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Abstract

The dual of a planar graph G is a planar graph G∗ that has a vertex for each face of G and an edge
for each pair of adjacent faces of G. The profound relationship between a planar graph and its dual
has been the algorithmic basis for solving numerous (centralized) classical problems on planar graphs
involving distances, flows, and cuts. In the distributed setting however, the only use of planar duality
is for finding a recursive decomposition of G [DISC 2017, STOC 2019].

In this paper, we initiate the study of distributed algorithms on dual planar graphs. Namely, we
extend the distributed algorithmic toolkit (such as recursive decomposition and minor-aggregation)
to work on the dual graph G∗. These tools can then facilitate various algorithms on G by solving a
suitable dual problem on G∗.

Given a directed planar graph G with positive and negative edge-lengths and hop-diameter D,
our key result is an Õ(D2)-round algorithm1 for Single Source Shortest Paths on G∗. This algorithm
implies an Õ(D2)-round algorithm for Maximum st-Flow in G, and an Õ(D2)-round algorithm for
directed Global Minimum Cut in G. Prior to our work, no Õ(poly(D))-round algorithms were known
for these problems. When G is undirected, we further obtain a near optimal Õ(D)-round algorithm
for computing the weighted girth of G, and a D · no(1)-rounds (1 − ›)-approximation algorithm for
Maximum st-Flow in G when s and t lie on the same face.

The main challenges in our work are that G∗ is not the communication graph (e.g., a vertex of
G is mapped to multiple vertices of G∗), and that the diameter of G∗ can be much larger than D
(i.e., possibly by a linear factor). We overcome these challenges by carefully defining and maintaining
subgraphs of the dual graph G∗ while applying the recursive decomposition on the primal graph G.
The main technical difficulty, is that along the recursive decomposition, a face of G gets shattered into
(disconnected) components yet we still need to treat it as a dual node.

We believe that the toolkit developed in this paper for exploiting planar duality will be used in
future distributed algorithms for various other classical problems on planar graphs (as happened in
the centralized setting).

∗Department of Computer Science, University of Haifa.
†Faculty of Mathematics and Computer Science, Weizmann Institute of Science.
1The Õ(·) notation is used to omit poly log n factors.
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1 Introduction

Distributed algorithms for network optimization problems have a long and rich history. These problems
are commonly studied under the CONGEST model [36] where the network is abstracted as an n-vertex
graph G = (V; E) with hop-diameter D; communications occur in synchronous rounds, and per round,
O(log n) bits can be sent along each edge. A sequence of breakthrough results provided Õ(D+

√
n)-round

algorithms for fundamental graph problems, such as minimum spanning tree (MST) [9], approximate
shortest-paths [33], minimum cuts [5], and approximate flow [16]. For general graphs, Õ(D+

√
n) rounds

for solving the above mentioned problems is known to be near optimal, existentially [39].
A major and concentrated effort has been invested in designing improved solutions for special graph

families that escape the topology of the worst-case lower bound graphs of [39]. The lower bound graph
is sparse, and of arboricity two, so it belongs to many graph families. Arguably, one of the most inter-
esting non-trivial families that escapes it, is the family of planar graphs. Thus, a significant focus has
been given to the family of planar graphs, due to their frequent appearance in practice and because of
their rich structural properties. In their seminal work, Ghaffari and Haeupler [13, 14] initiated the line of
distributed planar graph algorithms based on the notion of low-congestion shortcuts. The latter serves the
communication backbone for obtaining Õ(D)-round algorithms for MST [14], minimum cut [14, 18] and
approximate shortest paths [41, 42] in planar graphs.

An additional key tool in working with planar graphs, starting with the seminal work of Lipton and
Tarjan [27], is that of a planar separator path: a path whose removal from the graph leaves connected com-
ponents that are a constant factor smaller. Ghaffari and Parter [17] presented a Õ(D)-round randomized
algorithm for computing a cycle separator of size O(D) which consists of a separator path plus one addi-
tional edge (that is possibly a virtual edge that is not in G). By now, planar separators are a key ingredient
in a collection of Õ(poly(D))-round solutions for problems such as DFS [17], distance computation [26],
and reachability [35]. An important aspect of the planar separator algorithm of [17] is that it employs a
computation on the dual graph, by communicating over the primal graph.

Primal maximum flow via dual SSSP. Our goal in this paper is to expand the algorithmic toolkit for
performing computation on the dual graph. This allows us to exploit the profound algorithmic duality
in planar graphs, in which solving a problem A in the dual graph provides a solution for problem B in
the primal graph. Within this context, our focus is on the Maximum st-Flow problem (in directed planar
graphs with edge capacities). The Maximum st-Flow problem is arguably one of the most classical prob-
lems in theoretical computer science, extensively studied since the 50’s, and still admitting breakthrough
results in the sequential setting, such as the recent almost linear time algorithm by Chen, Kyng, Liu, Peng,
Gutenberg and Sachdeva [2]. Despite persistent attempts over the years, our understanding of the dis-
tributed complexity of this problem is still quite lacking. For general undirected n-vertex graphs, there is a
(1+ o(1))-approximation algorithm that runs in (

√
n+D)no(1) rounds, by Ghaffari, Karrenbauer, Kuhn,

Lenzen and Patt-Shamir [16]. For directed n-vertex planar graphs, a D · n1=2+o(1)-round exact algorithm
has been given by de Vos [4]. No better tradeoffs are known for undirected planar graphs. In lack of
any Õ(poly(D))-round maximum st-flow algorithm for directed planar graphs (not even when allowing
approximation) we ask:

Question 1.1. Is it possible to compute themaximum st-flow in directed planar graphswithin Õ(poly(D))
rounds?

In directed planar graphs with integral edge-capacities, it is known from the 80’s [45] that the maxi-
mum st-flow can be found by solving log – instances of Single Source Shortest Paths (SSSP) with positive
and negative edge-lengths on the dual graph G∗, where – is the maximum st-flow value. We answer
Question 1.1 in the affirmative by designing a Õ(D2)-round SSSP algorithm on the dual graph G∗. Our
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algorithm works w.h.p.2, it works in the most general setting (i.e. when G∗ is directed and has positive
and negative integral edge-lengths) and it matches the fastest known exact SSSP algorithm in the primal
graph. We show:

Theorem 1.2 (Exact Maximum st-Flow in Directed Planar Graphs). There is a randomized distributed
algorithm that given an n-vertex directed planar network G with hop-diameterD and integral edge-capacities,
and two vertices s; t , computes the maximum st-flow value and assignment w.h.p. in Õ(D2) rounds.

No prior Õ(poly(D)) algorithm has been known for this problem, not even when allowing a constant
approximation. We further improve the running time to D · no(1) rounds while introducing a (1 − ›)
approximation, provided that G is undirected and that s and t both lie on the same face with respect to
the given planar embedding:

Theorem 1.3 (Approximate Maximum st-Flow in Undirected st-Planar Graphs). There is a randomized
distributed algorithm that given an n-vertex undirected planar network G with hop-diameter D and integral
edge-capacities, and two vertices s; t lying on the same face, computes a (1− ›)-approximation of the maxi-
mum st-flow value and a corresponding assignment in D · no(1) rounds w.h.p.

This latter algorithm is based on an approximate SSSP algorithm that runs inD ·no(1) rounds in planar
graphs [42]. Our implementation of the algorithm on the dual graph matches its round complexity on
the primal graph. The obtained almost-optimal round complexity improves significantly over the current
algorithm for general graphs that runs in (

√
n +D)no(1) rounds [16].

Minimum st-cut. By thewell-knownMax FlowMinCut theorem of [7], our flow algorithms immediately
give the value (or approximate value) of the minimum st-cut. We show that they can be extended to
compute a corresponding bisection and the cut edges without any overhead in the round complexity.
Moreover, since our exact flow algorithm works with directed planar graphs, it admits a solution to the
directed minimum st-cut problem. To the best of our knowledge, prior to our work, Õ(poly(D))-round
CONGEST algorithms for theminimum st-cut problemwere known only for general graphs with constant
cut values by [34]. This is in contrast to the global (undirected) minimum cut problem that can be solved
in Õ(D) rounds in planar graphs [14, 18].

Directed Global Minimum Cut. The directed global minimum weight cut problem is given a weighted
directed graph and asks to find a bisection (S; V \ S) of the vertex set, such that, the set of edges leaving
S to V \ S is of minimal total weight. To our knowledge, this problem was not studied in the CONGEST
model and is open even for approximations, as opposed to the (directed or undirected) minimum st-cut
problem [4, 34] and the undirected global minimum cut problem [5, 14, 18]. In light of efficient planar
centralized results [31, 46] and motivated by the importance of the problem, we ask:

Question 1.4. Is it possible to compute the directed globalminimumcut in planar graphswithin Õ(poly(D))
rounds?

We answer Question 1.4 in the affirmative by showing an extension to our SSSP algorithm in the dual,
allowing us to compute the minimum weight directed cycle in the dual. By duality, the same set of edges
corresponds to the desired cut and determines a corresponding bisection in the primal, all within the same
Õ(D2) bound on the round complexity:

Theorem 1.5 (Planar Directed Global Minimum Cut). Given a directed planar graph G with non-negative
integral edge weights, there is an Õ(D2) round randomized algorithm that finds a global directed minimum
cut w.h.p..

2W.h.p. stands for a probability of 1− 1=nc for an arbitrary fixed constant c > 0.
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Primal weighted girth via dual cuts. A distance parameter of considerable interest is the network girth.
For unweighted graphs, the girth is the length of the shortest cycle in the graph. For weighted graphs, the
girth is the cycle of minimal total edge weight. Distributed girth computation has been studied over the
years mainly for general n-vertex unweighted graphs. Frischknecht, Holzer andWattenhofer [8] provided
an Ω(

√
n)-round lower bound for computing a (2− ›) approximation of the unweighted girth. The state-

of-the-art upper bound for the unweighted girth problem is a (2−›) approximation in Õ(n2=3+D) rounds,
obtained by combining the works of Peleg, Roditty and Tal [37] and Holzer and Wattenhofer [21]. The
weighted girth problem has been shown to admit a near-optimal lower bound of Ω̃(n) rounds in general
graphs [22,28]. Turning to planar graphs, Parter [35] devised a Õ(D2) round algorithm for computing the
weighted girth in directed planar graphs via SSSP computations. For undirected and unweighted planar
graphs, the (unweighted) girth can be computed in Õ(D) rounds by replacing the Õ(D2)-round SSSP
algorithm by a O(D)-round BFS algorithm. In light of this gap, we ask:

Question 1.6. Is it possible to compute the weighted girth of an undirected weighted planar graph within
(near-optimal) Õ(D) rounds?

We answer this question in the affirmative by taking a different, non distance-related, approach than
that taken in prior work. Our Õ(D) round algorithm exploits the useful duality between cuts and cycles.
By formulating the dual framework of the minor-aggregationmodel, we show how to simulate the primal
exact minimum cut algorithm of Ghaffari and Zuzic [18] on the dual graph. This dual simulation matches
the primal round complexity. The solution to the dual cut problem immediately yields a solution to the
primal weighted girth problem. We show:

Theorem 1.7 (Planar Weighted Girth). There is a randomized distributed algorithm that given an n-vertex
undirected weighted planar network G with hop-diameterD, computes the weighted girth and finds the edges
of a shortest cycle w.h.p. in Õ(D) rounds.

2 Technical Overview

The dual of a planar graphG is a planar graphG∗ that has a node3 for each face ofG. For every edge e inG
there is an edge e∗ in G∗ that connects the nodes corresponding to the two faces of G that contain e . Our
results are based on two main primal tools that we extend to work on the dual graph: Minor Aggregation
and Bounded Diameter Decomposition. We highlight the key ideas of these techniques and the challenges
encountered in their dual implementation. For all the algorithms that we implement in the dual graph,
we match the primal round complexity.

2.1 Minor-Aggregation in the Dual

An important recent development in the field of distributed computing was a new model of computation,
called the minor-aggregationmodel introduced by Zuzic r⃝4 Goranci r⃝ Ye r⃝ Haeupler r⃝ Sun [42], then
extended by Ghaffari and Zuzic [18] to support working with virtual nodes added to the input graph.
Recent state-of-art algorithms for various classical problems can be formulated in the minor-aggregation
model (e.g., the exact min-cut algorithm of [18], and the undirected shortest paths approximation algo-
rithms of [41, 42]). Motivated by the algorithmic power of this model, we provide an implementation
of the minor aggregation model on the dual graph. As noted by [42], minor aggregations can be imple-
mented by solving the (simpler) part-wise aggregation task, where one needs to compute an aggregate

3Throughout, we refer to faces of the primal graph G as nodes (rather than vertices) of the dual graph G∗.
4 r⃝ is used to denote that the authors’ ordering is randomized.
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function in a collection of vertex-disjoint connected parts of the graph. The distributed planar separa-
tor algorithm of [17] implicitly implements a part-wise aggregation algorithm on the dual graph. Our
contribution is in providing an explicit and generalized implementation of the dual part-wise aggregation
algorithm and using it to implement the minor-aggregation model on the dual graph, see Section 4 for
the details. We then use this algorithm for computing the exact minimum weighted cut in the dual graph
G∗, which by duality provides a solution to the weighted girth problem in the primal graph G. We also use
it to simulate the recent approximate SSSP by [42] on the dual graph, leading to our approximate max
st-flow algorithm on the primal graph when s and t are on the same face. Since currently there are fast
SSSP minor-aggregation algorithms only for undirected graphs, this approach leads to an approximate
max st-flow algorithm in undirected planar graphs. To solve the more general version of the max st-flow
problem, we need additional tools described next.

2.2 SSSP in the Dual via Distance Labels

SSSP via distance labels. In order to compute single source shortest paths (SSSP) in the dual graph we
compute distance labels. That is, we assign each face of G (node of G∗) a short Õ(D)-bit string known
by all the vertices of the face s.t. the distance between any two nodes of G∗ can be deduced from their
labels alone. This actually allows computing all pairs shortest paths (APSP) by broadcasting the label of
any face to the entire graph (thus learning a shortest paths tree in G∗ from that face).

Theorem 2.1 (Dual Distance Labeling). There is a randomized distributed Õ(D2)-round algorithm that
computes Õ(D)-bit distance labels for G∗, or reports that G∗ contains a negative cycle w.h.p., upon termina-
tion, each vertex of G that lies on a face f , knows the label of the node f in G∗.

The above theorem with aggregations on G∗ allows learning an SSSP tree in the dual, i.e.,

Lemma 2.2 (Dual Single Source Shortest Paths). There is a randomized Õ(D2) round algorithm that w.h.p.
computes a shortest paths tree from any given source s ∈ G∗, or reports that G∗ contains a negative cycle.
Upon termination, each vertex of G knows for each incident edge whether its dual is in the shortest paths tree
or not.

Our labeling scheme follows the approach of [10] who gave a labeling scheme suitable for graph fam-
ilies that admit a small separator. We show the general idea on the primal graph and then our adaptation
to the dual graph.

As known from the 70’s [27, 29], the family of planar graphs admits cycle separators (a cycle whose
removal disconnects the graph) of small size O(

√
n) or O(D). Since Ω(D) is a lower bound for all the

problems we discuss in the distributed setting, we will focus on separators of size Õ(D). The central-
ized divide-and-conquer approach repetitively removes the separator vertices SG from the graph G and
recurses on the two remaining subgraphs that are a constant factor smaller, constituting a hierarchical
decomposition of the graph with O(log n) levels. The labeling scheme is defined recursively, where the la-
bel of a vertex v in G stores distances between v and SG and recursively the label of v in the subgraph that
contains v (either the interior or the exterior of SG ). Due to SG being a cycle, any shortest u-to-v path P
for any two vertices u; v in G either crosses SG (and the u-to-v distance is known by the distances between
u; v and SG stored in their labels), or P is enclosed in the interior or the exterior of SG (and the u-to-v
distance is decoded from the recursive labels of u and v in the subgraph that contains them). Moreover,
since the separator is of size Õ(D) and since there are O(log n) levels in the decomposition, the labels are
of size Õ(D).

Bounded diameter decomposition (BDD). The BDD is a distributed hierarchical decomposition for
planar graphs, which plays an analogous role to the centralized recursive separator decomposition. It was
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devised by Li and Parter [26] by carefully using and extending a distributed planar separator algorithm of
Ghaffari and Parter [17]. The BDDhas some useful properties that are specific to the distributed setting. In
particular, all the separators and subgraphs obtained in each recursive level have small diameter of Õ(D)
and are nearly disjoint, which allows to broadcast information in all of them efficiently in CONGEST. An
immediate application of the BDD is a distributed distance labeling algorithm for primal planar graphs
that follows the intuition above. In addition, BDDs have found other applications inCONGEST algorithms
on the primal graph G (e.g. diameter approximation, routing schemes and reachability [6, 26, 35]).

Challenges in constructing distance labels for the dual graph. Ideally, we would like to apply the
same idea on the dual graph. However, there are several challenges. First, if we apply it directly, the size of
the separator and the running time of the algorithm will depend on the diameter of the dual graph, that
can be much larger than the diameter D of the primal graph (possibly by a linear factor). So it is unclear
how to obtain a running time that depends on D. Second, even though there are efficient distributed
algorithms for constructing the BDD in the primal graph, it is unclear how to simulate an algorithm on
the dual network, as this is not our communication network.

L
ev
el
1

L
ev
el
2

G G∗

G1 G2 G∗
1 G∗

2

S
G

f1

f2

f3
f4

f5
f6

f7

f∞
f1

f2

f3

f4

f5 f6

f7

Figure 1: Two levels of the recursive separator decomposition of G and their correspondent levels in the
desired dual decomposition of G∗. The black edges are the separating cycle SG in G, the same edges map
to a cut in G∗. For simplicity, the dual node corresponding to the face f∞ of G is not illustrated in G∗ (its
incident edges are the ones missing an endpoint).
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Our approach: recurse on primal, solve on dual. To overcome this, we suggest a different approach.
We use the primal BDD, and infer from it a decomposition of the dual graph. To get an intuition, note
that by the cycle-cut duality, a cycle in G constitute a cut in G∗. This means that the separator of G can
be used as a separator of G∗, in the sense that removing the cut edges (or their endpoints) disconnects G∗.
I.e, a hierarchical decomposition of G can (conceptually) be thought of as a hierarchical decomposition of
G∗. See Figure 1.

Then, we would hope that using [26]’s algorithm for such a hierarchical decomposition for planar
graphs would allow us to apply the same labeling scheme on G∗, where we consider the dual endpoints of
SG edges as our separator in G∗. However, taking a dual lens on the primal decomposition introduces sev-
eral challenges that arise when one needs to define the dual subgraphs from the given primal subgraphs.
This primal to dual translation is rather non-trivial due to critical gaps that arise when one needs to main-
tain information w.r.t. faces of G, rather than vertices of G. To add insult to injury, the nice structural
property of the separator being a cycle is simply not true any more. This is because the separator of [17]
that the BDD of [26] uses is composed of two paths plus an additional edge that exists only when the
graph is two-connected. Otherwise, that edge is not in G and cannot be used for communication. This
virtual edge, if added, would split a face into two parts, introducing several challenges, including:

G G∗

S
G

e
G

f

f

Figure 2: The edge eG in the interior of the face f is the virtual edge added to close a cycle, i.e., P = SG\{eG}.
Note, since eG is not an edge of G, it does not exist in G∗, and f corresponds to a single node in G∗ instead
of two. Thus, removing the separator vertices in G disconnects G, however, removing its real (non-virtual)
edges in G∗ does not disconnect it.

Challenge I: dual subgraphs. There are three complications in this regard: (1) Taking the natural ap-
proach and defining the dual decomposition to contain the dual subgraph of each subgraph in the primal
decomposition, does not work. This is because in the child subgraphs there are faces that do not exist
in their parent subgraph (e.g. in Figure 1, the "external" face of black edges in G1). More severely, the
cycle SG may not even be a cycle of G, rather, a path P accompanied with a virtual edge. Thus, P is not
necessarily a cut in G∗. (2) The second complication arises from the distributed hierarchical decomposi-
tion of [26] which may decompose each subgraph into as many as Õ(D) subgraphs rather than two. This
is problematic in the case where a given face (dual node) is split between these subgraphs. (3) Finally,
the useful property that a parent subgraph in the primal decomposition is given by the union of its child
subgraphs is simply not true in the dual, since removing P does not necessarily disconnect G∗ and may
leave it connected by the face that contains the virtual edge (see Figure 2). In order to disconnect G∗, that
face must be split, which solves one problem but introduces another as explained next.

Challenge II: face-parts. In the primal graph, a vertex is an atomic unit, which keeps its identity through-
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out the computation. The situation in the dual graph is considerably more involved. Consider a primal
graph G with a large face f containingΘ(n) edges. Throughout the recursive decomposition, the vertices
of the face f are split among multiple faces, denoted hereafter as face-parts, and eventually f is shat-
tered among possibly a linear number of subgraphs. This means that a node in a dual subgraph does no
longer correspond to a face f of the primal subgraph, but rather to a subset of edges of f . This creates a
challenge in the divide-and-conquer computation, where one needs to assemble fragments of information
from multiple subgraphs.

New Structural Properties of the Primal BDD.Wemitigate these technical difficulties by characteriz-
ing the way that faces are partitioned during the primal BDD algorithm of [26]. While we run the primal
BDD almost as is, our arguments analyze the primal procedure from a dual lens. Denote each subgraph
in the BDD as a bag. We use the primal BDD to define a suitable decomposition of G∗ that is more con-
venient to work with when performing computation on the dual graph. Interestingly, for various delicate
reasons, in our dual BDD , the dual bagX∗ of a primal bagX in the BDD is not necessarily the dual graph
of X . Finally, we show that each vertex in the primal graph can acquire the local distributed knowledge
of this dual decomposition.

Our dual perspective on the primal BDD allows us to provide a suitable labeling scheme for G∗. Next
we give a more concrete description of our dual-based analysis of the primal BDD. The full details are
provided in Section 5.1.

