is also a decomposition of G^*
 - Assume separator S_G is cycle in G
 - Cycle-cut duality => S_G is edge separator of G^{*}
 - Apply recursively
 - => Has a chance but has difficulties



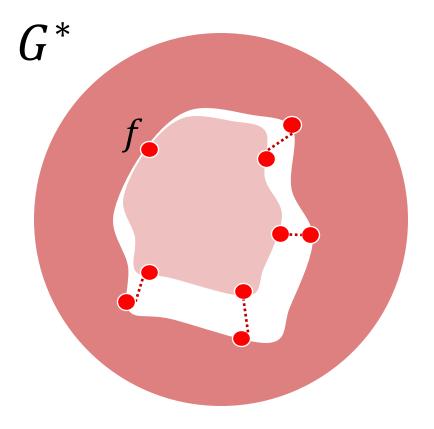
Difficulties

• Separator S_G = two BFS paths plus *virtual* edge *e* that may not be in E(*G*)



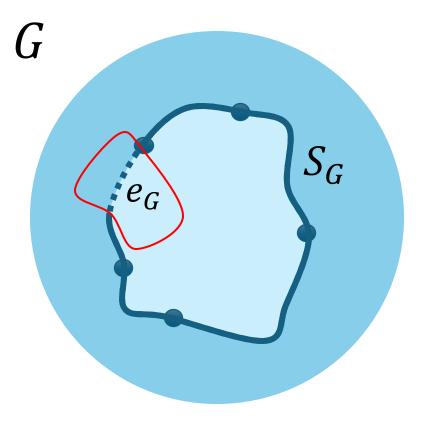
Difficulties

- Separator S_G = two BFS paths plus
 virtual edge e that may not be in E(G)
 - S_G is not a cut in G^* .



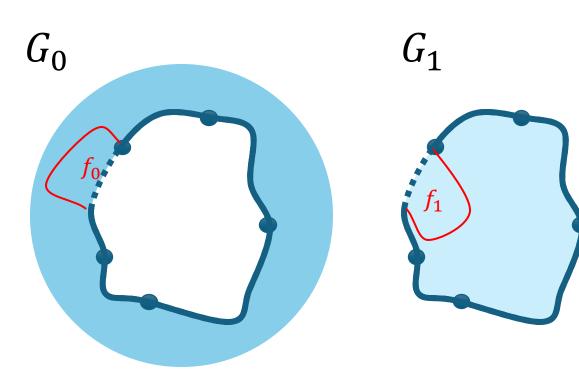
Difficulties

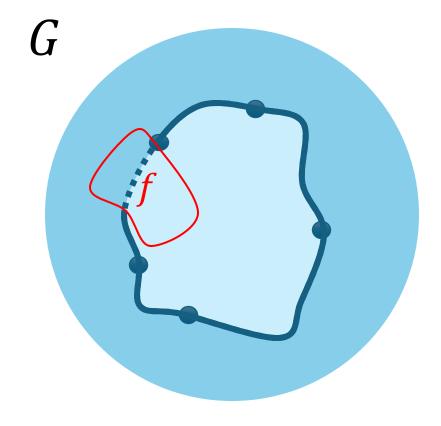
- Separator S_G = two BFS paths plus *virtual* edge *e* that may not be in E(*G*)
 - S_G is not a cut in G^*
 - Adding e_G splits a face (dual node)
 - e_G cannot be communicated on



New Dual: work with *face-parts*, not faces

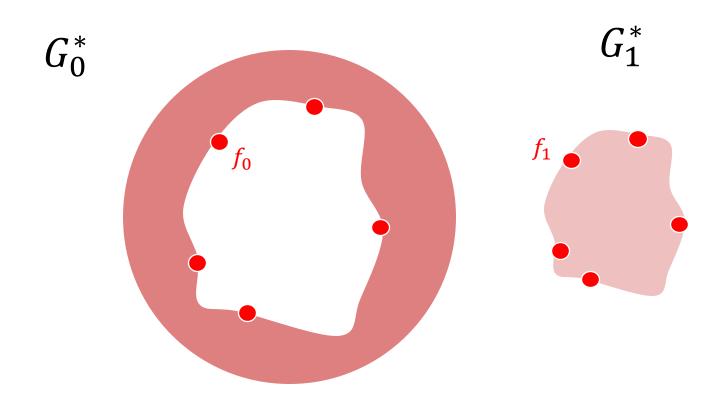
• *Face-part* f_i = subset of edges that belong to the same face f of G