Few face-parts. We show that in each bag X of the BDD there is at most one face of G that can be
partitioned between different child bags of X and was not partitioned in previous levels. This face is
exactly the critical face f that contains the virtual edge of the bag. We call the different parts of f that
appear in different child bags face-parts. Since the decomposition has O(log n) levels, overall we have at
mostO(log n) face-parts in each bag. Note that we do not count face-parts that were obtained by splitting
the critical face in ancestor bags (i.e., by splitting existing face-parts). For full details, the reader is referred
to Section 5.1.1.

e
X

X4

X1

X2X3

e
X

X4

X1

X2X3

f
e
X

X4

X1

X2X3

f

X5

Figure 3: Three examples of a bag X and its child bags Xi (of distinct colors). The bold black cycle is the
separator SX . The virtual edge eX is dashed. The green child bagX1 is the interior of SX . When eX ∈ E(G)
(left image), we show that no face is partitioned between the child bagsXi . When eX =∈ E(G) (middle and
right images), edges of the critical face f are red. Notice, the face f (middle) is partitioned into two child
bags (X1 and X4) and the face-part f (right) is partitioned into three child bags (X1; X4; X5).

Lemma 2.3 (Few face-parts, Informal). Any bag X of the BDD contains at most O(log n) face-parts.

To prove Lemma 2.3, we consider the separator SX of X computed in the construction of the BDD
by [26]. SX constitutes a separating cycle inX containing at most one virtual edge eX that might not be in
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E(G). The interior of SX defines one child bagX1 ofX , and its exterior may define as many as Õ(D) child
bags X2; X3; : : : (see Figure 3). We prove that the face containing the endpoints of eX is the only face that
might get partitioned in the bag X . First, we show that if eX ∈ E(G) then no face is partitioned, and all
faces are entirely contained in one of the child bags. If eX =∈ E(G), then we show that the critical face is
the only face of G that can be partitioned inX . We remark that face-parts can also be further partitioned,
as shown in Figure 3.

Dual bags and separators. Since we are interested in faces of G, we trace them down the decomposition
and take face-parts into consideration when defining the dual bags. That is, both the faces and the face-
parts that belong to a bagX have corresponding dual nodes inX∗. We connect two nodes ofX∗ by a dual
edge only if their corresponding faces share a primal (non-virtual) edge in X . If X = G, then there are no
face-parts and X∗ is the standard dual graph G∗. For full details, the reader is referred to Section 5.1.

As mentioned earlier, we would like the separator of a bagX to constitute a separator forX∗. We show
that this is almost the case. In particular, we define a set FX of size Õ(D) that constitutes a separator in
X∗. The set FX consists of (1) nodes incident to dual edges of SX in X∗, and (2) nodes corresponding to
faces or face-parts that are partitioned between child bags of X∗. See Figure 4.

X∗
X∗

1

X∗
2

X∗
3

X∗
4 X∗

5

Figure 4: A bag X∗ on the left and its child bags on the right. Each shadow color demonstrates a distinct
child bag ofX∗. Each edge that is shadowed by a color, is entirely contained in the child bag corresponding
to that color. The nodes shown inX∗ are the nodes of FX . Some of these nodes are partitioned into several
nodes in different child bags of X∗. The black nodes are nodes of X∗ that are incident to a (dual) edge of
SX , the yellow node corresponds to the critical face ofX , and the red nodes correspond to face-parts ofX .
Notice how for the face-parts and the critical face ofX there are incident edges, each is entirely contained
in a distinct child bag of X∗. Edges that are not contained in any child bag of X∗ are (dual) edges of SX .

Following the high-level idea of the labeling scheme, the set FX is crucial. Themain structural property
it provides is the following.

Lemma 2.4 (Dual Separator - Informal). Any path in X∗ that is not entirely contained in a single child bag
of X∗ must intersect FX .

The above lemma is proved in Section 5.1.2. Intuitively, when X∗ is split into its child bags, some of
its nodes are "shattered" (those that correspond to its critical face or its O(log n) face-parts), and some of
its edges are removed (dual SX edges). We show how to assemble X∗ from its child bags by considering
faces and face-parts of child bags that correspond to nodes of FX .
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Distributed knowledge. A node f in X∗ is simulated by the vertices of the corresponding face or face-
part f of X , and each dual edge adjacent to f will be known by one of its endpoints. In particular, we
assign each face and face-part in a bag X a unique Õ(1)-bit identifier and learn for each vertex v ∈ X ,
the set of faces and face-parts containing it and its adjacent edges. This is done by keeping track of G’s
edges along the decomposition. At first we learn G∗ and then extend this recursively to its child bags. The
implementation relies on the fact that we have only a few face-parts in each bag (Lemma 2.3) preventing
high congestion when we broadcast information about face-parts to learn the dual nodes. For details see
Section 5.1.3.

The labeling scheme. Our next goal is to use the decomposition in order to compute distances in the
dual graph. More concretely, we (distributively) compute, for every node in every bag X∗, a short label
of size Õ(D), such that given the labels alone of any two nodes in X∗ we can deduce their distance. The
labeling scheme is a refinement of the intuition given earlier. For full details, the reader is referred to
Section 5.2.

Recall, the set FX plays the role of a node separator of X∗ (Lemma 2.4). A node g =∈ FX of X∗ corre-
sponds to a real face of G (i.e. not a face-part) contained in X . The distance label LabelX∗(g) of g =∈ FX
is defined recursively. If X∗ is a leaf in the decomposition then LabelX∗(g) stores ID(g ) and the distances
between g and all other nodes h ∈ X∗. Otherwise, the label consists of the ID of X , the distances in X∗

between g and all nodes of FX , and (recursively) the label of g in the child bag ofX∗ that entirely contains
g . In case g ∈ FX , we simply store the distances between g and all other nodes in FX . The labels are of
size Õ(D)-bits since |FX | = Õ(D) and since the BDD is of a logarithmic height.

The correctness follows from Lemma 2.4. I.e, a g -to-h shortest path P in X∗ is either: (1) Entirely
contained in X∗

i , and distX∗(g; h) can be deduced from LabelX∗
i
(g) and LabelX∗

i
(h), or (2) P intersects FX

with an edge, then distX∗(g; h) = minf ∈F
X
{distX∗(g; f ) + distX∗(f ; h)}. If one of g or h is a node of FX

then distances are retrieved instantly, as each node in X∗ stores its distances to FX .

The algorithm. We compute the distance labels bottom-up on the decomposition. In the leaf bags, due
to their small size (Õ(D)-bits) we allow ourselves to gather the entire bag in each of its vertices. Then,
vertices locally compute the labels of faces and face-parts that contain them. If a negative cycle is detected,
it gets reported via a global broadcast on G and the algorithm terminates.

X∗
1

X∗
2

X∗
3

g

X∗
4

Figure 5: The graph DDG(g). The blue node is g , other nodes are nodes of FX , in particular, red nodes
correspond to face-parts and black nodes to endpoints of SX . The blue edges represent distances between
nodes that belong to the same child bag of X∗, red edges connect face-parts of the same face in X∗, and
black edges are dual edges to SX edges. For simplicity, the figure is undirected.

In non-leaf bags, we broadcast Õ(D2) information that includes labels of nodes in FX in the child bags
(Õ(D) labels, each of size Õ(D)), and the edges of the separator. Since all the bags in the same level have

9



Õ(D) diameter and are nearly disjoint, we can broadcast all the information in Õ(D2) rounds in all bags.
We prove that based on this information nodes can locally deduce their distance label in X∗.

In particular, each vertex v ∈ X that belongs to a face or a face-part g of X constructs locally a Dense
Distance Graph denotedDDG(g). DDG(g) is a small (non-planar) graph (with Õ(D) vertices and Õ(D2)
edges) that preserves the distances in X∗ between pairs of nodes in FX ∪ {g}. See Figure 5. Via (local)
APSP computations on the DDGs, v learns the distances between g and FX nodes in X∗ (i.e., constructs
LabelX∗(g)). Again, vertices check for negative cycles locally (in the DDG). To prove correctness, we show
that each shortest path P inX∗ can be decomposed into a set of subpaths and edges whose endpoints are
in FX ∪ {g}. Each such subpath is entirely contained in a child bag of X∗ (so its weight can be retrieved
from the already computed labels) and each such edge is a (dual) edge of SX (whose identity and weight
were broadcast). For full details, the reader is referred to Section 5.3.

Finally, in order to compute distances from any given node s ∈ G∗, it suffices to broadcast its label
to the entire graph. Thus, vertices can learn locally for each face of G that contains them the distance
from s . To learn an SSSP tree from s in G∗, for each node g in G∗ we mark its incident edge e = (f ; g)
that minimizes dist(s; f ) + w(e). For this task, we use our Minor-Aggregation implementation on G∗.
Concluding our main result, a labeling scheme that gives dual SSSP and hence primal maximum st-flow.

2.3 Flow Assignments and Cuts

Maximum st-flow. It was shown in the 90’s by Miller and Naor [30], that an exact st-flow algorithm on
a directed planar graph G with positive edge-capacities can be obtained by log – applications of a SSSP
algorithm on the dual graph G∗ with positive and negative edge-weighs (each application with possibly
different edge weights). We use this result as a black-box. At the end, we obtain the flow value and the
flow assignment to the edges of G. This works in Õ(D2) rounds, since – (the value of the maximum
st-flow) is polynomial in n and since our dual SSSP algorithm terminates within Õ(D2) rounds.

Approximatemaximum st-flow. For the case of undirected planar graphs where s and t lie on the same
face with respect to the given embedding, we further obtain an improved round complexity at the cost of
solving the problem approximately. Namely, it was shown in the 80’s by Hassin [20] that in this setting
it suffices to use an SSSP algorithm on the dual graph after augmenting it with a single edge, dual to the
edge (s; t), that is limited to positive edge-weights and to undirected graphs. Since s and t are on the
same face it is possible to add such an edge while preserving planarity. Note that adding this edge splits
a node in the dual graph. We show that we can still simulate efficently minor-aggregation algorithms
on the augmented dual graph. To compute SSSP on that graph we use an SSSP algorithm by [42] that
works in the minor-aggregation model. In particular, it computes a (1+ ›)-approximate SSSP tree within
D · no(1) rounds, which allows us to find a (1− ›)-approximate flow value in this time.

Finding the flow assignment. As mentioned above, our exact maximum st-flow algorithm also gives
a flow assignment. However, in the approximate case, our algorithm easily gives the approximate flow
value, but it is not guaranteed to give a corresponding flow assignment due to the fact that the reduction
we use by [20] is meant to be used with an exact algorithm. In particular, to have an assignment, the
outputted SSSP tree needs to (approximately) satisfy the triangle inequality. However, most distance
approximation algorithms do not satisfy that quality. To overcome this, we apply a method of [40], that
given any approximate SSSP algorithm produces an SSSP tree that (approximately) satisfies the triangle
inequality. To obtain an assignment, by [40], we have to apply the approximate SSSP algorithm Õ(1)
times each on different virtual graphs related to the dual graph. This is not immediate, and raises several
challenges. Most importantly, their algorithm was not implemented in the minor-aggregation model so
it is not immediate to simulate it on the dual graph. We exploit the features of the minor-aggregation
model excessively in order to resolve this complication.
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Minimum st-cut. By the celebrated min-max theorem of Ford and Fulkerson [7], the exact (or approxi-
mate) value of the max st-flow is equivalent to that of the min st-cut. We show that our algorithms can
also be extended to compute a corresponding bisection and mark the cut edges of the min st-cut. In the
exact case, we use classic textbook methods (e.g, residual graphs), and since this flow algorithm works for
directed planar graphs, we obtain a directed minimum st-cut. In the approximate case, we have to work
harder and exploit the minor-aggregation model on the dual graph one last time, in which we apply a
special argument on the cycle-cut duality that was given in the 80’s by Reif [38].

Directed global minimum cut. We exploit our techniques to find also the directed global minimum
cut. The general idea is simple, we use the cycle-cut duality: finding the (directed) minimum cut in G
amounts to finding the minimum weight (directed) simple cycle C in G∗. Thus, given an extended BDD
of G and having distance labels already computed in Õ(D2) rounds for all dual bags in the BDD, we have
that any shortest cycle of G∗ either intersects a dual separator node or is entirely contained in one of
G∗’s child bags. Thus, in order to find C, we take the minimum over all: (i) directed cycles that intersect
separator nodes of G∗ (deduced by pairwise decoding labels of the separator nodes), and (ii) minimum
directed cycles in G∗’s child bags (found recursively). However, we note that the duality does not hold
in general directed planar graphs, which complicates the above approach. I.e., in order for the duality to
hold, we have to work with a graph where for each edge, its reversal dart (an edge in the opposite direction)
is present, so we add those darts. Then, we should ensure that the cycles we consider are simple darts
cycles (i.e. a cycle where no edge and its reversal dart appear together), which we do by investigating two
options related to the dual separator. Finding the cut bisection is done simply by detecting connected
components (in the undirected sense) after the removal of the cut edges and their reversal darts.

Roadmap. The rest of the paper is organized as follows. Section 3 discusses preliminaries. Section 4
gives an overview of our minor-aggregation simulation on the dual graph and its applications for the
weighted girth, where full details and proofs appear in Appendix B. Our labeling scheme for the dual
graph appears in Section 5, and our applications for max st-flow, min st-cut appear in Section 6, while
the directed global min-cut appears in Section 7. See also Figure 6.

Dual Minor-Aggregation
(Section 4, Appendix B)

Undirected Weighted Girth
(Theorem 1.7)

Approximate Dual SSSP

Extended BDD
(Section 5.1)

Dual Distance Labeling
(Section 5.2)

Exact Dual SSSP
(Section 5.3)

Primal Max st-Flow
(Section 6.1)

Primal Directed Global Min-Cut
(Section 7)Primal Min st-Cut

(Section 6.2)

Figure 6: A roadmap of the paper.

11



3 Preliminaries

We denote by G = (V; E) the directed (possibly weighted) simple planar network of communication, and
by D the network’s undirected and unweighted (hop) diameter. Let S be a set of vertices or edges, we
denote by G[S] the subgraph of G induced by S.

The CONGESTmodel. Wework in the standard distributed CONGESTmodel [36]. Initially, each vertex
knows only its unique O(log n)-bit identifier and the identifiers of its neighbors. Communication occurs
in synchronous rounds. In each round, each vertex can send (and receive) an O(log n)-bit message on
each of its incident edges (different edges can transmit different messages). When the edges of G are
weighted we assume that the weights are polynomially bounded integers. Thus, the weight of an edge
can be transmitted in O(1) rounds. This is a standard assumption in the CONGEST model.

Distributed storage. When referring to a distributed algorithm that solves some problem on a network
G, the input (and later the output) is stored distributively. That is, each vertex knows only a small (local)
part of the information. E.g. when computing a shortest paths tree from a single source vertex s , we
assume that all vertices know (as an input) the ID of s and the weights and direction of their incident
edges. When the algorithm halts, each vertex knows its distance from s and which of its incident edges
are in the shortest paths tree.

Planar embedding. Let G = (V; E) be a directed planar graph. The geometric planar embedding of G is
a drawing of G on a plane so that edges intersect only in vertices. A combinatorial planar embedding of G
provides for each v ∈ G, the local clockwise order of its incident edges, such that, the ordering of edges
is consistent with some geometric planar embedding of G. Throughout, we assume that a combinatorial
embedding of G is known locally for each vertex. This is done in Õ(D) rounds using the planar embedding
algorithm of Ghaffari and Haeupler [13].

The dual graph G∗. The dual of the primal planar graph G is a planar graph, denoted G∗. The nodes
of G∗ correspond to the faces of G. The dual graph has an edge e∗ for each pair of faces in G that share
an edge e ∈ G (and a self-loop when the same face appears on both sides of an edge). If e is directed
then the direction of e∗ is from the face on the left of e to the face on the right of e where left and right
are defined with respect to the direction of e . Observe that if two faces of G share several edges then
G∗ has several parallel edges between these faces. I.e., G∗ might be a multi-graph even when the primal
graph G is a simple graph. See Figure 7. Since the mapping between edges of G and G∗ is a bijection, we
sometimes abuse notation and refer to both e and e∗ as e . We refer to the vertices of G as vertices and to
the vertices of G∗ as nodes.

Figure 7: The graph G in blue and its dual graph G∗ in red. A primal cycle and its dual cut are dashed.

We use the well-known duality between primal cycles and dual cuts:
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Fact 3.1 (Undirected Cycle-Cut Duality [25]). A set of edges C is a simple cycle in an embedded connected
planar graph G if and only if C is a simple cut in G∗ (a cut C is said to be simple if when removed, the
resulting graph has exactly two connected components).

The face-disjoint graph Ĝ. In the distributed setting, the computational entities are vertices and not
faces. Since a vertex can belong to many (possibly a linear number of) faces of G, this raises several
challenges for simulating computations over the dual graph G∗: (1) We want to communicate on G∗ but
the communication network is G. (2) G∗ might be of a large diameter (up toΩ(n) even when the diameter
of G is D = O(1)). (3) We wish to compute aggregate functions on sets of faces of G. To do so efficiently
we want faces to be vertex-disjoint.

To overcome these problems, the face disjoint graph Ĝ was presented in [17] as a way for simulating
aggregations on the dual graph G∗ in the distributed setting, which we slightly modify here. As it is
mainly a communication tool, we think of Ĝ as an undirected unweighted graph, however, it will still allow
working with weighted and directed input graphs G, as each endpoint of an edge in Ĝ that represents an
edge of G∗, shall know the weight and direction of that edge. Intuitively, Ĝ can be thought of as the result
of duplicating all edges of G so that faces of G map to distinct faces of Ĝ that are both vertex and edge
disjoint. See Figure 8.

f∞

C∞

w

w1
w

Figure 8: On the left, the primal graph G. On the right, the face-disjoint graph Ĝ. Each vertex in G has a
star-center (blue) copy in Ĝ, in addition to deg(v) (black) additional copies. Black edges in Ĝ are duplicates
of G edges, such that, connected components induced by them map to faces of G, e.g., the face f∞ of G
maps to the component C∞ in Ĝ (thick black). Dashed blue edges connect each star-center to other copies
of the same vertex and solid blue edges connect two components if and only if there corresponding faces
should be connected in G∗. For example, there are two such edges connecting C∞ to the component that
maps to the face which contains w .

The following are the properties of Ĝ that we use. For the full definition of Ĝ and a proof of these
properties see Appendix A.

1. Ĝ is planar and can be constructed in O(1) rounds (after which every vertex in G knows the infor-
mation of all its copies in Ĝ and their adjacent edges).

2. Ĝ has diameter at most 3D.

3. Any r -round algorithm on Ĝ can be simulated by a 2r -round algorithm on G.
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4. There is an Õ(D)-round algorithm that identifies G’s faces by detecting their corresponding faces
in Ĝ. When the algorithm terminates, every such face of Ĝ is assigned a face leader that knows the
face’s ID. Finally, the vertices of G know the IDs of all faces that contain them, and for each of their
incident edges the two IDs of the faces that contain them. Thus, each vertex of G knows for each
pair of consecutive edges adjacent to it (using its clockwise ordering of edges) the ID of the face
that contains them.

5. There is a 1-1 mapping between edges of G∗ and a subset of edges EC of Ĝ. Both endpoints of an
edge in EC know the weight and direction of its corresponding edge in G∗ (if any).

4 Weighted Girth via Minor Aggregations

We provide an implementation of the minor-aggregation model in the dual graph, which immediately
yields a collection of algorithmic results in the primal graph. In this section we provide an overview of the
approach, where the full details and proofs appear in Appendix B.

In the Minor-Aggregation model, introduced in [42], there is a given graph G, where the vertices and
edges of G are computational units, and an algorithm works in synchronous rounds, where in each round
we can either contract some of the edges, or compute an aggregate function on certain sets of disjoint
vertices or edges. For the full details of themodel see Appendix B. As shown in [42], theminor-aggregation
model can be simulated in CONGEST by solving the following part-wise aggregation problem.

Definition 4.1 (Part-Wise Aggregation (PA)). Consider a partition {S1; : : : ; SN} of V where every G[Si ]
is connected. Assume each v ∈ Si has an Õ(1)-bit string xv . The PA problem asks that each vertex of Si
knows the aggregate function

L
v∈Si xv .

An aggregate operator is a function that allows to replace Õ(1)-bit strings by one Õ(1)-bit string. This
is usually a simple commutative function such as taking a minimum or a sum.

Minor-Aggregation for the dual graph. Our goal is to use the face disjoint graph Ĝ to simulate a
minor-aggregation algorithm on the dual graph, where the vertices of a face simulate the corresponding
dual node, and each dual edge is simulated by the endpoints of the corresponding primal edge. By the
above discussion, our main goal is to show how to solve the PA problem on the dual graph.

We remark that Ghaffari and Parter [17] showed how to solve specific aggregate functions on G∗

using the graph Ĝ (aggregations on each face of G and sub-tree sums on G∗). For our purposes, we
need something more general, so we show how to perform general part-wise aggregations on G∗. In
particular, we need to perform aggregations that take into consideration the outgoing edges of each part
Si , something that was not done in [17]. This specific task required our small modification to Ĝ compared
to the one defined in [17].

To solve the PA problem on G∗ we exploit the structure of Ĝ. We prove that a PA problem in the dual
graph G∗ can be translated to a corresponding PA problem in Ĝ. In the graph Ĝ there is a disjoint cycle
representing each face of G, where two such cycles are connected if there is a dual edge between the
corresponding faces. Hence, if we take a partition {S1; : : : ; SN} of the dual nodes, such that each G[Si ]
is connected in the dual graph, we can convert it to a partition of the vertices of Ĝ, where each dual node
f ∈ Si is replaced by the vertices of the cycle corresponding to f in Ĝ. Since cycles corresponding to
different faces are vertex-disjoint in Ĝ we indeed get a partition.

In addition, by the properties of Ĝ, it is a planar graph with diameter O(D), and we can simulate
CONGEST algorithms efficiently on Ĝ. Based on this we can solve the PA problem in Õ(D) rounds in
Ĝ, which leads to solving the PA problem on the dual graph G∗ in Õ(D) rounds. For full details see
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Appendix B. We also prove that we can simulate an extended version of the minor-aggregation model
defined in [18] that allows adding Õ(1) virtual nodes to the network, which is useful for our applications.

Dealing with parallel edges in G∗. Recall the the dual graph G∗ can be a multi-graph, where for some
of our applications it is useful to think about it as a simple graph. For example, when computing shortest
paths we would like to keep only the edge of minimum weight connecting two dual nodes, and when
computing a minimum cut we can replace multiple parallel edges by one edge with the sum of weights.
Note that if G∗ was the network of communication it was trivial to replace multiple parallel edges by
one edge locally, but in our case each edge adjacent to a face f can be known by a different vertex of f .
While we can compute an aggregate operator of all the edges adjacent to f efficently, if a face f has many
different neighboring faces g , we will need to compute an aggregate operator for each pair of neighboring
faces which is too expensive. To overcome it, we use the low arboricity of planar graphs to compute a
low out-degree orientation of the edges of the dual graph. This orientation guarantees that from each
face f there are outgoing edges only to O(1) other faces g , hence we can allow to compute an aggregate
function on the edges between each such pair efficiently. The algorithm for computing the orientation is
based on solving a series of Õ(1) part-wise aggregation problems. For details see Appendix B.

Applications. By simulating minor-aggregation algorithms on the dual graph we can compute the
weighted girth in Õ(D) rounds by simulating a minimum weight cut algorithm on the dual graph and
exploiting the cycle-cut duality of planar graphs (Fact 3.1). This approach allows us to find the weight
of the minimum weight cycle, but we show that we can extend it to find also the edges of the cycle, for
details see Appendix B. Another application is a (1 − ›)-approximation for maximum st-flow when the
graph is undirected and s; t lie on the same face with respect to the given planar embedding. Here, we
simulate an approximate shortest path algorithm on a virtual graph obtained from the dual graph G∗ by
slight changes, for details see Section 6.

5 Dual Distance Labeling

In this section we show how to compute single source shortest paths (SSSP) in the dual graph G∗ using a
labeling scheme. I.e., we assign each dual node a label, such that, using the labels alone of any two dual
nodes s and t , one can deduce the s-to-t distance in G∗. Notice that such labeling actually allows compu-
tation of all pairs shortest paths (APSP), i.e, we can solve SSSP from any source node by broadcasting its
label to the entire graph. In this section, our algorithms are stated to be randomized, however, the only
randomized component is an algorithm of [17] that we implicitly apply when using the BDD of [26] in
a black-box manner. A derandomization for that algorithm would instantly imply a derandomization of
our results in this section.

Section organization. First, in Section 5.1 we extend the analysis of the BDD, divided into three subsec-
tions, in each we provide the proofs of some new properties of the BDD. In particular, Section 5.1.1 focuses
on analyzing the way faces get split, Section 5.1.2 focuses on the dual decomposition, and Section 5.1.3
shows how to learn that decomposition distributively. After which, we would be ready to formally define
the labeling scheme in Section 5.2. Finally, in Section 5.3 we show an algorithm that constructs the labels
and deduces an SSSP tree.

5.1 Extending the BDD

The Bounded Diameter Decomposition (BDD), introduced by Li and Parter [26], is a hierarchical decom-
position of the planar graph G using cycle separators. It is a rooted tree T of depth O(log n) whose nodes
(called bags) correspond to connected subgraphs of G with small diameter Õ(D). The root of T corre-
sponds to the entire graph G, and the leaves of T correspond to subgraphs of small size Õ(D). In [26],
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each bag X was defined as a subset of vertices. For our purposes, it is convenient to define X as a subset
of edges (a subgraph). Given that we want to work with the dual graph G∗, the bijection between the
edges of G∗ and the edges of G allows us to move smoothly between working on G and G∗.

In this section, our goal is to extend the BDD of [26] to the dual network G∗. We stress that the
extension to the BDD is not obtained by a simple black-box application of the BDD on G∗ (for the two
reasons mentioned earlier: G∗ is not the network of communication, and G∗’s diameter might be much
larger than the diameter of G). Instead, we use the same BDD T and carefully define the dualsX∗ of bags
X . We begin with the following lemma summarizing the properties of the BDD of [26].

Lemma 5.1 (Bounded Diameter Decomposition [26]). Let G be an embedded planar graph with hop diam-
eter D. There is a distributed randomized Õ(D)-rounds algorithm that w.h.p. computes a bounded diameter
decomposition T of G, satisfying:

1. T is of depth O(log n).

2. The root of T corresponds to the graph G.

3. The leaves of T correspond to graphs of size O(D log n).

4. For a non-leaf bag X , let SX be the set of vertices of X which are present in more than one child bag of
X . Then, |SX | = O(D log n).

5. For every bag X , the diameter of X is at most O(D log n).

6. For every bag X with child bags X1; X2; : : :, we have X = ∪iXi .

7. Each edge e of G is in at most two distinct bags of the same level of T .

8. Every bag has a unique Õ(1)-bit ID. Every vertex knows the IDs of all bags containing it.

By the construction of the BDD, the set SX plays the role of a cycle separator of X .
Since our focus is on the dual graph, we need to understand how faces of G are affected by the BDD.

Namely, decomposing a bag X into child bags X1; X2; : : : might partition some faces of X into multiple
parts, where each such face-part is contained in a distinct child bag of X . We next discuss this in detail.
Since each edge belongs to two faces of G, it is convenient to view an edge as two copies (called darts) in
opposite directions. This is fairly common in the centralized literature on planar graphs.

f

Figure 9: Edges are black, each edge has two darts (green or red). The red clockwise cycle of darts corre-
sponds to the face f .

Darts. Every edge e ∈ E(X) is represented by two darts d− and d+ (if the graph is directed, d+ has
the same direction as e , and d− is in the opposite direction). The reverse dart is defined as rev(d+) = d−
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and rev(d−) = d+. We think of the two darts as embedded one on top of the other (i.e., replacing the
edges with darts does not create new faces). When we mention a path or a cycle C of darts, we denote
by rev(C) the path or cycle obtained by reversing all darts of C. The faces of G define a partition over the
set of darts (i.e., each dart is in exactly one face) such that each face of G is a cycle of clockwise directed
darts. See Figure 9.

Face-parts. Ideally, we would like each face of a bag X to be entirely contained in one of its child bags.
However, it is possible that a face f is split into multiple child bags, each containing a subset of f ’s darts
(which we call a face-part). This issue was not discussed in [26] as they work with the primal graph G.

We keep track of the faces of G and their partition into face-parts. In G, each face is a cycle of directed
darts. A face-part in a bag X is identified by a collection of directed paths of darts, all belonging to the
same face of G. Notice that a face-part might be disconnected. A bag X therefore contains darts that
form faces of G that are entirely contained in X , and darts that form face-parts. If a dart d belongs to X
but rev(d) does not belong to X , we say that rev(d) lies on a hole (rather than a face or a face-part) of X .
This happens when d is a dart of SH for some ancestor bag H of X .

We think of obtaining face-parts as a recursive process that starts from the root of T . In each level of
T , each bag X has its faces of G and face-parts of G. Both of these may get partitioned in the next level
between child bags of X , resulting with new (smaller) face-parts each contained in one child bag of X .

Dual bags. We define the dual bag X∗ of a bag X to be the dual graph of the graph X when treating
face-parts (and not only faces) of G in X as nodes of X∗. Formally, each face or face-part f of G in X has
a corresponding dual node f ∗ in X∗. The dual edges e∗ incident to f ∗ in X∗ are the edges e (collection of
paths) of X that define f and have both their darts in X . Recall that each dart of e is part of exactly one
face or face-part, and the dual edge e∗ connects the corresponding dual nodes (if only one dart of e is in
X then e lies on a hole of X and we do not consider holes as dual nodes). The weight of e∗ is the same
as that of e and its direction is defined as in Section 3. For an illustration see Figure 10. When discussing
dual bags, we refer to a node that corresponds to a face-part as a node-part.

Ideally, we would like the child bags X∗
i to be subgraphs of X∗. If that were true, then X∗ would be

the union of all X∗
i plus the edges dual to SX (since they are the only edges in more than a bag of the

same level). This is almost the case, except that X∗ may also have as many as O(log n) (we prove this
next) faces and face-parts that are further partitioned into smaller face-parts in the child bagsX∗

i . I.e., the
union of all X∗

i has a different node set than that of X∗. Thus, in X∗ we have O(log n) nodes that might
be divided to multiple nodes, each in some child bag X∗

i .
We are now ready to prove the following new properties of the BDD.

Theorem 5.2 (BDD Additional Properties). Let T be a Bounded Diameter Decomposition of an embedded
planar graph G with hop-diameter D. Within additional Õ(D) rounds, T satisfies the following additional
properties.

Few face-parts property:

9. Each bag X contains at most O(log n) face-parts. Moreover, the number of face-parts resulting from
partitioning faces and face-parts of X across its child bags is O(D log2 n).

Dual bags’ properties:

10. The dual bags of leaves of T are of size O(D log n).

11. For a non-leaf bagX∗, let FX be the set of nodes whose incident edges are not contained in a single child
bag of X∗. Then, FX is a node-cut (separator) of X∗ of size |FX | = O(D log n). Concretely, FX is the
set of (a) nodes incident to dual edges of SX , and (b) nodes corresponding to faces or face-parts that are
partitioned between child bags of X∗.
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Figure 10: Two levels of the BDD (blue) and their corresponding levels in the dual decomposition (red).
For simplicity, the dual node corresponding to the face f∞ of G is not illustrated in G∗ (its incident edges
are the ones missing an endpoint).
First level: the graph G and its dual G∗. Black edges are the separator SG edges, the dashed one is the
virtual edge eG . Note, eG splits the critical face, f1.
Second level: the child bags G1; G2 of G and their corresponding dual bags G∗

1 ; G
∗
2 (respectively). Purple

edges in G1 and G2 are edges of the critical face f1 of G. In G1, those edges define the face-part f 11 and
in G2 they define the face-part f 21 . Both face-parts are represented by dual nodes (squared purple). Bold
edges in G1; G2 are edges of SG and non of them has a dual edge in G∗

1 ; G
∗
2 as they lie on a hole. Each

other edge has a dual edge, in particular, edges of f 11 (f 21 ) connect them to their neighbors from G∗ in G∗
1

(G∗
2 ).

12. Let X∗ be a non-leaf bag with child bags X∗
1 ; X

∗
2 ; : : :; Then, X

∗ is equivalent to ∪iX∗
i ∪ X∗[SX ] after

connecting all node-parts f1; f2; : : : in X∗
1 ; X

∗
2 ; : : : (resp.) corresponding to the same f ∈ FX with a

clique and contracting it. 5

Distributed knowledge:

5For an intuition, see Figure 10: merging f 11 and f 21 to one node would result with G∗ after adding the separator edges.
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13. Each node f of X∗ has an Õ(1) ID, s.t. the vertices v of X lying on f know its ID. Moreover, v knows
whether f corresponds to a face, a face-part or the critical face of X . The IDs are such that the ID of a
face (face-part) f of X is contained in the ID of face-parts f ′ resulting from partitioning f in child bags
of X .

14. For all bags X , its vertices know the dual edges in X∗ (if exist) corresponding to each of their incident
edges.

5.1.1 The Few Face-parts Property

We start by proving Property 9.

Lemma 5.3 (Few face-parts). Any bag X ∈ T contains at most O(log n) face-parts. Moreover, there is at
most one face of G that is entirely contained in X and is partitioned in between child bags of X .

Proof. Since the height of T is O(log n), it is sufficient to prove that in each bag X of T there is at most
one face of G that is entirely contained in X and is partitioned into face-parts in X’s child bags.6 This
would imply that each face-part of X can be associated with the unique leafmost ancestor of X in which
this face was whole (and thus there are onlyO(log n) face-parts inX). Note, in bagsX of deeper recursion
levels, a face-part might consist of multiple disconnected paths, we still count it as one face-part ofX since
all of those paths belong to the same face of G.

To show that indeed there is only one such face, we need to understand the cases in which faces are
partitioned in the BDD of [26]. The set SX in a bag X ∈ T is a simple (unoriented) cycle consisting of two
paths in a spanning tree T of X and an additional edge eX . The edge eX might not be an edge of E(G),
in which case, we refer to it as the virtual edge of X . We think of eX as if it is temporarily added to X , in
order to define its child bags, and then removed. The cycle SX is a balanced cycle separator, i.e. a cycle
that contains a constant factor of V (G) in each of its interior and exterior.

The edge eX is found in [17] by carefully identifying two vertices u; v , then setting eX = (u; v) closing a
cycle with T . eX is embedded without violating planarity. Given the two endpoints and the embedding of
eX , one can identify the critical face (face-part) f that contains eX by simply considering the face (face-part)
that contains the two edges in the local ordering of v which eX is embedded in between.

The cycle SX defines the child bags of X as follows (see Figure 11): The interior of the cycle SX defines
one child bag (denoted X1) and the exterior may define several child bags. Each external child bag Xi is
identified with a unique (internally disjoint) subpath Si of SX . That is, the only edges that belong to more
than one Xi are the edges of SX . For each such edge, one of its darts d belongs to X1 and rev(d) belongs
to some Xi ̸= X1 (note that rev(d) belongs to a hole in X1 and that d belongs to a hole in Xi ). Note that
every path between a vertex of Xi and a vertex of Xj ̸= Xi must intersect a vertex of Si (Property 4 of the
BDD).

The critical face f is partitioned (by eX ) into two face-parts. One part goes to X1 and the other to
an external child bag Xi ̸= X1. If f is a face of G, then we need to count the two new face-parts that
it generates. If f is a face-part, then we don’t need to count them (since we only care about faces of G
that get partitioned). However, in both cases we need to show that, except for f , no other faces can be
partitioned between the child bags of X . For that we dive a bit more into the way the child bags are
defined in [26].

Case I: When eX ∈ E(G). In this case we claim that no face of G gets partitioned among X’s children.
Assume for the contrary that some face g of G gets split between some Xi and Xj . The face g must

6In [26], a single hole ofX (the union of some SH edges of ancestorsH ofX , referred to in [26] as the boundary ofX) might be
partitioned between X’s child bags. In our case, since we do not care about holes, we do not count this as a face (or a face-part)
that gets partitioned.
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Figure 11: Two examples of a bag X . The bold cycle is SX , and the edge eX is dashed. Distinct child
bags of X are of distinct colors. The child X1 (green) is the interior of SX . The external child bags Xi are
each defined by a single subpath Si of SX . One such subpath may contain eX (S4 in the left image) if
its external part (bag X4 in the left image) is connected. Otherwise, the external part is broken into two
(connected) bags (X4; X5 in the right image), each with its own Si that does not include eX (the additional
dashed edges are some ancestor virtual edges). In the left (resp. right) image,X1 andX4 (resp. X1; X4; X5)
contain a face-part of the critical face (face-part) f (in red).

contain a dart (a; b) in Xi and a dart (c; d) in Xj such that neither (a; b) nor (c; d) is a dart of Si . Since
g is a cycle of darts, it is composed of (a; b); (c; d), and two dart-disjoint b-to-c and d-to-a paths. Each
of these two paths must intersect the vertices of Si , and so g contains two vertices x; y of Si .

I.a. If g has some dart internal to SX ( w.l.o.g. (a; b) in Xj = X1) then, g is a cycle that consists of two
x-to-y paths, one is internal to SX (in X1) and the other is external to SX , thus, g must enclose the
x-to-y subpath of Si constituting a chord embedded inside the cycle g , contradicting that it is a
face.

I.b. If g has no dart internal to SX , then all of its darts are in external child bags (g has at least two darts
each in a distinct external child bag). If g encloses a subpath of Si then we have our contradiction.
Otherwise, g does not enclose anything and its reversal rev(g) encloses the entire graph. In that
case, g has to contain the first and last vertex in all the subpaths Si for all external bags Xi (since
from the construction of the BDD, these are the only vertices ofXi that can be shared with another
external child bag, and there is no edge connecting two different child bags). Hence, the only way
to close a cycle g that contains darts from different child bags is to contain all these vertices. There
is only one face of X that can do that, which by [26] is a hole. In fact, the endpoints of all Si are
detected in the algorithm of [26] by looking for intersections between g (referred to as the boundary
in their paper) and SX . g is a hole because in [26] the boundary is defined as the set of SH edges
contained in X , where H ̸= X is any ancestor of X in T .

Case II: When eX =∈ E(G). In this case, there might be one child bag Xi ̸= X1 whose corresponding
subpath Si contains eX (in which case, the above proof of Case I fails as the x-to-y subpath might be
missing an edge), meaning there is a face that gets partitioned. We argue that there is only one such face,
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the critical face, and that this can only happen (see Figure 11 left) if the endpoints of eX are connected in
some Xi ̸= X1.

II.a. When the endpoints of eX are connected in some Xi ̸= X1, then consider what happens if we add eX
as a real edge of E(G) and then remove it. By the proof of Case I, when eX is in E(G), no face gets
partitioned. Then, when we remove eX , the only face that can be affected is the one enclosing both
endpoints of eX (i.e. the critical face). Again there might be a hole that gets partitioned (exactly as
in Case I) that we do not care about.

II.b. When the endpoints of eX are not connected in any external bag, then no Si contains both endpoints
of eX . This can only happen if the critical face f is a face-part (see Figure 11 right), for otherwise the
endpoints of eX would be connected by f . In this case, the critical face-part f is partitioned between
three (and not two) child bags (X1 and two external child bags). However, apart from f , no other
face gets partitioned. As in Case I, there is a dart of g in X1, and then we can find a subpath of SX
that crosses g , a contradiction. The proof follows the same proof as in Case I (all Si consist of G
edges); Otherwise, if no dart of g is in X1, then g is not a cycle, a contradiction. That is, g has to
use the endpoints of all Si and somehow connect them to form a cycle, but the endpoints of eX are
only connected in X1.

The following completes the proof of Property 9.

Corollary 5.4. The total number of face-parts resulting from partitioning faces and face-parts of a bagX ∈ T
between its child bags is O(D log2 n).

Proof. By Lemma 5.3, in a bag X , there are at most O(log n) face-parts and one critical face that get
partitioned between child bags ofX . We claim that any bagX has at most O(D log n) child bags (and the
corollary follows). To see why, recall that SX is a cycle separator of X s.t its interior defines a child bag,
and each external child bag is identified with a distinct (edge-disjoint) subpath of SX . By Property 4 of
the BDD we have |SX | = O(D log n).

We prove the following, which will be useful in the labeling scheme and in proving properties 11 and
12 of the BDD.

Lemma 5.5. Each dart d of G belongs to exactly one bag X in each level of T . Moreover, if a dart d is in X
and rev(d) is not in X then d belongs to SH for some ancestor H of X .

Proof. In the root of T , we have the graph G and the claim trivially holds. Assume the claim holds for
level ‘−1 of the BDD, we prove for level ‘. Recall that for a bagX , every edge e ofX either belongs to one
child bag of X or to two child bags of X (if e ∈ SX ). If e is not an edge of SX , then e belongs to one child
bag Xi and its (one or two) darts in X belong to Xi (as both of e’s endpoints are in Xi ). If e is an edge of
SX that is contained only in one child bag, then by the BDD algorithm e must be an edge of SH for some
ancestor H ̸= X of X . Thus, e’s only dart is also contained in the same child bag that contains e . Finally,
if e is an edge of SX that is contained in two child bags of SX , then e is in X and does not participate in SH
of any ancestor H, then, e has both of its darts in X . Thus, e belongs to two child bags of X , in particular,
one child bag is the internal (to SX ) and the other is external, each would contain one dart of e as each
dart of e is in a face (not a hole), and in this case, SX separates those two faces (face-parts), each to a child
bag. That way, all darts that correspond to the same face go to the same child bag of X .

Corollary 5.6. Each face of G in a bag X ∈ T , except for the critical face (if exists), is entirely contained in
one child bag of X . Face-parts of X may get further partitioned between its child bags.
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5.1.2 Dual Bags and Their Properties

We are finally prepared to prove the additional properties 10, 11, and 12 of the BDD, starting with a proof
for Property 10.

Lemma 5.7. The size of a dual leaf bag X∗ is O(D log n).

Proof. By Property 3 of the BDD, we know that X has O(D log n) vertices. Since X is a simple planar
graph, it therefore has at most O(D log n) edges (Euler formula). For each edge e in X there is at most
one dual edge e∗ in X∗ as we define it. Then, |E(X∗)| = O(D log n), thus, X∗ has at most O(D log n)
nodes as well (as each edge has two endpoints). Notice, there are no isolated nodes (i.e, we are not under-
counting), as if there were, then they are not connected to any edge, and the only case that a primal edge
has no dual is when it lies on a hole, thus, if there were isolated nodes, they would correspond to holes,
contradicting the definition of X∗.

Next, we prove Property 11.

Lemma 5.8 (Dual Separator). For a non-leaf bag X∗, let FX be the set of nodes whose incident edges are
not contained in a single child bag of X∗. Then, FX is a node-cut (separator) of X∗ of size |FX | = O(D log n).
Concretely, FX is the set of (a) nodes incident to dual edges of SX , and (b) nodes corresponding to faces or
face-parts that are partitioned between child bags of X∗.

Proof. First, we show that both definitions of FX are equivalent. I.e., a node (node-part) of X∗ does not
have all of its edges in a single child bag if and only if it is contained in: (a) The set of X∗’s nodes (node-
parts) which get partitioned further into node-parts between its child bags, or (b) The endpoints of edges
dual to SX contained in X∗.

(if) Note, the dual edges of SX contained in X∗ are not contained in any child bag of it as they lie on
holes in them (Lemma 5.5), thus, their endpoints are in FX . In addition, the nodes of X∗ that get divided
correspond to the critical face and a subset of face-parts in X (Corollary 5.6), thus, they have at least two
distinct edges, each in a distinct child bag of X∗, hence, are in FX .

(only if) Consider a node f ∈ FX , by definition, some of its incident edges either: (1) Not contained in
any child bag of X∗, i.e, f is incident to an SX edge. Or (2) there are at least two edges incident to f , each
in a distinct child bag of X∗. Since a face of G in X is either fully contained in a child bag or is divided
across child bags (Corollary 5.6), we get that f corresponds to the critical face or to one of the face-parts
in X .