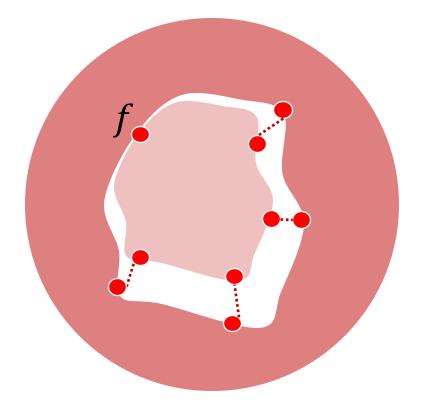




New Dual: work with *face-parts*, not faces

- New dual = node for each face-part as well as faces of *G*
- This is the standard dual G^* when considering G

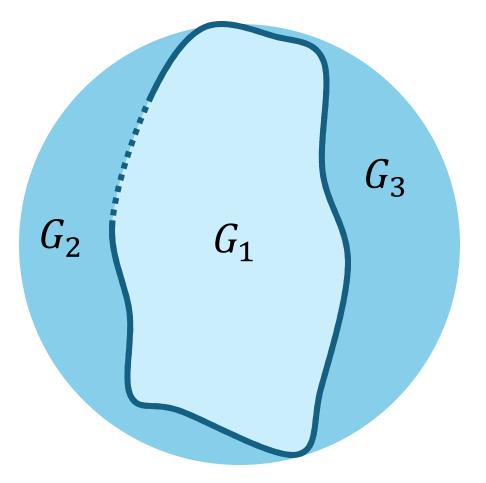




New Structural Properties for BDD

1) Any subgraph of the BDD contains at most $O(\log n)$ face-parts.

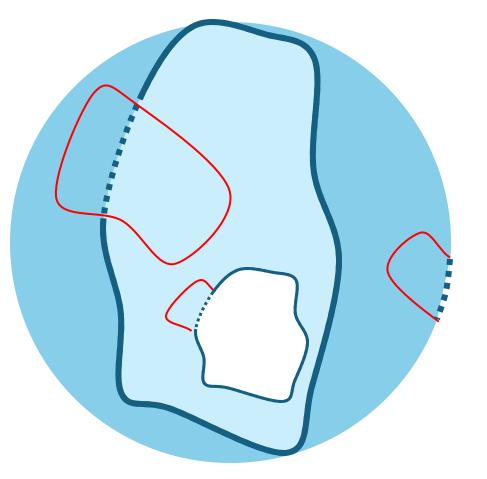
• Non-trivial: subgraph in BDD might be broken into $\widetilde{\Theta}(D)$ subgraphs



New Structural Properties for BDD

1) Any subgraph of the BDD contains at most $O(\log n)$ face-parts.

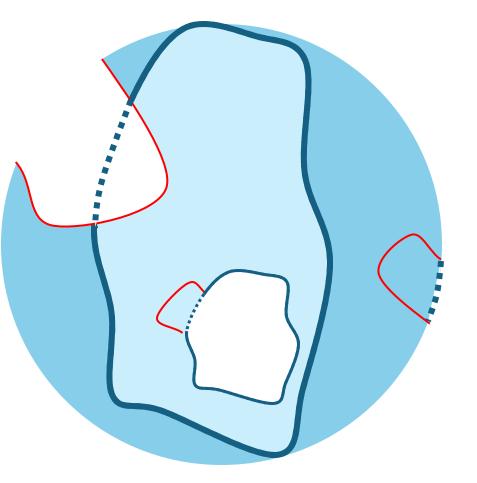
• Non-trivial: subgraph in BDD might be broken into $\widetilde{\Theta}(D)$ subgraphs



New Structural Properties for BDD

1) Any subgraph of the BDD contains at most $O(\log n)$ face-parts.

- Non-trivial: subgraph in BDD might be broken into $\widetilde{\Theta}(D)$ subgraphs
- The face that contains *e* might be already partitioned



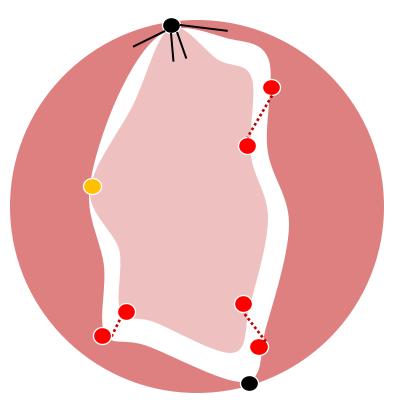
New Dual Separator

2) The set F_X that contains parts and endpoints of S_X is a separator of X of size $\tilde{O}(D)$.

Separator must cut paths between child subgraphs:

(1) Paths can use S_X edges

(2) Paths can use face-parts or the face that contains *e*



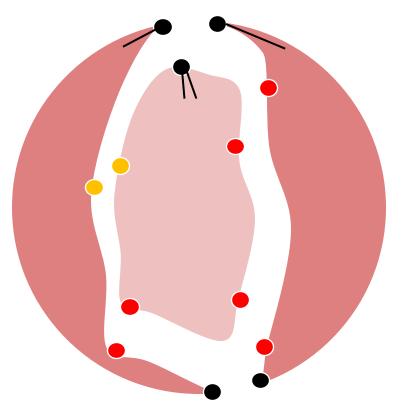
New Dual Separator

2) The set F_X that contains parts and endpoints of S_X is a separator of X of size $\tilde{O}(D)$.