From the first definition of FX , it is clear that it constitutes a separating set, as each path that crosses
between child bags shall use at least two edges that share a node ofX∗ which are not contained in a single
child bag. I.e, that node is in FX .

Finally, since there are at mostO(D log n) edges of SX (Property 4 of the BDD), there are at most twice
the number of their endpoints in X∗. Moreover, there are at most O(log n) nodes (node-parts) in X∗ that
correspond to the faces and face-parts that get partitioned between child bags of X∗ (Property 9 of the
BDD).

Finally, we provide a proof of Property 12.

Lemma5.9 (AssemblingX∗ from child bags). LetX∗ be a non-leaf bag with child bagsX∗
1 ; X

∗
2 ; : : :; Then,X

∗

is equivalent to ∪iX∗
i ∪X∗[SX ] after connecting all node-parts f1; f2; : : : in X

∗
1 ; X

∗
2 ; : : : (resp.) corresponding

to the same f ∈ FX with a clique and contracting it.

Proof. Let Kf be the clique on the set of node-parts across child bags of X∗ corresponding to f ∈ FX .

Denote M := (∪iX∗
i )
S
(X∗[SX ])

S“
∪f ∈F

X
Kf

”
. We start by showing that M is very close to X∗, then

show that the adjustment (contraction) suggested in the property onM indeed yields X∗.
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First, note that all edges of X∗ are contained in M , as any non-SX edge is contained in a child bag
(Lemma 5.5) and SX edges that are contained in X∗ are added toM by definition. In addition, each node
of X∗, except for some nodes of FX , is present inM , as each node that is in some X∗

i is contained inM by
definition, and any node of X∗ that is not in any X∗

i must be an FX node (by Property 11).
Now, we show that the contraction produces FX nodes, connects them correctly and removes only

non-X∗ edges fromM (the lemma follows). Consider the graphM ′, given byM after contracting Kf for
all f ∈ FX .

1. The contraction gets rid of Kf edges, and only them, as distinct node-parts across child bags of X∗

that correspond to the same f ∈ FX share no other edges. Thus,M ′ has the exact same set of edges
as X∗.

2. Consider a node f that was partitioned into node-parts f1; f2; : : :, such that each fi is in a distinct
child bag of X∗. We want to show that contracting all fi into one node, results with one node
that is incident to all f ’s X∗ neighbors in M ′, this node is identified with f . That follows from the
following claims (1) Each edge of f in X goes to one face-part of f in the child bag that contains
it (by definition of face-parts). (2) The only edges without a dual in X∗ are edges of SH for some
ancestor H of X (Lemma 5.5). Thus, if a primal edge does not have a dual in any of X∗’s child bags,
it is either an edge of SH ̸= SX , in which case it is not in X∗ either (the claim does not fail), or it is
in SX , thus, it is added toM by definition. Thus, f ’s incident edges in X∗ are partitioned among fi ’s
in M . Moreover, by the previous item, the contraction affects none of these edges and leaves only
them incident to the resulting node, which we identify with f .

5.1.3 Distributed Knowledge Properties

To implement our algorithm, each vertex should know the IDs of all faces (face-parts) that contain it in
every bag X ∈ T (i.e., the list of nodes f ∈ X∗ it participates in). Here we show that the distributed
knowledge properties (13 and 14) of the BDD hold, which concludes the proof of Theorem 5.2. As before,
it will be convenient to think of an edge as having two copies (one for each face containing it). To simplify,
we refer to these as edge copies (rather than darts) since there is no need to maintain the dart orientation.
Every vertex incident to an edge e = (u; v) considers itself incident to two copies e1; e2 of e , such that, e1
(e2) is the first (second) copy of e relative to v according to a clockwise order (for the other endpoint u, e2
is its first copy).

We aim to assign each face (face-part) in any bag X a unique Õ(1) identifier and learn for each vertex
v ∈ X , the set of faces (face-parts) containing it and its adjacent edge copies. This is done by keeping
track of G’s edge copies along the decomposition. We start with (1) a local procedure that allows the
endpoints of each edge copy e to learn all the bags X that contain e , then, (2) the endpoints of each edge
copy e learn the face of G that e participates in, and (3) we show how to extend this for the next level of
T . For a proof see Appendix C. This allows us to (distributively) learn the nodes of X∗, after which, we
have the necessary information to learn the edges of X∗.

Lemma 5.10. In a single round, each vertex v ∈ G can learn, for each incident edge copy, a list of the bags
X ∈ T that contain it.

Lemma 5.11. There is a Õ(D)-round distributed algorithm that assigns unique IDs to all faces of G. By the
end of the algorithm, each vertex v ∈ G learns a list (of IDs) of faces that contain it. Moreover, v learns for
each incident copy e ′ of an edge e in G the face ID of the face of G that contains e ′.

The IDs assigned to faces and face parts are defined such that the ID of a face (face-part) f of X
is contained in the ID of face-parts resulting from partitioning f in child bags of X . Thus, we get the
following lemma and corollary proving property 13 of the BDD:

23



Lemma 5.12 (Distributed Knowledge of Faces). There is a Õ(D)-round distributed algorithm that assigns
unique Õ(1)-bit IDs to all faces and face-parts in all bags X ∈ T . By the end of the algorithm, each vertex
v ∈ G learns a list (of IDs) of the faces and face-parts it lies on for each bag X that contains it. Moreover, v
learns for each incident copy of an edge e ′ the (ID of) the face or face-part that e ′ participates in for each bag
X that contains e ′. The ID of a face (face-part) f of X is contained in the ID of face-parts f ′ resulting from
partitioning f in child bags of X .

Corollary 5.13. In Õ(D) rounds, for each bag X , all vertices know for each of their incident copies of edges
whether they participate in the critical face (face-part) and whether they participate in any face-part of X .

After each vertex v knows the necessary information for each copy of an incident edge e , in an addi-
tional round, v knows if e exists in X∗, its weight inX∗ and its direction. Proving property 14 of the BDD.

Lemma 5.14. Let e = (u; v) be an edge in a bag X . In one round after applying Lemma 5.12, the endpoints
of e learn the corresponding dual edge e∗ in X∗ (if exists).

5.2 The Labeling Scheme

Here we describe our distance labeling scheme. Recall that, for every dual bag X∗, we wish to label the
nodes ofX∗, such that, from the labels alone of any two nodes we can deduce their distance inX∗. Recall,
we refer to the dual node f ′ in a child bag X∗

i as a node-part of a node f ∈ X∗, if f ′ corresponds to a
face-part in Xi resulting from partitioning the face or face-part f of X .

We already know that this set would play the role of a node-cut (separator) of X∗, and is crucial for
the labeling scheme and algorithm. The main structural property that FX provides is: Any path in X∗

either intersects FX or is entirely contained in a child bag of X∗.
Note, a node g =∈ FX of X∗ corresponds to real faces of G (i.e. not face-parts) contained in X . The

distance label LabelX∗(g) of g =∈ FX is defined recursively. If X∗ is a leaf-bag then LabelX∗(g) stores
ID(g ) and the distances between g and all other nodes h ∈ X∗. Otherwise, the label consists of the ID of
X , the distances in X∗ between g and all nodes of FX , and (recursively) the label of g in the unique (by
Corollary 5.6) child bag X∗

i of X
∗ that entirely contains g . Formally:

LabelX∗(g) = (ID(X); ID(g); {ID(f ); distX∗(f ; g); distX∗(g; f ) : f ∈ FX}; LabelX∗
i
(g))

For the set of nodes g ∈ FX , we remove the recursive part, and define

LabelX∗(g) = (ID(X); ID(g); {ID(f ); distX∗(f ; g); distX∗(g; f ) : f ∈ FX})

As we showed in property 11, faces and face-parts that correspond to nodes in FX are the interface of
the child bags of X∗ with each other.

Lemma 5.15 (Property 11 of the BDD, rephrased). Let g; h be two nodes in a non-leaf bag X∗, the (edges
of the) shortest g -to-h path in X∗ is either entirely contained in some X∗

i or intersects FX .

Thus, a path in X∗ from g ∈ X∗
i to h ∈ X∗

j ̸=i must pass through some (part of a) node f ∈ FX . I.e.,
a g -to-h shortest path P in X∗ is either: (1) Entirely contained in X∗

i , then distX∗(g; h) can be deduced
from LabelX∗

i
(g) and LabelX∗

i
(h). Or (2), P intersects FX , then distX∗(g; h) = minf ∈F

X
{distX∗(g; f ) +

distX∗(f ; h)}. If one of g or h is a node of FX then distances are retrieved instantly, as each node in X∗

stores its distances to FX .
By this reasoning, obtaining the distance between two nodes g; h in a leaf bag is trivial, as all pairwise

distances are saved in each label. For a non-leaf bag X∗, by Lemma 5.15, the information saved in the
labels of g; h in X∗ is sufficient in order to obtain the g -to-h distances in X∗.
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Lemma 5.16. Let g; h be two nodes in X∗, then we can decode their distance in X∗ from LabelX∗(g) and
LabelX∗(h) alone.

Note, we define the labels in O(log n) steps from the leaf to the root of T , in each step, we append to
the label at most Õ(D) bits for distances from FX nodes. I.e., we have |FX | = Õ(D) (Property 11 of the
BDD), the weights are polynomial, the size of a leaf bag is O(D log n) (Property 10 of the BDD) and IDs
are of Õ(1)-bits (Property 8 and Property 13). Hence,

Lemma 5.17. The label of any node g in a bag X∗ of X ∈ T is of size Õ(D).

5.3 The Labeling Algorithm

Here we show how to compute the labels of all nodes in all bagsX∗ of T . At the end of the algorithm, each
vertex in a face g ofX shall know the label of g inX∗. The planar network of communicationG is assumed
to be directed and weighted, let w(e) denote the weight of an edge e . The BDD tree T of G is computed
in Õ(D) rounds, by Lemma 5.1 and Theorem 5.2, such that, each (primal) vertex v knows all bags X that
contain it, the IDs of all faces (face-parts) of X that contain it, and the dual edges corresponding to each
of its incident edges in X (if any).

We compute the label of every dual node g ∈ X∗ for all X∗ ∈ T in a bottom-up fashion, starting
with the leaf-bags. For a non-leaf bag X∗, we have two main steps: (i) broadcasting labels of (parts of the
dual separator) FX nodes contained in the child bags of X∗, broadcasting the edges dual to (the primal
separator) SX and (ii) using the received information locally in each vertex of X for computing labels in
X∗. For a high-level description, see Algorithm 1.

Algorithm 1: Dual Distance Labeling (high-level description)
Input: A BDD of a D-diameter network G satisfying the properties of Theorem 5.2.
Result: Each vertex v of G learns Label(g) in G∗ for each face g of G that contains it.

1 forall bags X of the same level, bottom-up, in parallel, do
2 if X is a leaf-bag then
3 Collect the entire graph X in each vertex v ∈ X ;
4 end
5 else /* Non-leaf bags */

/* Broadcast step */
6 Broadcast the dual edges of SX edges that exist in X∗ to the entire bag X ;
7 Broadcast, in two steps, the labels computed in the previous level (in child bags of X∗) of

faces (face-parts) that correspond to FX to the entire bag X .
/* Local Step */

8 Each vertex v ∈ X uses the received information in the above broadcast in order to locally
construct the Dense Distance Graph for each face (face-part) g that contains it in X ;

9 end
10 Using the previously received information, each vertex v ∈ X computes locally LabelX∗(g)

for each face (face-part) g of X that contains it or reports a negative cycle aborting the
algorithm;

11 end

Leaf bags. For leaf-bags X∗, we show that we can broadcast the entire bag X∗ in Õ(D) rounds. First, by
Property 13, each vertex of X knows all the IDs of faces of X (both real faces of G and face-parts) that
contain it. These faces are exactly the nodes of the graph X∗, by Property 10, |X∗| = Õ(D). That is, we
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can broadcast them to the whole bag in Õ(D) rounds. Note that it may be the case that several different
vertices broadcast the same ID, but since overall we have Õ(D) distinct messages, we can use pipelined
broadcast to broadcast all the IDs in Õ(D) rounds. We can work simultaneously in all leaf bags, as each
edge of G is contained in at most two bags of the same level (Property 7 of the BDD). Next, we broadcast
the edges ofX∗. From Property 14, for each edge e inX the endpoints of the edge know if this edge exists
in X∗, and if so they know the corresponding dual edge in the dual bag X∗. We let the endpoint of e with
smaller ID broadcast a tuple (ID(e∗), w(e)) to the bag, where ID(e∗) = (ID(f ); ID(g)) if e∗ is directed
towards g in X∗. Notice, X∗ might be a multi-graph, thus, there might be multiple edges with the same
ID of e∗. This does not require any special attention, we broadcast all of them as the total number of
edges in X∗ is conveniently bounded. Since for each edge we send Õ(1)-bits and in total we have Õ(D)
edges in X∗ (Property 10), the broadcast terminates within Õ(D) rounds. Afterwards, all the vertices of
X know the complete structure of X∗. Then, all vertices of X can locally compute the labels of nodes of
X∗ by locally computing the distances in the graph X∗. Finally, since vertices have full knowledge of X∗,
they can check for negative cycles, if found, a special message is sent over a BFS tree of G, informing all
vertices to abort.

Non-leaf bags. We assume we have computed all labels of bags in level ‘ of T , and show how to compute
the labels of all bags in level ‘−1 simultaneously in Õ(D2) rounds. We describe the procedure for a single
bag X∗ with child bags X∗

1 ; X
∗
2 ; : : :, by Property 7 of the BDD we can apply the same procedure on all

bags of the same level without incurring more than a constant overhead in the total round complexity.
The computation is done in two steps, a broadcast step and a local step.

Broadcast step. We first broadcast the following information regarding FX : (1) The edges of SX contained
in X∗, (2) The labels of nodes (node-parts) of FX in the child bags of X∗. I.e, if f ∈ FX is entirely contained
in a child bag X∗

i of X∗, we broadcast LabelX∗
i
(f ). Otherwise, f is the critical face of X or a face-part

of X , f may get partitioned to f1; f2; : : : ; fk in between the child bags of X . Thus, for each such f ∈ FX ,
we broadcast the labels LabelX∗

j
(fi ), where X∗

j is the child bag that contains the node-part fi . Using this
information, we shall compute the distances from any node g to all nodes of FX . By induction, for each
face (face-part) f of a child bag Xi , every vertex v that lies on f knows the label LabelX∗

i
(f ) of f in X∗

i .

1. Since each (primal) vertex v knows its incident SX edges (by the BDD construction), v also knows for
each such incident edge whether its dual is in X∗ or not (By Property 14). Thus, we can broadcast
edges in SX contained in X∗ to the whole bag X . For each edge, one of its endpoints (say the
one with smaller ID) broadcasts the edge (i.e., an Õ(1)-bit tuple (ID(e∗); w(e))). The broadcast
terminates in Õ(D) rounds as |SX | = Õ(D) (Property 4 of the BDD).

Next, we explain how to broadcast labels of nodes (node-parts) that correspond to FX in child bags of
X∗. We do that in two steps, a step for nodes of FX that get partitioned further in child bags, and a step
for the remaining nodes, which by definition of FX , have to be endpoints of edges in SX .

2. Consider a face or a face-part f ofX that gets partitioned into parts f1; : : : ; fk in between child bags
ofX . For every fi , vertices v lying on fi broadcast the label LabelX∗

j
(fi ) to the entire graphX (where

X∗
j is the child bag containing fi ). By Property 13, each vertex v inX on a face or a face-part f knows

f as such, if it is partitioned, v also knows the IDs of all parts fi that contain it. Thus, v can broadcast
the relevant labels. The broadcast is pipelined, s.t. if a vertex receives the same message more than
once, it passes that message once only. A label is of Õ(D)-bits (Lemma 5.17), the diameter of X is
Õ(D) (Property 5 of the BDD) and by Property 9 there are at most Õ(D) face-parts in the child bags
of X , i.e., at most Õ(D) distinct labels get broadcast, thus, the broadcast terminates within Õ(D2)
rounds.
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3. By the first item, vertices incident to an edge e ∈ SX s.t. e∗ ∈ X∗ know the IDs of the endpoints
f ; g of e∗. Thus, if f is not the critical face nor a face-part (i.e., f is entirely contained in X∗

i ), any
vertex v contained in f knows this about f (Property 13), then v broadcasts the label LabelX∗

i
(f ) of

f . Notice that we send the labels of all (parts of) endpoints of SX in X∗ (if they are face-parts they
get handled in the previous broadcast, if not, they get handled in this one).

Again, the broadcast is pipelined, and each vertex passes the same message only once. There are at
most |SX | = Õ(D) distinct labels being broadcast at any given moment. The size of a label is Õ(D),
the diameter of X is Õ(D). Thus, the broadcast terminates in Õ(D2) rounds.

Local step. For every face or face-part g in X , the vertices lying on g compute locally LabelX∗(g). In-
tuitively, this is done by decoding all pairwise distances of labels that were received in the previous step,
then, constructing a graph known as the Dense Distance Graph (DDG) and computing distances in it. The
structure of this graph is described next, after that we shall prove that it indeed preserves distances inX∗.

The DDG (see Figure 12) is a (non-planar) graph that preserves the distances in X∗ between a subset
of nodes of X∗. Traditionally, the DDG is a union of cliques on a (primal) separator, each clique repre-
senting distances inside a unique child bag, and the cliques overlap in nodes. In our setting, the DDG is
slightly more complicated: (1) the nodes of the DDG are not exactly the separator nodes FX , but nodes
corresponding to faces and face-parts of FX in child bags of X . (2) different cliques do not overlap in
nodes, instead, their nodes are connected by (dual) edges of SX that are also added to the DDG. (3) edges
connecting face-parts of the same face but in different child bags are added to the DDG with weight zero.

X∗
1

X∗
2

X∗
3

g

X∗
4

Figure 12: The graphDDG(g). The blue node is g , incident red nodes correspond to face-parts of the same
face of X∗ across its different child bags, and black nodes correspond to endpoints of SX edges. The blue
edges represent the clique on nodes that belong to the same child bag of X∗, red edges are bidirectional
edges of zero weight connecting face-parts of the same face in X∗, and black edges are dual edges to SX
edges. For simplicity, the figure is undirected.

Formally, the graph DDG(g) is a weighted directed graph. The node set of DDG(g) consists of (1)
g , (2) the nodes in child bags of X that correspond to nodes (node-parts) of FX . Denote by Vi the set
V (DDG(g)) ∩ V (X∗

i ) for a child bag X∗
i of X

∗, then, the edge set of DDG(g) is defined as:

• An edge between every two nodes ofDDG(g) that belong to the same child bag of X∗. The weight
of such an edge (f ; h) ∈ Vi × Vi is the f -to-h distance in the graph X∗

i . By Lemma 5.16, each such
distance can be obtained by pairwise decoding two labels of nodes (received in the broadcast step)
that belong to the same child bag X∗

i .

• The (dual) edges of SX which have both endpoints inX∗ (i.e., not edges incident to a hole). For each
such edge e = (f ; h), it is either the case that f exists in X∗ and in some X∗

j or f is divided into
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parts f1; f2; : : : in the child bags of X∗. In the first case, e is incident to f in the DDG. In the second
case, e is incident to the part fi of f that contains e . Notice, in case f is not partitioned then it is in
the DDG as it is in FX for being an endpoint of e ∈ SX . If it does get partitioned, then all its parts
are in the DDG as they are face-parts corresponding to a node of FX . The weight and direction of e
is as in X∗. In either case, the label of those nodes (f or its parts) got broadcast in the broadcasting
step. In addition, the information about e (ID, direction and weight) is known in vertices of X also
by the broadcast. Thus, vertices can know locally what nodes shall be incident to edges e ∈ SX that
are contained in X∗.

• A bidirectional zero weighted edge between each two nodes fi ∈ Vi , fj ∈ Vj that correspond to
node-parts inXi ,Xj (respectively) of the same node f in FX . Again, this can be known locally in any
vertex v of X since v received the labels (which contain the IDs) of fi ; fj in the broadcast step, and
since the correspondence of fi ; fj to f can be known from the information received in the broadcast
(specifically, the IDs of fi ; fj contain the ID of f . For more details, see the proof of Lemma 5.12 in
Appendix C).

Notice, the description of DDG(g) does not directly address the case where g is not contained in
exactly one child bag of X∗ (i.e., g gets partitioned). However, if that happens, we have a special case
where (by definition) g ∈ FX , and all of its parts are represented in the DDG. Meaning, the definition of
DDG(g) for a node g ∈ X∗ is general enough for both cases (g ∈ FX and g ̸∈ FX ).

After each vertex v on the face or face-part corresponding to g ∈ X∗ locally constructs DDG(g)
and computes distances in it, v checks for a negative cycle. If found, v broadcasts a special message
informing all vertices of G (via a global BFS tree of G inO(D) rounds) to abort their algorithm. Otherwise,
v locally constructs LabelX∗(g) by appending distances computed in DDG(g) to the recursive label of
g (if exists). That is, v sets distX∗(g; f ) (resp. distX∗(f ; g)), where f ∈ FX , to be distDDG(g)(g; f ′) (resp.
distDDG(g)(f

′; g)) where f ′ is f (in case f ∈ V (DDG(g)) or is an arbitrary part of f in some child bag of
X . Due to the fact that all parts f ′ of f are connected by zero weight edges, then the distance to any of
them is exactly the distance to all others.

Lemma 5.18. For all bags X∗ ∈ T , the above algorithm computes correct label as described in Section 5.2
for all nodes in X∗.

In order to see why does the above hold, we need to show that DDG(g) of a node g ∈ X∗ is distance
preserving w.r.t. the shortest paths metric of X∗.

Proof. For leaf bags, there is no DDG and the labels of all nodes get computed in the first step of the
algorithm. For non-leaf bags, it remains to show that the distances computed between g ∈ X∗ and all
f ∈ FX via DDG(g) are correct in X∗. If f ∈ FX is contained in some child bag of X∗ then it has a node
inDDG(g). If not, then each of its parts has a node. These nodes are all connected by zero weight edges,
thus, contracting this clique to a single node in the DDG(g) does not affect distances in the DDG. By
Property 12 of the BDD, the resulting graph is a graph on a subset of nodes of X∗, which by construction
ofDDG(g) are connected with edges that represent paths inX∗ (the weights and direction were obtained
by decoding labels in child bags ofX∗, which are correct by Lemma 5.16). So the distances in the DDG are
at most their real distances in X∗. Clearly they are also at least the real distances, as all edges represent
paths in X∗.

Note, if there is a negative cycle in X∗ it gets detected in the leaf-most descendant of X∗.

Lemma 5.19. A negative cycle in X∗ gets detected if and only if it exists.
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Proof. If X∗ has no negative cycle then we never report a negative cycle because by Lemma 5.18 all the
distances we consider are correct distances in X∗. If X∗ does have a negative cycle, let X∗ be a leafmost
such bag. If X∗ is a leaf-bag, then we detect the negative cycle since each vertex of X collects the whole
graphX∗ and checks for it. For a non-leaf bagX , by Lemma 5.15, all paths (and thus cycles) inX∗ are either
contained in child bags ofX∗ or cross the set FX of nodes. SinceX∗ is a leafmost bag containing a negative
cycle, the negative cycle must contain edges of at least two child bags. Therefore, it can be divided into
subpaths that cross FX (Lemma 5.15). For any node g of the negative cycle, the graphDDG(g) represents
all these subpaths correctly (Lemma 5.18), and so the cycle is detected by some vertex v that lies on the
face (face-part) g .

To conclude, a BDD T is built in Õ(D) rounds with each vertex v ∈ G knowing all relevant information
that is locally needed aboutX∗ (i.e.,X∗ is distributively stored). In each level of T we have at most Õ(D2)
rounds. Thus, by Lemmas 5.18 and 5.19 the above gives a correct distance labeling algorithm of the dual
network. Formally,

Theorem 2.1 (Dual Distance Labeling). There is a randomized distributed Õ(D2)-round algorithm that
computes Õ(D)-bit distance labels for G∗, or reports that G∗ contains a negative cycle w.h.p., upon termina-
tion, each vertex of G that lies on a face f , knows the label of the node f in G∗.

5.3.1 SSSP in the Dual

After we compute the labeling of Theorem 2.1, we want to learn an SSSP tree in G∗ from a given source
s ∈ G∗. That is, (1) all vertices of a face f in G shall know the distance from s to f in G∗, and (2) each
vertex of G shall know its incident edges whose dual counterparts are in the shortest paths tree.

We first choose the vertex v of minimum ID in the face s , which can be done in Õ(D) rounds by
communication over a BFS tree. Then, v broadcasts Label(s) to all vertices of the bag G, this can be done
in Õ(D) rounds, as we can broadcast the label in Õ(D)messages of size O(log n) over a BFS tree in Õ(D)
rounds. Then, all vertices of a face f can decode the distance from s to f in G∗ from Label(s); Label(f ) by
Lemma 5.16.

To mark the SSSP tree edges, an aggregate operator is computed for each node v of G∗ over its neigh-
bors (using Lemma B.9, we perform a single part-wise aggregation task). In particular, for a dual node,
we mark its incident edge that minimizes the distance product with its neighbors, i.e, we take the oper-
ator computed is minu∈N(v){dist(s; u) + w(u; v)} (where N(v) is v ’s neighborhood). Finally, G∗ might
be a multi-graph, so there might be many edges connecting v with a neighbor. We mark the minimal
weight edge connecting v to the neighbor that minimizes the above (breaking ties by IDs for edges and
for neighbors). Thus,

Lemma 2.2 (Dual Single Source Shortest Paths). There is a randomized Õ(D2) round algorithm that w.h.p.
computes a shortest paths tree from any given source s ∈ G∗, or reports that G∗ contains a negative cycle.
Upon termination, each vertex of G knows for each incident edge whether its dual is in the shortest paths tree
or not.

The above theorem in addition to Section 4 imply distributed (exact and approximate) algorithms for
Maximum st-Flow in G (i.e., proves Theorems 1.2 and 1.3) by an adaptation of the centralized algorithms
of Miller-Naor [30] and of Hassin [20]. The details are given in Section 6.

6 Primal Maximum st-Flow and Minimum st-Cut

In this section we show how to use the labeling algorithm of Section 5 to compute the maximum st-flow
in G, in addition, how to use the minor-aggregation model simulation on G∗ of Section 4 to approximate
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the maximum st-flow in G in the special case when G is undirected and both s and t lie on the same face
in the given planar embedding. I.e, when G is st-planar. The maximum st-flow results naturally extend
to minimum st-cut algorithms.

6.1 Maximum st-Flow

Theorem 1.2 (Exact Maximum st-Flow in Directed Planar Graphs). There is a randomized distributed
algorithm that given an n-vertex directed planar network G with hop-diameterD and integral edge-capacities,
and two vertices s; t , computes the maximum st-flow value and assignment w.h.p. in Õ(D2) rounds.

The proof mostly follows a centralized algorithm of Miller and Naor [30], we provide an overview of
the general idea. For the full proof see Appendix D.1. The algorithm uses a logarithmic number of SSSP
computations in the dual, after which one can deduce the value of the max st-flow and a flow assignment.
In particular, it performs a binary search on the value – of the maximum st-flow. In each iteration, – units
of flow are pushed along a (not necessarily shortest nor directed) s-to-t path. If this does not violate the
capacity of any dart in P then it is a feasible flow and we conclude that the maximum st-flow is at
least –. Otherwise, a residual graph is defined, possibly having negative capacities. To fix that, an SSSP
computation from an arbitrary node f in the dual is performed, such that, the flow can be fixed to not
violate capacities if and only if the dual does not contain a negative cycle (if a negative cycle was found,
then, the max st-flow value is less than –). This gives the flow value. In the former case, Miller and Naor
show that the following is a feasible st-flow assignment of value –. For every edge d ∈ G that maps to
d∗ = (g; h) ∈ G∗: the flow on d is set to dist(f ; h) − dist(f ; g) + – if d is directed towards t in P , to
dist(f ; h)− dist(f ; g)− – if d is directed towards s in P , and to dist(f ; h)− dist(f ; g) if it is not in P .

The undirected maximum st-flow problem asks to find the maximum flow that can be pushed from s
to t in an undirected network. Alternatively, where two neighbors are connected by two opposite direction
edges with the same capacity. Although the s-to-t flow value equals t-to-s flow value, the s-to-t flow
itself is directed (e.g. the flow entering s is non-positive, the flow entering t is non-negative).

Theorem 1.3 (Approximate Maximum st-Flow in Undirected st-Planar Graphs). There is a randomized
distributed algorithm that given an n-vertex undirected planar network G with hop-diameter D and integral
edge-capacities, and two vertices s; t lying on the same face, computes a (1− ›)-approximation of the maxi-
mum st-flow value and a corresponding assignment in D · no(1) rounds w.h.p.

To prove this, we simulate a centralized algorithm of Hassin [20], where he adds an edge e = (t; s)
and then computes SSSP in the dual of the resulting graph. s and t are required to be on the same face
in order to ensure that e does not violate planarity (it is embedded in the interior of the face containing s
and t). We use our minor-aggregation simulation on the dual (Section 4) in order to apply an approximate
SSSP algorithm of [42] on (G∪{e})∗, the dual of G∪{e}. We use an approximate algorithm since there is
no exact one in theminor-aggregationmodel. This simulation instantly gives the value of the approximate
maximum st-flow, however, in order to get an assignment we need to work a bit harder because Hassin’s
algorithm is an exact algorithm whilst we use it approximately. Hassin defines the flow assignment on
an edge e ′ whose dual is e ′∗ = (f ; g) to be dist(f1; g) − dist(f1; f ), where f1 is the source of the SSSP
tree computed in (G∪{e})∗ (note, we need the exact distances for the assignment). Thus, approximately,
if we want the flow assignment to be capacity respecting (amongst other requirements), for each edge,
we need to bound the difference of its endpoints’ (approximate) distances, i.e, we need the approximate
distances to obey the triangle inequality. Most (distributed) distance approximation algorithms do not
have this feature. Meaning, the approximation can be very far off the true answer. E.g, let u; v be two
neighbors of distance Ω(n) from the source, connected by a zero weight edge, we want the difference
of their (approximate) distances from the source to be zero, however, the difference of the approximate
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distances might be at least as large as ›n. To overcome that, we show how to apply a recent algorithm
of [40] on the dual. This algorithm was not implemented in the minor-aggregation model before.

Proof. The algorithm follows the centralized algorithm of Hassin [20]: Let f be a face of G containing
both s and t . Firstly, we add an artificial edge e = (t; s) to G embedded inside the face f (preserving
planarity) with infinite capacity. This edge is assigned a weight of nW , where W is the largest weight in
the network, representing infinite capacity in Õ(1)-bits.

f1
f2

s

t

Figure 13: G ∪ {e} in black and its dual in red. e (e∗) is the dashed edge. f is the face in which e is
embedded, note, f is split into two faces f1; f2. Each of f1 and f2 has a corresponding node in the dual.

The edge e divides f into two faces, f1; f2, where f1 is the face on the left 7 of e if e were to be directed
from t to s (this would be important for the flow direction later). We compute SSSP from f1 (this time all
edge-lengths are non-negative) in (G∪{e})∗. See Figure 13. Hassin showed that the value of themaximum
st-flow in G is equal to dist(f1; f2) in (G ∪{e})∗. We note that Hassin’s algorithm works for directed and
undirected graphs. For us however, it is crucial that the graph is undirected since the (distributed) SSSP
algorithm that we use works only for undirected graphs.

Distributively, all vertices need to know the IDs of s; t , and f . We detect the face f by a simple part-
wise aggregation in Ĝ (Properties 2, 3 and 4 of Ĝ), where the input of each copy of s (resp. t) is ID(s)
(ID(t)) and an identity item for any other vertex (e.g. minus one, as no ID is negative). The aggregate
operator simply counts the distinct values of input. Then, the face f is the face that has theminimum ID of
the (at most two) faces which got a count of two (s; t know these IDs and can choose theminimum locally).
Note, this aggregation terminates in Õ(D) since the values aggregated are of size Õ(1)-bits and there are
at most two distinct values aggregated on each face of Ĝ that maps to a face of G. Then, both s and t add
e to the clockwise ordering of their incident edges in G, and embed it to be in between two consecutive
edges of their incident edges in f . We use the minor aggregation model implementation (Section 4) for the
dual graph to simulate an SSSP minor-aggregation algorithm on (G∪{e})∗. We use the algorithm of [42]
that computes (1 + ›)-approximate SSSP in 2O(log n·log log n)

3=4
=›2 minor-aggregation rounds, yielding an

D·no(1) CONGEST algorithm inG for the undirected st flow problem in st-planar networks. However, we
want to simulate the algorithm on (G ∪ {e})∗ rather than G∗, meaning the simulation result of Section 4
cannot be used straightforwardly. Moreover, [42]’s algorithm assumes weights in [1; nO(1)] but not zero
(not allowing zero capacities). So, we assume that we do not have zero weight edges and first dive into
the details of the simulation, then we show how to get an assignment and finally show a simple fix for
dealing with zero weight edges.

7Left and right are defined w.r.t. the direction of e and can be deduced from the combinatorial embedding of e’s endpoints.
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Simulation. Here we desire to simulate [42]’s approximate SSSP algorithm on (G ∪ {e})∗ ̸= G∗ by
applying Section 4 (Theorem B.14) to simulate the extended minor aggregation model on G∗. We exploit
that the extended model can simulate any basic or extended minor aggregation algorithm on any virtual
graph G∗

virt that contains a small (poly-logarithmic) number of arbitrarily connected virtual nodes (see
Appendix B for exact definitions). Thus, the only thing we need to do, is to use that (TheoremB.14) in order
to apply the approximate SSSP algorithm on G∗

virt = (G ∪ {e})∗. To do so, we only need to distributively
store (G ∪ {e})∗ as needed (matching the input format of the algorithm stated in Theorem B.14, for
full details, see Appendix B). We explain; Recall, the face-disjoint graph Ĝ is used as the base graph for
representing G∗, i.e., Ĝ is the distributed method for storing G∗; To store any virtual graph G∗

virt that is
obtained by replacing nodes or adding virtual nodes to G∗, we need that all vertices on a face ĝ of Ĝ
(maps to node g ∈ G∗) to know a list of (IDs of) g ’s incident virtual edges and all virtual edges that
connect any two virtual nodes (and their weight if exists) in G∗

virt . So, we need to (1) show how to delete
f from G∗, (2) add two nodes that play the roles of f1; f2, and (3), connect them to neighbors of f and
to themselves properly, represented in Ĝ as described; Such that, the obtained G∗

virt has the exact same
structure as (G ∪ {e})∗. Note, changes need only to be made on f̂ ’s vertices and vertices lying on (faces
ĝ in Ĝ corresponding to) neighbors g of f in G∗.

We start by: (1) Enumerating f̂ ’s vertices in Ĝ in ascending order and deactivating them (deleting f ).
This numbering would be useful to define f1; f2 (i.e, split f̂ ). (2) Learning (locally) in Ĝ for each edge of
EC

8 that is incident to f̂ , whether its corresponding edge in G∗ shall be incident to f1 or to f2. Then, (3)
Each (face ĝ in Ĝ that maps to a) neighbor g of f needs to know its minimal weight edge connecting it
to f1 and f2, as we are interested in shortest paths and cannot afford to broadcast all edges of f , due to
their possibly large quantity. To do so, we compute a minimum aggregate over weights of ĝ ’s edges that
are mapped to edges that shall be incident to f1 (f2), so that all vertices in ĝ know the edge that connects
g to f1 (f2). Finally, (4) A global maximum operator is computed over edge weights of G, such that, all
vertices of Ĝ learn that f1; f2 are connected by an edge whose weight is nW , where W is the maximum
weight found. We describe how each step is implemented; Assume Ĝ is already constructed and its faces
that correspond to G faces are identified (Properties 1, 4 of Ĝ).

1. For enumerating f̂ ’s vertices in Ĝ, we use a simple classic procedure of a subtree sum using part-wise
aggregations on Ĝ. Specifically, the input tree is f̂ minus the ER 9 edge copy of the edge preceding
e in s’s local ordering of its incident edges (this edge is known to s locally), the root is the copy
of s that is incident to the removed edge, and all vertices get an input value of one initially. The
procedure we use is similar to those described in [14,17]. We can do so in Õ(D) rounds by Section 4
(Lemma B.6).

Denote by s ′, the copy of s in f̂ which is incident to the two consecutive edges e ′1; e
′
2 (of ER in Ĝ),

that map to the edges e1; e2 incident to s , s.t. e is embedded in between e1; e2 (in G), we define
t ′ analogously. Intuitively, let ea; eb be the two edges incident to s s.t. all edges between ea; eb (in
the local ordering of s) are in f , then all edges in between ea; e1 have to go to f1 and all edges in
between e2; eb have to go to f2, as e is embedded right after e1 and right before e2. We define s ′

to capture this in Ĝ (where edges have a lot of copies, sometimes in the same face 10), in order to
define f1; f2 correctly.

Now, s ′ (resp. t ′) broadcasts its ID, assigned number, and ID(f ). The ID of f1; f2 is defined to

8Those edges map 1-1 to edges of G∗, see Section 3 and Appendix A for more details.
9For each edge e of G, there are two edge copies in ER ⊂ E(Ĝ). Intuitively, there is an edge copy for each face of G that

contains e .
10E.g, if an edge e is internal to a face f , then it has its two ER copies in the face f̂ of Ĝ that maps to f . More generally, if

there is a tree attatched to a vertex in the interior of a face f , then each of those tree edges has two copies in f̂ , as f̂ is basically
an Euler tour on f . See Section 3 and Appendix A for more details.
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be (ID(f ); 0) and (ID(f ); 1), respectively, all vertices now know these as well. The broadcast is
pipelined and terminates in Õ(D) rounds as there is a constant amount of distinct messages sent.
From now on, all vertices in f̂ consider themselves as deactivated - they might still be used for
communication in the simulation, but they do not participate as an input.

2. Each vertex on a face ĝ of Ĝ already knows (by construction of Ĝ) for each of its incident EC edge
e∗, the (IDs of) faces it participates in and the ID of the edge e of G that e∗ corresponds to (recall,
EC edges are meant to simulate G∗ edges in Ĝ). Thus, in one round of communication, each vertex
in Ĝ can know for each incident edge in EC whether it shall be in f1 or f2, by firstly receiving the
numbering of its neighbors in f̂ and then, by deciding on each edge e∗ with both endpoints of e
having a number in between s ′ and t ′ to be in f1, otherwise, to be in f2. Note, this is consistent with
f1 being on the left of e if directed from t to s due to the choice of s ′ and t ′.

3. Now that edges incident to f1 and f2 are known to their endpoints in Ĝ, two minimum aggregations
in Õ(D) rounds are then computed and broadcast in each neighbor ĝ of f̂ in Ĝ over EC edges that
connect f1 to g and f2 to g , allowing all vertices on ĝ to learn the two edges connecting g and each
of f1; f2 in (G ∪ {e})∗, if any.

4. Finally, an aggregate over G edge weights is computed in O(D) rounds for finding W , then, since
each vertex in Ĝ knows the ID of f1; f2 and W , it learns that f1; f2 are connected by an edge with
weight nW in (G ∪ {e})∗.

Notice, all the above terminates within Õ(D) rounds on G by Section 4 (Lemma B.6). Finally, since
G∗
virt = (G ∪ {e})∗ now is properly distributively stored, then, we can simulate the extended minor-

aggregation model on it (see Theorem B.14 for details); So, we first use it in order to deactivate parallel
edges (Lemma B.15), keeping only the minimal-weighted edge between its endpoints (we aim to com-
pute SSSP). Then, since G∗

virt is simple and we can simulate any minor aggregation algorithm on it, it
satisfies the requirements for applying the mentioned theorem with [42]’s SSSP algorithm, obtaining an
approximate SSSP tree rooted at the source f1.

Distances (flow value). Assuming we have computed an approximate SSSP tree T (with zero weighted
edges included) as promised, we can compute the distances of any node from the source by a simple
procedure. That is, root the computed tree with the source, then compute the tree ancestor sum of every
node g ∈ T , i.e., the weight of the f1-to-g T -path. For that, we use a procedure of [18] that runs in
Õ(1) minor aggregation rounds (Lemma 16 in their paper), thus, Õ(D) rounds in G. After that process
terminates, each vertex lying on f2 (inG) knows the approximate distance from f1 to f2 inG∗

virt , thus, it can
broadcast it to the whole graph. Note, that distance is a (1 + ›) approximation of the maximum st-flow
value (by Hassin [20]). Since the algorithm guarantees to report ¸ · dist(f1; f2) instead of dist(f1; f2), for
¸ ∈ [1; 1 + ›], multiplying by (1− ›), we get (1− ›)¸ ∈ [1− ›; 1− ›2], that is, a (1− ›) approximation
of the maximum st-flow value.

Approximate flow assignment. Note that in Theorem 1.2 we obtained both the value of themaximum
flow and a corresponding assignment of flow to the edges. Here however, we approximate the flow value
but do not immediately obtain an assignment (or an approximate assignment) of the flow. The reason is
as follows: Hassin’s algorithm was designed as an exact algorithm (running an exact SSSP computation)
while we use an approximate SSSP. For the flow value this is fine, instead of dist(f1; f2) we report a
(1 − ›)-approximation of dist(f1; f2). However, for the corresponding flow assignment, recall that the
flow on edge e ′ ∈ G with e ′∗ = (f ; g) ∈ (G ∪ {e})∗ is dist(f1; g) − dist(f1; f ). This means we need the
approximation algorithm to bound dist(f1; g)−dist(f1; f ) by the edge’s capacity (and not just approximate
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dist(f1; g) and dist(f1; f )). I.e., we want the approximate distances to satisfy the triangle inequality. This
indeed is possible using (a dual implementation of) a recent algorithm of Rozhon, Haeupler, Martinsson,
Grunau and Zuzic [40], however, their algorithm was not implemented in the minor-aggregation model.
Given access to a (1 + ›)-approximate shortest paths oracle, [40]’s algorithm produces smooth (defined
next) approximate distances within a logarithmic number of calls to the oracle with a parameter ›′ =
O(›= log n). Before we dive into the simulation, we define what a smooth distance approximation is,
suggest a flow assignment and prove it is a feasible (1−›) approximate assignment using the smoothness
property.

Smooth distances and a feasible flow assignment. In order to prove that the approximate SSSP computation
gives a feasible (1−›) approximate flow assignment, we need to show an assignment that is: (a) Capacity
respecting: the flow being pushed on each edge is non-negative and is at most its capacity, (b) Obeys
conservation: for all vertices except for s and t , the flow pushed into a vertex equals the flow pushed by
it. Finally, the assignment should be (c) (1 − ›) approximate: the flow pushed from s to t is between
(1 − ›) and once the maximum st-flow. Note, even thought the graph of input is undericted, the flow
itself is directed, so we address that as well. We first define some notions and define the flow assignment,
then proceed to prove that the above holds.

In [40], a (1 + ›) distance approximation d(·) from a given (single) source in a graph G is said to be
(1 + ›)-smooth (definition 4.2 in their paper) if it satisfies the following:

∀u; v ∈ V (G) : d(v)− d(u) ≤ (1 + ›) · dist(u; v)

We assume we have computed a (1+ ›) smooth approximate distances from f1 in (G ∪ {e})∗ by combin-
ing [42] and [40], denoted d(·), and we define ‹(·) := (1 − ›)d(·). Then, for e ′ = {u; v} ∈ G ∪ {e} s.t.
e ′∗ = {f ; g} in (G ∪{e})∗, we define the flow value pushed on e ′ to be |‹(g)− ‹(f )|. When ‹(g) ≥ ‹(f ),
the flow is being pushed on e from u to v , otherwise, it is pushed from v to u. We denote this flow
assignment by ffi(·), taking the induced assignment on G gives the final assignment.