Separator must cut paths between child subgraphs:

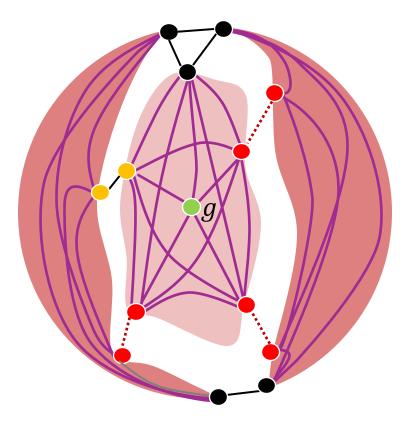
(1) Paths can use S_X edges

(2) Paths can use face-parts or the face that contains *e*



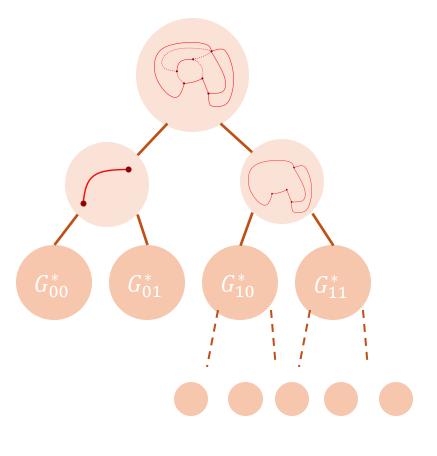
New Dual *Clique*(*g*)

- Vertices: g and node-parts f' of $f \in F_X$ in subgraphs of X^*
- Edges:
 - S_X edges in X^*
 - Clique edges between each two node parts f_1, f_2 of $f \in F_X$
 - Clique edges between *f*, *h* in same child subgraph

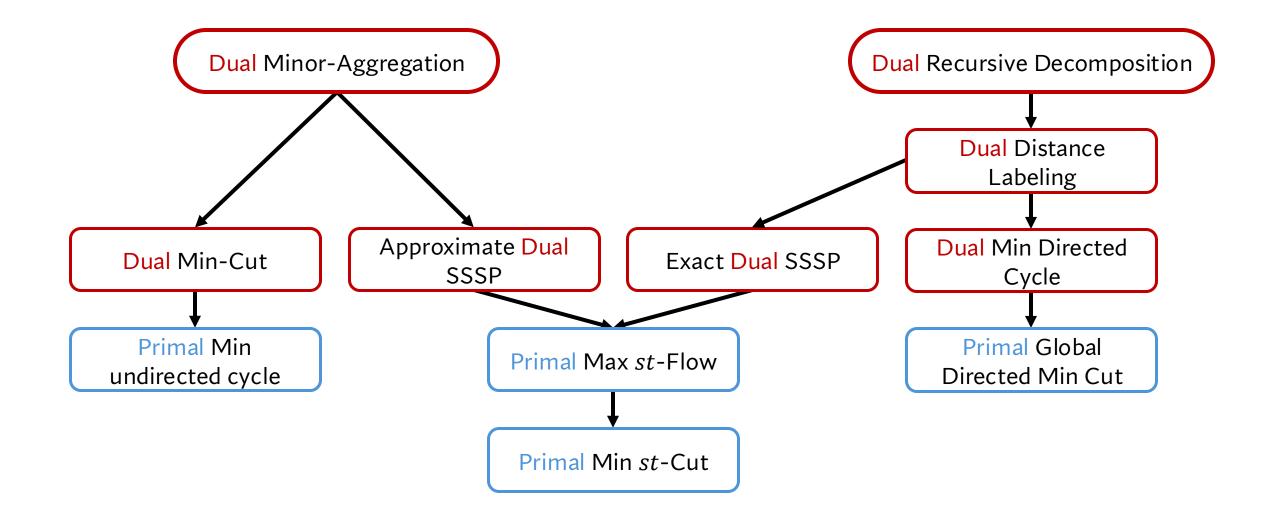


Correct Dual Labeling Algorithm

- Learn new decomposition (faces and face-parts)
- Then apply similar algorithm as in simplified case



Summary



Open problems

- Max *st*-Flow in $\tilde{o}(D^2)$ rounds?
- Directed SSSP in G in $\tilde{o}(D^2)$ rounds?
- Exact Undirected SSSP in $\tilde{O}(D)$ rounds?
- Extend other planar centralized techniques to CONGEST?
- Extension to bounded genus graphs?

Thanks! Questions?