(a) Capacity respecting. Obviously, the flow pushed on each edge is non-negative (by definition). Given
a (1+›)-smooth distance approximation from the source f1 in G∗

virt = (G∪{e})∗, we get a capacity
respecting flow assignment as follows. Consider any edge e ′ = (u; v) where e ′∗ = (f ; g) and the
approximate distances d(·), s.t. d(g) ≥ d(f ), then, from the smoothness property:

d(g)− d(f ) ≤ (1 + ›) · dist(f ; g) ≤ (1 + ›) · c(e ′) (1)

multiplying by (1− ›), we get,

‹(g)− ‹(f ) ≤ (1− ›2) · dist(f ; g) ≤ (1− ›2) · c(e ′) (2)

Note, the left-hand side of Equation (2) is exactly ffi(e ′), the flow pushed on e ′; c(e ′) is its capacity
and the property follows. The left inequality in Equation (1) follows simply from the smoothness
property, whilst the right one follows since the the edge weights of G∗

virt are the edge capacities
of the corresponding primal edges and that the exact distances in G∗

virt is a metric that obeys the
triangle inequality, i.e, dist(f ; g) is at most the weight of the edge connecting f ; g . Equation (2)
follows from Equation (1) since, by definition, ‹(·) = (1− ›)d(·).

(b) Conservation. By [25], assuming a planar directed graph with edge capacities and an assignment of
potentials (weights) ȷ(·) on its faces, then, assigning for each edge a flow of ȷ(g) − ȷ(f ), where g
(resp. f ) is the face on the right (left) of that edge, gives a flow assignment that obeys conservation
in all vertices 11. Considering G∪{e}, the assignment we suggest, is deliberately defined so that the

11This kind of a flow assignment is referred to as a circulation in the centralized literature on planar graphs.
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directions of the flow would be consistent with the above. I.e, directing an edge in its defined flow
direction and pushing |‹(g) − ‹(f )| units of flow would be consistent with the definition above.
Thus, the flow assignment we suggest obeys conservation in every vertex of G ∪ {e}. Note, G is
equivalent to G ∪ {e} after removing e = {s; t}, thus, the induced flow assignment on G obeys
conservation except in the endpoints of e , which are s and t .

(c) Flow value of the assignment. f1 was picked to be the source of the approximate SSSP computation
(‹(f1) = 0), thus, ‹(f2) ≥ ‹(f1), meaning, according to our definition of ffi(·), the flow on e shall
be directed from t to s , as f1 shall be the face on left of e w.r.t. the flow direction on e . As a result,
the flow pushed on e from t to s is ‹(f2) − ‹(f1). Note, ffi(·) obeys conservation in all vertices of
G ∪ {e}, thus, removing e from G ∪ {e} would induce the flow assignment in G, directed from s to
t , of value:

ffi(e) = ‹(f2)− ‹(f1) = (1− ›) · d(f2)− 0 = (1− ›) · ¸ · dist(f2; f1) (3)

where ¸ ∈ [1; 1 + ›]. We already have shown that the right-hand side of Equation (3) is a (1 − ›)
approximation of the maximum st-flow value, thus, the induced flow assignment by ffi(·) on G of
value ffi(e) is (1− ›) approximate.

It remains only to show that we can apply [40]’s algorithm (Theorem 5.1, Algorithms 3 and 4 in their
paper), in order to obtain smooth (1 + ›) approximate single source shortest paths from f1 in G∗

virt =
(G ∪ {e})∗ by invoking the algorithm of [42] that we use for approximating distances, which we refer
to as the oracle. We note that [40]’s algorithm assumes real weights in [1; nO(1)], whereas we work with
integral weights, however, they suggest a fix (by scaling) for this that appears in Appendix C of their paper.
Note, scaling can be implemented efficiently in oneminor-aggregation round, henceforth, we consider this
issue resolved.

[40]’s algorithm in a high-level.We describe [40]’s algorithm for smooth distance approximation in a high-
level, highlighting only the computational tasks necessary to implement it in theminor aggregationmodel.
For the algorithm in full resolution, the reader is referred to Section 5 of [40]. Initially, nodes of the input
graph shall know the source s , the approximation parameter › and a trivial estimate ∆ of the maximum
distance in the graph (∆ := 2nW in our case), then, each node computes additional parameters that
depend only on the former. Note, all of the former may be implemented in only one minor-aggregation
round.

Next, the algorithm computes a distance approximation, based on a call to the approximation or-
acle (any SSSP approximation algorithm, without any additional special guarantees) with s and ›′ =
O(›= log n) . Then, sequentially, O(log n) phases are performed, each defining a distance approximation,
such that, the final output of the algorithm is the approximation computed in the last phase. In each
phase, two calls to the approximate oracle are performed with s and ›′=100. Each call to the oracle is on
a level graph. Afterwards, each level graph defines a distance approximation of the input graph, and the
phase’s distance approximation is computed by taking the element- (node-) wise minimum over: (1) the
approximations computed on the level graphs, and (2) the approximation from the previous phase. Again,
taking the minimum requires only one minor-aggregation round.

Level graphs. The only vagueness in the implementation lies in the level graphs, which we now define,
then, show that they can constructed and simulated efficiently in the minor-aggregation model. The level
graph H (Definition 5.7 in [40]) in a specific phase of an input graph G where each node of G knows its
(approximate) distance from a source s , is defined as follows. The node and edge sets of H are the same
as those of G, then: (1) Each node assigns itself a level (a number), depending only on its distance from s
and some parameter !, (2) each edge that connects neighbors of different levels is removed, the weights
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of edges kept are altered depending only on previously computed parameters that all nodes of G know.
Finally, (3) An edge between s and each u ∈ G is added, with weight depending only on ! and the s-to-u
distance approximated in the previous phase.

Implementation of level graphs. First, we start by computing ! in one minor-aggregation round on G∗
virt

as it depends only on parameters known to all nodes of the input graph (as ∆; › and others). Then,
we compute the level of each node, also in one round, as it only depends on ! and the s-to-u distance
approximated in the previous phase. The remaining things to explain are: (1) How to "delete" edges that
cross levels, and (2) How to connect s to all nodes with the appropriate edge weights.

1. Deactivating edges that cross levels is simple. Each edge e = (u; v) in the input graph knows
the level of both its endpoints, thus, it knows if it should participate in the level graph or not. In
more detail, recall, e in the minor aggregation model is simulated by its endpoints u′; v ′ in the
base communication graph (Ĝ in our case). In one round on Ĝ, u′ knows the level of the super-
node that contains v ′ (and vise-versa). Thus, u′; v ′ know that e is prevented from participating in
computations on H. In case v ′ is virtual then all nodes of the graph simulate it (in particular u′),
and know its information (in particular, its level).

2. Luckily, we work in the extended minor-aggregation model, where adding virtual nodes and con-
necting them arbitrarily to any other virtual or non-virtual node, is a feature of the model. In the
same manner that we described earlier (where we obtained G∗

virt ), we alter H and replace s with
a virtual node, all nodes in H now know they are connected to the source. Notice, there are no
problems regarding weights of edges, as the weight of an added edge (s; u) depends only on ! and
the approximated s-to-u distance in the previous phase (already known to u). Thus, when nodes
connect themselves to the replaced s , they connect themselves with the needed weights. Again,
virtual nodes are simulated by all vertices, so for each virtual v , all real nodes know its info and
locally consider it to be connected to s with the right weight.

Note, each phase is of Õ(1)+TSSSP (›′) minor-aggregation rounds, where TSSSP (›′) denotes theminor-
aggregation round complexity of a (1 + ›′)-approximate SSSP oracle. Thus, the overall minor-aggregate
round complexity of the (1+ ›) smooth approximate distance computation is O(log n) · Õ(TSSSP (›′)). Im-
plementing the approximate SSSP oracle with the algorithm of [42], results with a total minor-aggregate
round complexity of O(log n) · ( 1›′ )

2 · 2O(log n·log log n)3=4 , i.e., log3 n
›2

· 2O(log n·log log n)3=4 , which translates to
D
›2
·no(1) CONGEST rounds on the network of communication G. For conclusion, since each vertex v in G

simulates its copies in Ĝ, which in turn simulate the faces v participates in in G∗
virt , then, v knows for each

face it participates in, its distance from the source. Thus, after computing smooth distances in the relevant
graph G∗

virt , in one round of communication, v knows for each incident edge e ′, such that e ′∗ = (f ; g),
the values ‹(f1; g) and ‹(f1; f ) and can locally compute ffi(e ′). Finally, we are ready to go through the last
modification required to keep our promise, that is, we show next how to allow zero capacities (zero-weight
edges in the dual shortest paths approximation).

Zero weighted edges. The algorithm of [42] that we use for the approximate SSSP and of [40] used
to obtain the smoothness property work for weights in [1; nO(1)], indeed all weights in G∗

virt , even that
of the infinite capacity edge are in [1; nO(1)] except the zero-weighted ones. To deal with that issue, we
simulate the obtained smooth approximate SSSP algorithm above while considering zero weighted edges
as follows: We run the algorithm on maximal connected components of G∗

virt \ {e : w(e) = 0}, obtaining
a partial SSSP tree of G∗

virt , then we augment it with some zero weighted edges without closing a cycle,
obtaining an SSSP tree T of G∗

virt , all done via the extended minor aggregation model.
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Concretely, we work in two phases. In the first phase, we compute an approximate SSSP tree T1 on
the minor G∗

1 of G∗
virt where all zero-weighted edges are contracted, where the source is the super-node

that contains f1. Now, we need to choose what zero-weighted edges shall be added to complete the ap-
proximate SSSP tree T1 of G∗

1 into an approximate SSSP tree T of G∗
virt . T1 defines a set of connected

components in G∗
virt , contracting those components in G∗

virt (after we undo the zero-weight edge con-
traction) results with another minor G2, that contains only zero-weight edges. I.e., we are looking for
some spanning tree in G2. So, we compute a minimum spanning tree T2 of G∗

2 by a minor aggregation
procedure of [42] (Example 4.4 in their paper). Hence, the tree T = T1 ∪ T2 (considering the endpoints of
edges of T1; T2 in G∗

virt rather than G
∗
1 ; G

∗
2 when taking the union) constitutes an approximate SSSP tree

in G∗
virt .
Note, T obeys the triangle-inequality (which is crucial for a flow assignment) for the following rea-

soning. Distances in T1 represent distances in G∗
virt , by construction any pair of nodes in T1 satisfies the

triangle inequality. Thus, map each node f ∈ G∗
virt to the super-node a of T1 that contains it, the property

follows since f and a have the same distances from the source because T1 was obtained by contracting
zero-weight edges only. I.e, T = T1 ∪ T2 satisfies the triangle inequality as any pair of (super-)nodes in
T1 does.

6.2 Minimum st-Cut

By thewell knownMax-FlowMin-Cut Theorem [7], having the exact (approximate) value of themaximum
st-flow in G immediately gives the exact (approximate) value of the minimum st-cut in G. So, here we
focus on finding the cut edges and bisection. We use our flow algorithms to do so.

Theorem 6.1 (Distributed Exact Planar Directed Minimum st-Cut). Given a directed planar graph G with
non-negative edge weights and two vertices s; t , there is a Õ(D2) round randomized algorithm that finds the
minimum st-cut w.h.p.

To prove this, we use Theorem 1.2 to compute a maximum st-flow f in G in Õ(D2) rounds. By [7], a
corresponding minimum st-cut is the cut defined by the saturated edges (an edge is saturated if the flow
it pushes equals its capacity) that precede any other saturated edge on any path that contains them and
starts at s . To find those edges we set the weight of each saturated edge to one and all other edges to
zero. Then, we use an exact distance algorithm that runs in Õ(D2) rounds for planar graphs by [26] on
the graph with modified weights. Each edge that has an endpoint with distance zero from s and another
endpoint of distance one from s is a cut edge. The bisection can be deduced from the distances as well,
each vertex whose distance from s is zero on s’s side of the cut, others are on t’s side. For a full proof, the
reader is referred to Appendix D.2.

Next, we show an almost optimal algorithm for (1 + ›) approximation of the undirected minimum
st-cut, where s and t lie on the same face.

Theorem 6.2 (Distributed Approximate st-Planar Undirected Minimum st-Cut). Given an undirected
planar graph G with non-negative edge weights and two vertices s; t that lie on the same face of G, there is a
randomized algorithm that finds an approximate (1 + ›) minimum st-cut and runs in D · no(1) rounds w.h.p.

Proof. Note, the method used in Theorem 6.1 does not apply instantly here, for two reasons, (1) the
round complexity of the primal SSSP computation is very high compared to our promise, and (2) we
cannot compute the residual graph, as we only have an approximation of the flow, meaning, we may
not distinguish between saturated edges and non-saturated edges, a crucial step in the previous method.
Eventually, the cut edges are going to be the path P found by the SSSP computation we perform when
we approximate the max st-flow (see the proof of Theorem 1.3 for more details).
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Concretely, we take a primal-dual detour, where we consider faces in the dual graph that map to the
vertices s and t in the primal12. See Figure 14. We refer to faces of the dual as dual faces. A special case
of the cycle-cut duality (Fact 3.1) is given by Reif [38], stating: An st-separating cycle in the dual graph
is the dual of an st-cut in the primal, where a cycle in the dual graph is said to be st-separating, iff it
contains the the dual face that is mapped to s in its interior, and the dual face mapped to t in its exterior
(or vice versa). Thus, we find a (1 + ›)-approximation of the minimum st-separating cycle in G∗ in order
to find its dual, the desired (1 + ›)-approximate minimum st-cut in G.

f1
f2

s

t
P

Figure 14: G ∪ {e} in black and its dual in red. e (e∗) is the dashed edge. Each of s and t correspond to a
face in the dual. Both of those dual faces contain e . Note, the cycle C is demonstrated by the f1-tof2 path
P and e∗, where the dual face t is in its interior and the dual face s in its exterior.

To do so, we compute a (1 + ›)-approximate max st-flow by Theorem 1.3, not (1 − ›), see the proof
of that theorem where we first obtain a (1 + ›) approximation (and then transform it to a (1 − ›) one).
Then we consider G∗

virt = (G ∪ {e})∗, where e = (s; t) splits the face f in G on which both s; t lie into
two faces, f1 and f2. Recall, the algorithm from Theorem 1.3, computes a shortest path P from f1 to f2 in
G∗
virt (see the proof of that theorem, its correctness is used in this proof). We claim that P corresponds

exactly to the approximate minimum st-cut in G. See Figure 14.
Note, any st-cut in G ∪ {e} shall contain e , and removing it gives G. Thus, to have the min st-cut

in G, we can look for the min st-cut in G ∪ {e}. In particular, there is a mapping between st-cuts of G
and G ∪ {e}, where the value of the cut in G ∪ {e} is the same value of the corresponding cut in G plus
the weight (nW ) of e . Thus, when applying the duality of Reif we consider G∗

virt . That is, we look for the
approximate minimum separating cycle in G∗

virt . By duality, this cycle should contain e∗ = (f1; f2).
Note, the edge e∗ = (f1; f2) closes a cycle with P , denoted C = P ∪ {e∗}, that would be the desired

approximate min st separating cycle. C is separating as any cycle in a planar graph is separating (Jordan
curve theorem [44]), in particular it is st separating, for: (1) s and t are faces in the dual, each has to be
either in the interior or the exterior of C, (2) one dart of e is in C’s interior and the other in its exterior,
each such dart corresponds to a distinct dual face, one of which maps to s and the other maps to t because
e connects s and t in the primal. Note, C is (1 + ›)-approximate st-separating minimum cycle in G∗

virt .
Otherwise, P is not a (1+ ›)-approximation to the shortest f1-to-f2 path. I.e, since C = P ∪{e}, then the
length ofC is that of P plus nW . I.e, ifC is not a (1+›) approximation of theminimum st separating cycle,
then, the length of C minus nW is not a (1+ ›) approximation to the shortest f1-to-f2 path, contradicting
the fact that P is.

Next, we aim to mark those st-cut edges in G. By the above, it is sufficient to mark edges in G who are

12The dual of the dual is the primal, i.e, primal vertices map to faces of the dual graph. Moreover, the dual face that is mapped
to any vertex v is the (only) face that consists of all darts entering v . See [25] for more details.
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the duals of edges P in G∗
virt . Assuming we already applied Theorem 1.3, in particular, we have computed

an approximate SSSP tree T from f1, then, we want to mark P . We already know that we can simulate
any minor-aggregation algorithm on G∗

virt (for details, one is referred to the proof of Theorem 1.3), thus,
we can simulate any minor-aggregation algorithm on any subgraph of G∗

virt (Corollary 11 of [18]). I.e., we
can invoke any minor-aggregation algorithm on T . To mark P edges, a minor-aggregation tree-rooting
and subtree-sum procedures of [18] are invoked, where we root T with f1 and compute subtree-sum on
the rooted tree, such that, the input value of all nodes is zero, except for f2 that would have an input
of one. The edges whose both endpoints have subtree-sum value of one are marked, those exactly are
the P -edges. Those procedures are of Õ(1) minor-aggregation rounds, which are simulated within Õ(D)
rounds in G by applying Theorem B.14, the exact details of this simulation on G∗

virt are provided in the
proof of Theorem 1.3.

Next, we show how to find the cut vertices, in particular, we show how to find a set S such that
P = ‹(S; V \ S). To do that, we take an approach similar to that described in the proof of Theorem 6.1,
where we define a graph R′, in which, each P -edge is assigned a weight of one, and all other edges a
weight of zero, we then again use the minor-aggregation SSSP approximation algorithm of [42] with an
arbitrary constant approximation parameter › in order to compute a (1 + ›)-approximate SSSP tree T
from s in R′. In particular, we modify the algorithm to work with edges with weights in [0; nO(1)] rather
in [1; nO(1)], as shown in the proof of Theorem 1.3. Finally, vertices whose distance is zero from s are in S
(other vertices are in V \ S).

The round complexity of simulating the SSSP approximation algorithm isD ·no(1), since the part-wise
aggregation problem can be solved on G in Õ(D) CONGEST rounds (Corollary B.6), and the approximate
SSSP algorithm of [42] runs in no(1) minor-aggregation rounds. Thus, by Lemma B.8 simulating the algo-
rithm incurs a total of D · no(1) CONGEST rounds in G. Note, after applying the distance approximation
algorithm, vertices of G know locally to what side of the cut do they belong.

7 Directed Global Minimum Cut

In this section, we show that our labeling algorithm from Section 5 for the dual graph G∗ can be used to
compute the directed global minimum cut in the primal graph G. The problem asks to find a bisection
(S; V \ S) of the vertex set, such that, the set of edges C leaving S to V \ S is of minimal total weight.

Theorem 1.5 (Planar Directed Global Minimum Cut). Given a directed planar graph G with non-negative
integral edge weights, there is an Õ(D2) round randomized algorithm that finds a global directed minimum
cut w.h.p..

In order to prove Theorem 1.5, we work with darts: each directed edge is represented by two darts in
opposite directions. For a definition, see Section 5.1. Specifically, we rely on a dart version of the cycle-cut
duality (Theorem 4.6.2 in [25]).

Fact 7.1 (Dart Cycle-Cut Duality). Let G be a connected embedded planar graph (in the undirected sense).
A set of darts C is a simple dart cycle in G∗ if and only if C is a simple cut in G. Where a cycle is a simple
dart cycle iff it is a simple cycle that uses no dart and its reversal, and, a cut is simple iff when removed it
disconnects the graph into two connected components (in the undirected sense).

The reason we chose to work with darts is simply that the duality does not hold for general directed
planar graphs, i.e., when an edge may be present without its reversal dart. For example, the minimum cut
in G, when G is a directed cycle, is simply a single directed edge (i.e., there are two edges in the cut but
only one of them is directed from S to V \ S). Hence, in the dual it corresponds to the edge e = (f ; f∞),
where f (resp. f∞) is the dual node that corresponds to the interior (exterior) of the cycle, since e is a
single edge that connects two distinct nodes, it is not a cycle. See Figure 15.
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Figure 15: In blue, the primal graph G (a clockwise directed cycle). In red, the dual G∗ (two nodes with
parallel edges in only one direction). The black edge e is the minimal weight edge in G, constituting the
directed global minimum cut in G, whilst its dual is the (single) black edge in G∗. e is not a cycle in G∗.

Thus, we augmentG with the reversal dart of all of its edges. Since the problem of interest is the minimum
cut, all of those darts are assigned a weight of zero. This guarantees that the value of the minimum cut
remains the same. Henceforth, by Fact 7.1, it is enough to compute the directed minimum weight simple
dart cycle in G∗.

Proof. By Fact 7.1, assuming G is connected in the undirected sense, the minimum weight directed global
cut C of G is given by the minimum weight simple cycle of darts in G∗. We compute this cycle in G∗ in a
bottom-up fashion on the extended BDD of G. Some terms are borrowed from the proof of Theorem 2.1
(the distance labeling algorithm of G∗), e.g. the dual separator FX and the dense distance graphDDG(g).
Thus, the reader is referred to Section 5.3 to recall the details of Theorem 2.1’s proof.

The general idea is simple, given an extended BDD of G, by Lemma 5.15 , any shortest path (or cycle)
of G∗ either intersects a dual node in FG (the separator of G∗) or is entirely contained in one of G∗’s child
bags. Thus, in order to find C, we take the minimum over: (i) directed cycles that intersect FG , and (ii)
minimum directed cycles in G∗’s child bags (found recursively). Note, we need to ensure that all cycles
found are simple dart cycles, which introduces a further complication to the general approach. The fol-
lowing describes in detail how to find the desired cycle of G∗ and then infer the cut in G.

Preprocessing: We work with the network obtained from G by adding the reversal dart of each edge
to the graph, such that, the two darts of an edge are ordered one after another in the embedding. We
abuse notation and denote this network by G. The reversal dart gets assigned a weight of zero. It is not
hard to see that the new network can be constructed and embedded in the plane without any need for
communication (assuming an embedding of the original network). Note that any CONGEST round on
the augmented network is simulated within two rounds on the communication graph.

Next, in Õ(D2)-rounds, by Theorem 2.1, we construct an extended BDD T and compute distance la-
bels for each node in each bagX∗ ∈ T . The algorithm of Theorem 2.1 succeeds to compute distance labels
in G∗ and does not abort since all weights are non-negative (i.e., there are no negative cycles in G∗).

Leaf bag case: Each leaf bag X∗ of T is gathered in all vertices of X in Õ(D) rounds (Property 10 of
T ). Thus, the minimum weight simple dart cycle of each such X∗ is computed locally and is known to all
vertices in X , this cycle is denoted by CX and is assigned a unique ID, that of the minimal ID node on it
concatenated with its weight.
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Non-leaf bag case: Let X∗ be a non-leaf bag of T , we first find the minimum weight cycle that crosses
between X∗’s child bags, i.e., a cycle that did not appear in any child bag of X∗, (hence, crosses FX ), by
distance computations in DDG(f ) for an arbitrary f ∈ FX . Then, we take the minimum between this
cycle and cycles found in the previous recursion on the child bags of X∗ (cycles entirely contained in a
child bag of X∗). Note that: (1) DDG(f ) is the same graph for all f ∈ FX , and (2) all (primal) vertices on
each FX node know the distance labels of all nodes in FX .

1. ID(CXi ) for each child bag Xi of X is aggregated on X in Õ(D) rounds so that the ID of the
minimum weight cycle CX (that does not cross FX ) is known to all vertices in X . Note, vertices in
Xis know ID(Ci ), thus they can broadcast it (this is obviously true for leaf bags, for non-leaf bags,
this is recursively maintained in the next two steps). Since X is of Õ(D) diameter, this aggregation
terminates in Õ(D) rounds. Next, we consider cycles that cross FX .

2. The f ∈ FX with maximum ID is found first. Due to the fact that X is of diameter Õ(D) and since
all vertices of X know the IDs of faces and face-parts they participate in (Properties 5 and 13 of T ),
this aggregation of IDs terminates in Õ(D) rounds.

3. Finally, all vertices of X locally construct DDG(f ) and compute the minimum weight simple dart
cycle C by investigating the following two options related to SX (the edges of the primal separator,
see Section 5.1 for exact definitions).

(a) C uses an SX dart: In this case, one can deduce C by iterating over SX darts present inDDG(f ).
For each such dart d = (g; h), we remove its reversal from DDG(f ) and compute SSSP from
h. Note, the shortest h-to-g path found maps to a shortest simple h-to-g path P in X∗ that

h

g

Figure 16: DDG(f ) in the iteration of the dart (g; h) (purple), where each shadow color demon-
strates a distinct child bag of X∗. Black vertices are endpoints of SX edges and red vertices
are node parts in X∗’s child bags. The reversal dart of (g; h) is removed from the DDG. All
other edges have both their darts present (for simplicity, some are undirected in the picture).
The green directed path demonstrates a shortest h-to-g path that closes a cycle with the dart
(g; h).

does not use rev(d). P is simple because there are no negative cycles in G∗. The following
claim is a corollary of Lemma 5.18.

Claim. DDG(f ) \ {DX} preserves distances in X∗ \ {DX}, where DX is a subset of SX darts
that are present in DDG(f ).

Due to the above claim, we get that P combined with d gives the minimum weight simple
dart cycle that uses d , denoted Cd . We define C to be the minimum over Cd for all SX darts
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d . If C is of weight strictly less than CX , then CX is set to C and is identified with the ID of f
concatenated with the cycle’s weight.

(b) C does not use SX : In this case, we iterate over node-parts gi in FX , in each iteration we remove
SX darts from DDG(f ) and all clique edges between all node-parts g2; g3; : : : that correspond
to the same face g of G as gi . Then, we compute the shortest path in DDG(f ) from gi . We

g3

g1

g2

Figure 17: DDG(f ) in the iteration of node-part g2. g1; g2; g3 correspond to the face g of G,
where each shadow color demonstrates a distinct child bag ofX∗. Black vertices are endpoints
of SX edges and red vertices are node parts in X∗’s child bags. All SX darts are removed from
the DDG, as well as clique edges on g1; g2; g3. All other edges have both their darts present
(for simplicity, not some are undirected in the picture). The green directed path demonstrates
a shortest g2-to-g1 path, representing a cycle that contains g in G∗.

define Cg to be the shortest path found from any gi to any gj ̸= gi . If Cg is of weight strictly
less than CX , then CX is set to Cg and is identified with the ID of g concatenated with the
cycle’s weight.
Cg corresponds to a simple dart cycle in G∗. A cycle since gi ; gj are parts of the same node g
of G∗; And simple since Cg uses a dart incident to gi and a dart incident to gj , those darts are
not the reversal of each other because each of gi ; gj is in a distinct child-bag of X∗. I.e., the
cycle Cg in G∗ leaves g with a dart incident to gi and ends entering g with a dart incident to
gj and those darts are not the reversal of each other. The removal of the dart incident to gj
from Cg in G∗ gives a path P , P is simple due to the fact that it is a shortest path, hence P
with a dart that its reversal does not appear in P constitutes a simple dart cycle, Cg . Note, we
removed the clique edges in the DDG to have that the shortest gi -to-gj path in the DDG is
not both darts of a clique edge (which is also not an edge of G∗).
The correctness of the cycle’s weight is again due to the claim above, whereDX is set to contain
all SX darts. Note, removal of clique edges may only increase distances, however, all distances
computed still map to paths in G∗.

Cut edges and bisection: After the recursive process terminates, each v ∈ G knows the weight of CG
and an ID of a node f of G∗ that participates in CG . We aim to extend this information to find the edges
and a corresponding bisection of the cut in G. Note, even if the node identified with the cycle was a
face-part f ′ in the bag X where the cycle was found, we can locally identify the face f of G that f ′ is a
part of, as the ID of f is contained in the ID of f ′ (Property 13 of the extended BDD).

Claim. The minimal weight simple dart cycle in G∗ can be decomposed into a shortest f -to-g path P and a
dart d = (g; f ), where g is the node that minimizes the total weight of P ∪ {d} s.t. P ̸= rev(d).
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To prove the above claim, note, the desired cycle contains f , thus, f has two incident darts in the cycle,
specifically, there is a dart d that enters it, denote d ’s other endpoint by g , we get that the cycle minus
d is a shortest f -to-g path P (otherwise, a shorter cycle exists). Since the cycle is a simple dart cycle, we
have that P must not be the reversal of d . g obviously minimizes the weight of P ∪ {d} (otherwise, a
shorter cycle exists).

Henceforth, to find the edges of the cycle in G∗, we compute an SSSP tree T rooted at f in G∗. Then,
each non-T dart entering f determines a single cycle. We need to find such a simple dart cycle P ∪ {d}
of total minimal weight where P ̸= rev(d). To do that, we first need to discard all reversals rev(d) of
the darts d that leave f in T , because all such rev(d)s close non-simple dart cycles with T . Then, we can
indeed look for the dart d = (g; f ) entering f that minimizes the (only) cycle of T ∪ {d}. We do that by
aggregations on G∗ using the minor-aggregation model (Section 4).

1. By the proof of Lemma 2.2, within additional Õ(D) rounds after computing distance labels, using
aggregations on G∗, we can obtain the tree T .

Note that T is represented by Ĝ, our tool for aggregations on G∗. Thus, we next work with it and
with minor-aggregations on G∗ and T , which by Section 4 is possible since (1) we can do that on
G∗ or any minor of it, and (2) T is a subgraph (minor) of G∗. For an extended discussion of Ĝ and
minor-aggregations on G∗, see Sections 3 and 4, and Appendices A and B.

2. f and each node g of its children in T both discard the dart rev(d), where d connects f and g in
T , from participating in the algorithm, ensuring that no dart closes a non-simple dart cycle with T .
This is done locally in Ĝ: the endpoints u; v of the edge simulating d in Ĝ, know that d connects f
and a child of it g in T , thus, u; v stop considering their other common edge that simulates rev(d)
as an input for the aggregations on Ĝ that simulate aggregations on G∗ (and T ).

3. Now we work with minor-aggregations on G∗. Since each node g of G∗ knows its distance from f
(the weight of the f -to-g T -path P ), for the next aggregation, all active darts (g; f ) choose an input
value of their weight plus the weight of P , other darts (that f is not their head) chose an identity
value. Thus, within one minor-aggregation round, f computes the minimum over the input values
of its incident active darts. This allows f to learn the dart d that closes the minimal weight simple
dart cycle with T , determining CG as the only cycle in T ∪ {d}. d marks itself as a dart of CG .

4. Next we want to mark the rest of the cycle (i.e. the path P ). In order to do so, f broadcasts the ID
of d to the entire graph G∗ in one minor-aggregation round. Allowing the other endpoint g of d to
learn that CG \ {d} is the T -path P from f to it. Then, the node g chooses an input value of one,
all other nodes of G∗ chose zero, and a subtree sum is computed over T in Õ(1)minor-aggregation
rounds as shown in [18]. The only path of T whose nodes got a sum of one is P . In one minor-
aggregation round, darts on P mark themselves (those darts are the only darts with sum of one for
each of their endpoints).

Turning back to the primal graph G, we have that vertices incident to darts of CG know those darts.
I.e., the cut edges are known.

5. To obtain a bisection, by Fact 7.1, it is sufficient to compute connected components in the under-
lying undirected graph after the removal of CG darts and their reversal rev(CG) from G. I.e., each
component is a side of the cut, and S is the component which the darts CG leave.

We do that by a Boruvka-like algorithm using aggregations (low-congestion shortcuts) on G (e.g.
the connectivity algorithm of [14]), where we discard CG and rev(CG) corresponding edges 13 from

13Edges and not darts, as we talk about an undirected graph.
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participating as an input. Thus, each vertex of G learns the ID of the connected component con-
taining it out of two.

Finally, we identify the component S: any vertex v incident to a dart of CG leaving it, broadcasts its
component ID to the entire graph G over a BFS tree. Since there are only two distinct IDs passed,
the broadcast terminates in O(D) rounds. Hence, vertices with the same component ID learn they
are in S, other vertices learn they are in V \ S.

Note, this phase requires Õ(D) CONGEST rounds, as each step either performs Õ(D) CONGEST rounds
on G, or Õ(1) minor aggregation rounds on G∗, which also boil down to Õ(D) CONGEST rounds by
Section 4.
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A The Graph Ĝ

We next give the full definition of the graph Ĝ, and prove its properties. Let deg(v) denote the undirected
degree of a vertex v in G. Then, a vertex v in G has deg(v) + 1 copies in Ĝ: A copy v referred to as a star
center (we denote by VS = V (G) the set of all star centers) and a copy vi for each local region of v . A local
region of v is defined by two consecutive edges in v ’s local embedding. Notice that v has deg(v) local
regions, and that each local region belongs to a face ofG (it is possible that several local regions of v belong
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to the same face). Eventually, we will have that the faces of G correspond to (vertex and edge disjoint)
faces of Ĝ. If i local regions of v belong to the same face f of G, then v will have i copies in the face of Ĝ
that corresponds to f . The vertices of Ĝ are therefore VS ∪v∈G N(v) where N(v) = {v1; : : : ; vdeg(v)}.

We now define the edges of Ĝ in three parts E(Ĝ) = ES ∪ ER ∪ EC . The star edges ES are of the
form (v; vi ), the edges ER are of the form (vi ; uj) (for u ̸= v ) and the edges EC are of the form (vi ; vj)
(for i ̸= j ). For every edge e = (u; v) we need endpoints of e to figure out which edges (vi ; uj) belong
to Ĝ so that Ĝ is planar and faces of G map to faces of Ĝ. While a vertex of G does not know any global
information about the faces of G, adjacent vertices know that there is some face that contains both of
them.
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Figure 18: On the left, the primal graph G. The clockwise local numbering of u and v ’s edges is in red.
f∞ denotes the infinite face of G. On the right, the face-disjoint graph Ĝ. The face f∞ of G maps to
the face C∞ (thick black) of Ĝ[ER]. Vertex v in G has a star-center copy v in Vs ⊂ V (Ĝ), and deg(v)
additional duplicates v0; v1; v2 in V (Ĝ) connected by star edges ES ⊂ E(Ĝ) (dashed blue). The edge
(u; v) of G maps to three edges in Ĝ: an edge (v0; v2) in EC ⊂ E(Ĝ) (solid blue) and two edges (u2; v2)
and (u1; v0) in ER ⊂ E(Ĝ) (black edges). The vertex w ∈ G is of degree one, thus, it has a star-center
copy and one additional copy in Ĝ connected by a dashed blue edge. Its only incident edge in G has two
duplicates, each connected to a distinct non star-center copy of its only neighbor. The non star-center
copies of w ’s neighbor are connected by a solid blue edge (corresponding to the edge incident to w ), this
edge corresponds to a self loop in G∗ as it is connects the same face to itself (the face containing w ).

ES : These edges connect every star center v and its copies vi ∈ N(v).

ER: For each edge (u; v) ∈ G, there are two edges in ER, one copy for each face of G that contains (u; v).
Let (u; v) be the i ’th and j ’th edge in the clockwise local embedding of u and v , respectively. Then
the edges added to ER are (ui+1; vj) and (ui ; vj+1). This is because the face containing the i ’th and
(i+1)’th edges of u is the face containing the j ’th and (j−1)’th edges of v (and the face containing
the i ’th and (i − 1)’th edges of u is the face containing the j ’th and (j + 1)’th edges of v ).

EC : In order to simulate computations on G∗, we make sure that if two faces of G share an edge e (i.e.
are adjacent nodes in G∗) then their corresponding faces in Ĝ are connected by a corresponding
edge in EC , between two vertices vj ; vj+1 of the same star, since vj ; vj+1 each corresponds to a face
that contains e . For an edge (u; v) we can add an edge in EC between copies of u or copies of v , the
choice of which such edge to add is arbitrary: For every edge (u; v) in G we add the edge (vj ; vj+1)
to EC if v ’s ID is larger than u’s, and (u; v) is the j ’th edge in the clockwise local embedding of v .
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In [17], Ĝ was defined without the edges EC , as their purposes did not require it. However, the
following properties (except for Property 5) of the face-disjoint graph were proven in [17] and are yet
valid.

1. Ĝ is planar and can be constructed in O(1) rounds (after which every vertex in G knows the infor-
mation of all its copies in Ĝ and their adjacent edges).

2. Ĝ has diameter at most 3D.

3. Any r -round algorithm on Ĝ can be simulated by a 2r -round algorithm on G.

4. There is an Õ(D)-round algorithm that identifies G’s faces by detecting their corresponding faces
in Ĝ. When the algorithm terminates, every such face of Ĝ is assigned a face leader that knows the
face’s ID. Finally, the vertices of G know the IDs of all faces that contain them, and for each of their
incident edges the two IDs of the faces that contain them. Thus, each vertex of G knows for each
pair of consecutive edges adjacent to it (using its clockwise ordering of edges) the ID of the face
that contains them.

5. There is a 1-1 mapping between edges of G∗ and EC . Both endpoints of an edge in EC know the
weight and direction of its corresponding edge in G∗ (if G∗ is directed and/or weighted).

Proof.

(1) Ĝ can be constructed in O(1) rounds, as the only information transmitted on an edge is its local
clockwise numbering in its endpoints’ combinatorial embedding.

For proving that Ĝ is planar, we show an explicit planar embedding, which can be deduced from
the planar embedding of G. Consider first the star-center copy of v in Ĝ. Recall that v has deg(v)
copies v1; v2; : : : that are incident to the star-center, the star center local clockwise embedding is
(v; v1); (v; v2); : : :. Now consider a non star-center copy vi of v , such that u and w are neighbors of
v in G and the edge (u; v) precedes the edge (w; v) in v ’s local clockwise embedding. vi is possibly
incident to the following edges (vi ; uj); (vi ; vi+1); (vi ; v); (vi ; vi−1); (vi ; wk)which we embed in that
order.

(2) Ĝ has diameter at most 3D as each edge in G becomes a path (u − ui − vj − v) in Ĝ \ EC , and
adding EC can only make the diameter smaller.

(3) Any r -round CONGEST algorithm on Ĝ can be simulated in 2r CONGEST rounds in G, because
each edge in G has exactly two copies in ER. These are the only edges that require simulation as
edges (vi ; vj); (v; vi ) in EC ∪ ES are simulated locally by v .

(4) There is an Õ(D) round algorithm that identifies G’s faces by detecting their corresponding (vertex
and edge disjoint) connected components of Ĝ[ER] while considering Ĝ as the communication net-
work. The algorithm is a variant of [13]’s connectivity algorithm, working in a Boruvka-like fashion
performing O(log n) phases of merges.14 When the algorithm terminates, every non star-center
vertex of Ĝ knows its face ID and each face is assigned a leader. Hence, the vertices of G know the
IDs of all faces that contain them, and for each of their incident edges the IDs of the two faces that
contain them.

14The mentioned algorithm is randomized, however, the only randomized step in it is performing star-shaped merges, a
primitive which was derandomized by [18] and can be used as a black box in [13]’s algorithm to derandomize it.
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(5) There is a 1-1 mapping between edges of G∗ and EC . Every edge e∗ of G∗ corresponds to exactly
one edge of e of G so we show the 1-1 mapping between edges of G and EC . Each edge e in G maps
to one edge ê of EC . Each edge ê in EC is of the form (vi ; vi+1). vi+1 is connected to some uj by an
edge and vi is connected to uj+1 by an edge. These two edge belong to ER and correspond to one
edge e = (u; v) in G. We map the edge ê to e .

Consider e∗ ∈ G∗ that maps to ê = (vi ; vi+1) in EC . Since ê connects copies of v ∈ G then it is
mapped to an incident edge e of v , meaning, v knows e’s weight and direction. Thus, ê is assigned
the same weight as e , and the direction of ê is defined to be (vi ; vi+1) (resp. (vi+1; vi )) if and only if
e = (v; u) (resp. e = (u; v)). The directions are defined this way for the following reason. Consider
an edge e = (v; u) ∈ G, consider the clockwise local numbering of v of e , denote the face to the left
of e by v ’s numbering by f and the face to the right of e by v ’s numbering by g , then, e∗ := (f ; g).
And indeed, when e = (v; u), then, vi is in the face that represents f in Ĝ (the face to the left of e)
and vi+1 is in the face that represents g (the face to the right of e), and vise versa in case e = (u; v).
Meaning, when e∗ is directed from f to g , ê is directed from the face that represents f to the face
that represents g .

The above can be achieved locally after construction, as the only information needed to one endpoint
of an edge is the other endpoint’s local numbering of that edge.

B Deferred Details and Proofs from Section 4

B.1 Preliminaries

Low-congestion shortcuts and part-wise aggregation. In recent years, several breakthroughs in dis-
tributed computing were based on the notion of low-congestion shortcuts introduced by Ghaffari and Hae-
upler [14] (first for planar graphs, then for other graph families [15,19]). Consider a partition {S1; : : : ; SN}
of V where every G[Si ] is connected.

Definition B.1 (Low-Congestion Shortcuts). An ¸-congestion ˛-dilation shortcut of G, denoted (¸; ˛)-
shortcut, is a set of subgraphs {H1; : : : ; HN} of G such that the diameter of each G[Si ] ∪ Hi is at most
O(˛) and each edge of G participates in at most O(¸) subgraphs Hi .

Definition B.2 (ShortcutQuality). The shortcut quality SQ(G) of a graph G is the smallest ¸ for which
G admits an (¸;¸) low-congestion shortcut.

Definition B.3 (Aggregation Operators). Given a set of b-bit strings {x1; : : : ; xm} and an aggregation
operator ⊕ (AND /OR /SUM etc.), their aggregate

L
i xi is defined as the result of repeatedly replacing

any two strings xi ; xj with the (b-bit) string xi ⊕ xj , until a single string remains.

Definition B.4 (Part-Wise Aggregation). Assume each v ∈ Si has an Õ(1)-bit string xv . The PA problem
asks that each vertex of Si knows the aggregate function

L
v∈Si xv .

The following lemma captures the relation between the PA problem and shortcuts.

Lemma B.5 (Part-wise aggregation via low-congestion shortcuts [14, 15, 19]). If G admits an (¸; ˛)-
shortcut that can be constructed in r rounds, then the PA problem can be solved on G in Õ(r + ¸ + ˛)
rounds. In particular, the PA problem can be solved on G in Õ(r + SQ(G)) rounds, where r is the number of
rounds for constructing shortcuts of quality SQ(G).
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Since a planar graph G of hop-diameter D admits shortcuts of quality SQ(G) = Õ(D) [14, 15, 19] that
can be constructed in Õ(D) rounds we get:

Corollary B.6. The PA problem can be solved on a planar graph G of hop-diameter D in Õ(D) rounds.

The Minor-Aggregation model.

Definition B.7 (Basic Minor-Aggregation Model [42]). Given an undirected graph G = (V; E), both ver-
tices and edges are computational entities (i.e. have their own processor and their own private memory).
Each vertex has a unique Õ(1)-bit ID. Communication occurs in synchronous rounds. All entities wake
up at the same time, each vertex knows its ID, and each edge knows its endpoints’ IDs. Each round of
communication consists of the following three steps (in that order):

1. Contraction step. Each edge e chooses a value in {0; 1}. Contracting all edges that chose 1 defines
a minor G′ = (V ′; E′) of G. The nodes V ′ of G′ are subsets of V called super-nodes.

2. Consensus step. Each node v ∈ V chooses an Õ(1)-bit value xv . For each super-node s ∈ V ′, let
ys =

L
v∈s xv , where ⊕ is a pre-defined aggregation operator. All v ∈ s learn ys .

3. Aggregation step. Each edge e = (a; b) ∈ E′ learns ya and yb , then chooses two Õ(1)-bit values,
ze;a and ze;b . For each super-node s ∈ V ′, let I(s) be the set of incident edges of s , then, zs =N

e∈I(s) ze;s , where ⊗ is a pre-defined aggregation operator. All v ∈ s learn the same zs .

It was shown by [42] that using low-congestion shortcuts, any minor-aggregation algorithm can be
simulated in the standard CONGESTmodel. It is easy to check that the consensus and aggregation steps
of the minor-aggregation model can indeed be phrased as PA problems, and it was shown in [42] that the
contraction step can be broken to a series of O(log n) PA problems. More specifically, it was proved that
any efficient (Õ(1)-round) minor-aggregation algorithm implies an efficient CONGEST algorithm on G if
one can solve the PA problem efficiently on G. Our goal is to show a similar result for the dual graph G∗.

Lemma B.8 (Minor-Aggregation Model Simulation in CONGEST via PA [18, 42]). Any fi -round minor-
aggregation algorithm can be simulated in the CONGEST model on G in O(fi · N) rounds where N is the
CONGEST round complexity for solving the PA problem on G.

Recall (Lemma B.5) that the PA problem on G can be solved in N = Õ(r + SQ(G)) CONGEST
rounds where r is the round complexity for constructing shortcuts of quality SQ(G). Therefore, the above
lemma implies that any fi -round minor-aggregation algorithm can be simulated in the CONGESTmodel
in Õ(fi · (r + SQ(G))) rounds, which is Õ(fi ·D) for planar graphs (by Corollary B.6).

B.2 Minor-Aggregation for the Dual Graph

We prove that any minor-aggregation algorithm A can be compiled into a CONGEST algorithm that runs
in the planar network of communicationG, and simulatesA on the dual graphG∗. An application of this, is
a CONGEST algorithm for finding the minimum-weight cycle of an undirected weighted planar graph G.
In this case, the algorithm A is a min-cut algorithm, and so running A on G∗ gives the minimum-weight
cycle of G by Fact 3.1 (to be shown later in this section). Another application is an approximation for
maximum st-flow when the graph is undirected and s; t lie on the same face. In that case, the algorithm
A is an approximate single source shortest paths algorithm (see Section 6 for details and proof).

Since G∗ is not in hand, a straightforward CONGEST simulation on G∗ might suffer a linear blow-
up in the round complexity. Moreover, we cannot directly follow the method of [42] of compiling the
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Minor-Aggregation model to CONGEST, since it is unclear how to do so on G∗. Instead, we combine their
method with part-wise aggregations on G∗ via Ĝ.

Using aggregations on Ĝ, aggregations onG∗ were previously done byGhaffari and Parter [17] to solve
the specific problem of computing a primal balanced separator, thus, their aggregation tasks were problem-
specific (aggregations on faces of G and sub-tree sums on G∗). For our purposes, we need something more
general, so we extend their method to perform general part-wise aggregations on G∗. In particular, we
need to perform aggregations that take into consideration the outgoing edges of each part Si , something
that was not done in [17]. This specific task required our small modification to Ĝ compared to the one
defined by Ghaffari and Parter.

Lemma B.9 (Part-Wise Aggregations on G∗). Let P = {S1; S2; : : : ; SN} be a partition of V (G∗), such that,
(1) all G∗[Si ] are connected, (2) each vertex on a face f̂ of Ĝ that correspond to a node f ∈ Si , knows the same
ID for Si , (3) each input of a node f is known to the leader vertex of f̂ in Ĝ and (4) each input of an edge e∗

is known to the two endpoints in Ĝ of the edge ê ∈ EC that maps to e∗. Then, any aggregate operator over
all Si can be computed simultaneously in Õ(D) CONGEST rounds, such that, the output value of each Si is
known to all vertices of G that lie on the faces in Si .

Proof. The computation is done via aggregations inside Ĝ, in particular, a partition of G∗ induces a par-
tition on Ĝ. Notice that Ĝ is planar, is built in O(1) rounds, of diameter O(D) and allows CONGEST
simulation in G with a constant blow-up factor in the round complexity (Properties 1, 2 and 3 of Ĝ). Thus,
Ĝ admits Õ(D) quality low-congestion shortcuts in Õ(D) rounds and the PA problem is solved in Õ(D)
rounds on it (Lemma B.5 and Corollary B.6).

A partition P ofG∗ induces a partition P̂ on Ĝ as follows. A node f ofG∗ maps to a face f̂ of Ĝ, the part
Ŝi ∈ P̂ is defined to contain all vertices on faces f̂ of Ĝ thatmap to nodes f ofG∗ inSi . All Ŝi are connected
and vertex-disjoint, as each two distinct f ; g ∈ G∗ map to distinct faces f̂ ; ĝ of Ĝ, in addition, f̂ ; ĝ are
connected by an EC edge for each edge in G∗ connecting f ; g . Notice that star-center vertices (VS) are not
in any part Ŝi , so we define each to be its own part. Hence, one can see that P̂ = (∪i∈[N]{Ŝi})∪(∪v∈VS{v})
is a partition of Ĝ into connected vertex-disjoint subgraphs. Thus, to compute part-wise aggregation on
P , we compute part-wise aggregations on P̂ , in which, vertices of VS do not participate as an input to the
part-wise aggregation task and are used exclusively for communication, henceforth, we do not refer to
these vertices.

Initially, all vertices in a part Ŝi know the same ID of Ŝi (equivalently, ID of Si ). Thus, low-congestion
shortcuts can be constructed. Recall that in the PA task, each vertex v in a part of the partition has an
Õ(1)-bit input, and the aggregate operator is computed over all inputs of vertices which are in the same
part. When computing a PA task over nodes of G∗, the input of f ∈ G∗ is required to be known to some
vertex v̂ ∈ Ĝ (w.l.o.g. the leader) on the face of Ĝ that maps to f (Property 4 of Ĝ). Then, aggregations on
all Ŝi shall simulate aggregations on Si , where only the input of the leader of f̂ is considered as an input
of the dual node f . That is, the aggregation task considers input from leaders only, and all other vertices
of Ĝ participate in the algorithm just for the sake of communication (their input is an identity element).

If the PA task is over inside-part edges or over outgoing edges, then, each vertex v of Ĝ that is incident
to an edge ê = {u; v} ∈ EC (recall, edges of EC map 1-1 to E(G∗) by Property 5 of Ĝ)), knows if ê’s input
should or should not be considered in the aggregation - as v knows the ID of the part Ŝi that contains it,
and know the ID of Ŝj that contains u in one communication round. Then, aggregations on all Ŝi simulate
aggregations on Si , where any v ∈ Ĝ that participates in the aggregation considers some of its edges as
an input depending on the task and on whether they are inside-part edges or not. Vertices that have no
incident input edge, participate in the algorithm just for the sake of communication (their input is an
identity element).

Finally, after the aggregation task is done, all vertices in Ĝ \ VS know the output value of their part,
which directly translates from Ĝ to G (as in Property 1 of Ĝ). Notice, even though for any specific node
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f ∈ G∗ there is no entity in Ĝ that knows all its "local" information (i.e. a list of its incident edges), we
still can compute part-wise aggregations over G∗.

Now, having part-wise aggregations on G∗, we show a sketch of simulating of the minor-aggregation
model in CONGEST via PA (as in [42]), where the input graph is the same as the network of communi-
cation. Then describe the differences with the similar proof for simulation on G∗. A vertex of G simulates
itself, and the two endpoints of an edge e simulate e . The simulation consists of three main steps: (1) A
few (Õ(1)) part-wise aggregation tasks are executed to elect a leader for each super node, defining the
nodes of the obtained minor, (2) A part-wise aggregation task is executed to simulate consensus, where a
part is G[s] (s is some super-node), and finally (3) The endpoints of each edge exchange their parts’ con-
sensus values and one more part-wise aggregation task is performed to compute the aggregation values.
A corollary of Lemmas B.8 and B.9 is the following theorem.

Theorem B.10 (Basic Minor-Aggregation Model for G∗). Any fi -round minor aggregation algorithm A can
be simulated on G∗ within Õ(fi · D) CONGEST rounds on G, such that, the output of each node f ∈ G∗ is
known to all vertices of the corresponding face f of G, and the output of an edge e∗ ∈ G∗ is known to the
endpoints of e ∈ G.

Proof. Let s = {f1; f2; : : :} be a super-node of G∗ (fi ∈ V (G∗)), the vertices of Ĝ that map to s are the
vertices that lie on the faces f̂i of Ĝ, such that, f̂i maps to the node fi . Then, the computational power of a
super-node of G∗ is simulated by all vertices of Ĝ that map to it. The computational power of an edge in
(a minor of) G∗ shall be simulated by the endpoints of its corresponding EC edge in Ĝ (Property 5). Often,
we will use Lemma B.9 as a black-box for PA on G∗ in order to implement the simulation.

There are three steps in a minor-aggregate round: contraction, consensus and aggregation. In fact,
there is an implicit initial step at the start of each round for electing a leader of each super-node. We
follow the method of [42] and show how all steps compile down to PA in G∗ and a few simple operations
in Ĝ as follows.

1. Electing a leader (and contraction). Recall, in the contraction step, each edge has a value of zero or
one, and considered to be contracted if and only if its value is one. To implement that, we have
mainly two computational tasks. First, merge clusters of nodes of G∗ over their outgoing edges of
value one (clusters eventually define super-nodes of G∗). Second, assign each cluster an ID that is
known to all vertices inside it.

Initially, a cluster is a single node of G∗, then, clusters are grown to match the set of super-nodes
of (the minor of) G∗.

Implementing that, (1) connected components of Ĝ[ER] are detected (those are faces of Ĝ that map
to a node v ∈ G∗), where the ID of a node of G∗ is the minimal ID of a vertex in Ĝ that maps to
it, this is done in Õ(D) rounds by property 4 of Ĝ. Now each vertex of Ĝ knows in which of these
connected components it is (defines a partition on G∗ where each part is a single node) defining
each node as a cluster. Notice that now Lemma B.9 (PA in G∗) is applicable, due to the fact that all
vertices of Ĝ that correspond to a face f in a cluster, know the same ID for that cluster. Then, (2)
we grow clusters. The merging process follows Boruvka’s classic scheme, where the process breaks
down into O(log n) star-shaped merges, the classic implementation is randomized and similar to
that of [14,17], however, one can implement this merging process deterministically with the deran-
domization of [18]. Namely, the PA task on G∗ here is when each cluster defines a part in a partition
of V (G∗), and the aggregate operator is computed over the outgoing edges of each cluster, decid-
ing the merges; the operator computed is over labels of neighboring clusters, where each cluster is
labeled as a joiner or a receiver, such that, joiners suggest merges and receivers accept them (i.e.,
receivers are the star centers in the star-shaped merges). Randomly, the labels are decided by a fair
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coin flip that the leader of the cluster tosses and broadcasts to the whole cluster, deterministically,
the classic algorithm for 3-coloring by Cole and Vishkin [3] is used (for more details see [18]). At
most Õ(1) merges are repeatedly done until clusters match super-nodes of G∗. In each phase of
merges, all nodes maintain the minimum ID of a node v (of G∗) in the cluster. The vertex of Ĝ
that has that exact ID is considered to be the leader of vertices in Ĝ that map to the super-nodes
represented by the cluster. Notice, there is such a vertex in Ĝ that has that exact ID since IDs of
nodes of G∗ are IDs of vertices in Ĝ that map to them. Notice that at the end of each phase Lemma
B.9 (PA on G∗) is applicable, thus, applying it once in each of the Õ(1) phases results with a round
complexity of Õ(D) for the entire process.

The above implements the contraction step, as now all vertices of Ĝ that simulate the same super
node of G∗ have a leader and a shared cluster-unique ID.

2. Consensus. After assigning IDs to clusters, as said, each vertex of Ĝ knows the ID of the cluster that
it maps to, which is used as the part ID in the part-wise aggregation tasks on G∗. Regarding input,
the input is (perhaps unique) per node of G∗, which elected leaders in Ĝ know, hence, Lemma B.9
is applicable and is used to implement the consensus step.

3. Aggregation. After performing the consensus step, each endpoint in Ĝ of an edge in EC informs the
other endpoint with the consensus value of the cluster that it maps to. Then, an endpoint v ∈ Ĝ
of an edge e ∈ EC that maps to the edge e∗ = (a1; a2) (where a1; a2 are distinct super nodes of
G∗), does the following. If v is in the cluster (that maps to) ai , v thinks of the edge e as if it was
assigned the value/weight of ze;ai , and an identity element otherwise. Then, the aggregate operator
is computed over the outgoing edges of super-nodes, where the weight ze;ai is considered for the
edge e in the cluster (that maps to) ai . Again, the aggregation is done by Lemma B.9. Finally, the
two endpoints of each edge know the output of the aggregate operator, thus, they can choose zero
or one for that edge, and we are ready for the next round.

Notice that after the simulation finishes, each vertex in a cluster knows the output value of its cluster’s
corresponding super-node. Hence, by definition of Ĝ (see Property 1 of Ĝ), for each f ∗ ∈ G∗ its output is
known to all vertices on the corresponding face f of G, and the value of an edge e∗ that maps to e ∈ Ĝ is
known to e’s endpoints in Ĝ as specified in the statement of Lemma B.9.

The extendedmodel. We now define the extendedMinor-Aggregationmodel as presented in [18]. Then,
we show that it can be simulated in G∗.

Definition B.11 (ExtendedMinor-AggregationModel [18]). This model extends the above model to work
on virtual graphs that have a small number of virtual nodes without strongly affecting the round com-
plexity. In particular, (1) arbitrarily connected Õ(1) virtual nodes can be added to the network, and (2)
Õ(1) nodes of the network, each can be replaced with an arbitrarily connected virtual node.

A virtual node is a node that does not exist in the input network (has no computational power) and
must be simulated by nodes that do actually exist. Adding a virtual node vvirt means to decide to which
other (virtual and real) nodes it is connected. Replacing a node v of the network with a virtual node vvirt ,
means that v does not participate in computations, instead, vvirt (that might be connected to different
neighbors than v ) is simulated by other (than v ) non-virtual nodes of the network. An edge that is con-
nected to a virtual node is a virtual edge. The obtained graph from the input network G by adding virtual
nodes is called a virtual graph and denoted Gvirt . All non-virtual nodes of Gvirt are required to know the
list of all (IDs of) virtual nodes in Gvirt . A virtual edge connecting a non-virtual u ∈ Gvirt and a virtual
v ∈ Gvirt is only known to u. A virtual edge between two virtual nodes in Gvirt is required to be known
by all non-virtual nodes of Gvirt .
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In our context, a node of the graph is a face of Ĝ, thus, all vertices on a face f̂ of Ĝ that maps to
a node f of G∗ shall know the (IDs of) all virtual nodes, virtual edges connecting f to virtual nodes of
G∗
virt and virtual edges connecting two virtual nodes. Notice, this is feasible, as there are at most Õ(1)

virtual nodes, thus, there is a total of Õ(1)-bits that shall be known to vertices of f̂ . We now want to
simulate a minor-aggregation algorithm A on G∗

virt that has at most O(˛) virtual nodes. That is, we want
to (1) represent (store) the obtained network G∗

virt distributively as defined above, and (2) run any minor
aggregation algorithm A on G∗

virt with O(˛) blow up factor in the minor-aggregate round complexity of
A.

Given the additional O(˛) virtual nodes and virtual nodes that replace real nodes as input - that is,
real nodes that are incident to a virtual node know its ID, and a real node that shall be replaced with a
virtual node, knows itself as such. Ghaffari and Zuzic [18] showed the following.

LemmaB.12 (Lemma 15 and Theorem 14 of [18]). There is anO(˛)minor-aggregation rounds deterministic
algorithm A1 that stores a virtual network Gvirt . If multiple edges connect some virtual node vvirt with some
neighbor, Gvirt will contain a single edge with a weight equal to the sum (or any aggregate operator) of such
edges in G.

Lemma B.13 (Lemma 15 and Theorem 14 of [18]). Let Gvirt be a virtual graph obtained from a connected
graph G, and A be anO(fi)-round minor-aggregation algorithm. Then, there is a minor aggregation algorithm
A2 on G that simulates A on Gvirt withinO(fi˛)minor-aggregate rounds. Upon termination, each non-virtual
node v learns all information learned by v and all virtual nodes. The output of a virtual edge is known to all
nodes if both of its endpoints are virtual, otherwise, its output is only known to its non-virtual endpoint.

Our proof would make a black-box use of Lemma B.13, however, we provide a sketch of the proof of
[18] just to make things a bit clearer (for the full proof see Theorem 14 of [18]). (1 - Contraction) Contract
non-virtual edges that shall be contracted, then, in O(˛) rounds, each super node shall learn the IDs of
virtual-nodes it is connected to, via computing an aggregate over its incident virtual edges. Then, the
super-nodes’ IDs get computed, (2 - Consensus) At first, all super-nodes that do not contain any virtual
node perform their consensus step, then, we iterate over all virtual nodes and compute the consensus of
the super-node they are contained in, such that, all nodes of the graph know the output value of each
super node. Finally (3 - Aggregation) A real edge simulates itself, a virtual edge that has one non-virtual
endpoint node is simulated by that endpoint and a virtual edge that the two of its endpoints are virtual is
simulated by all nodes. The z value of each edge is computed and an aggregation is performed as in the
consensus step.

Now we move to simulating the extended minor-aggregation model to run on G∗, which is a direct
corollary of Lemmas B.12, B.13 and Theorem B.10. Let G∗

virt be a virtual graph that is obtained from G∗

by adding and replacing nodes with up to ˛ arbitrarily connected virtual nodes, then,

Theorem B.14. Any fi -round minor-aggregation algorithm A can be simulated on G∗
virt within Õ(fi˛D)

CONGEST rounds of communication on G, such that, the output of each non-virtual f ∈ G∗
virt is known

to all vertices on the corresponding face f of G, and the output of each virtual fvirt ∈ G∗
virt is known to all

v ∈ G. The output of a virtual edge e is known to all vertices of G if both of its endpoints are virtual in G∗
virt ,

otherwise, e’s output is only known to vertices of G that lie on the faces that correspond to e’s non-virtual
endpoint.

Notice that adding virtual nodes and edges to G∗ might violate planarity, but that is not a problem,
as these virtual nodes and edges are simulated by (on top of) the same underlying network Ĝ that is used
to simulate the basic model, without making any changes on it. In particular, this extended model, is
simulated by the basic model unconditionally, i.e., Lemma B.13 and B.12 constitute a universal algorithm
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that runs in the basic model for simulating the extended model, so we simply apply that algorithm on G∗

using Theorem B.10.

Dealing with parallel edges in G∗. We now address the problem of G∗ being a non-simple graph, i.e.
has self-loops and parallel edges. This might be a problem due to the fact that many algorithms assume
their input graph is simple. We provide a procedure for deactivating parallel edges of G∗: Consider two
nodes u; v of G∗ that are connected by multiple edges e1; e2; : : : ; em. We deactivate all these edges except
for one (called the active edge). If edges are assigned a weight w(·), the active edge gets assigned a new
weight ⊗iw(ei ), where ⊗ is a predefined aggregation operator. E.g., ⊗ is the summation operator if one
is interested in computing a minimum cut, and the minimum operator if one is interested in computing
shortest paths.

One cannot straightforwardly use part-wise aggregations on G∗ in order to do the above, since a node
of G∗ might be connected to many nodes, and the required task is an aggregation for each neighbor
rather than one aggregation over all incident edges, this may lead to high congestion if all nodes do those
aggregations naively and simultaneously. We use the the fact that G∗ has a small arboricity of ¸ = 3 (the
arboricity of a graph is the minimal number of forests into which its edges can be partitioned) to obtain
a minor-aggregation procedure that requires Õ(¸) minor-aggregate rounds for orienting G∗ edges, so
that each node has at most a constant out-degree (we count all parallel edges between two nodes as
one), which we utilize for load balancing the aggregation tasks. We then apply that procedure on G∗ in
a black-box manner using Theorem B.14, resulting with an Õ(D) CONGEST algorithm on G simulating
the procedure on G∗. We henceforth assume that G∗ is a simple graph. Formally, we obtain the following
lemma.

LemmaB.15 (Deactivating parallel edges and self-loops). There is a minor-aggregation algorithm that runs
in Õ(¸)-rounds and deactivates parallel edges and self-loops in an input graph of arboricity ¸, assigning each
active edge (u; v) a weight equivalent to a predefined aggregate operator over the weights of all edges with
the same endpoints.

Let ¸ be the arboricity of the input graph, we implement an algorithm of [1] in the minor-aggregation
model that runs in Õ(¸)minor-aggregation rounds and produces such an orientation. Since the arboricity
of G∗ is three (counting all parallel edges between two nodes as one), we get our constant out-degree
orientation.

Proof. First, we omit self loops, each edge whose endpoints have the same ID, deactivates itself, this is
done in only one minor-aggregate round. Next, we describe [1]’s algorithm and then describe how to
implement each step in the minor-aggregation model. At the start of the algorithm, all nodes are white.
For each node, there is a time where it becomes black, the algorithm terminates when all nodes turn
black. The algorithm produces a partition of the node’s set into ‘ = ⌈2 log n⌉ parts, H1; : : : ; H‘. Upon
termination, each node knows the part Hi that contains it. Moreover, the following orientation of edges,
results with an orientation with at most O(¸) outgoing edges for each nodes (counting parallel edges
between two nodes as one). The orientation is as follows. An edge e = (u; v) where u ∈ Hi and v ∈ Hj
s.t. i < j , gets oriented towards v . Otherwise, if both u; v belong to the same part, e is oriented towards
the endpoint with a greater ID.

The algorithm for computing such a partition is simple. Let v be a (super-)node, then, for a phase
i ∈ [‘]: If v is white with at most 3¸ white neighbors, (1) make v black, (2) add v to Hi and (3) notify v ’s
neighbors that v has turned black and has joined Hi . This is implemented this in the minor aggregation
model is as follows.

1. We want to know for each node v if it has at most 3¸ white neighbors. We do that with at most
3¸ consensus and aggregation steps. That is, a node v computes an aggregate over IDs and la-
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bels (black/white) of its neighboring nodes, iteratively counting white nodes that were not already
counted by v in the current phase, then the ID of that node that just got counted is broadcast (inside
the super node v ). Thus, given the previously broadcast IDs one can count a new node that was
not already counted and avoid counting nodes that were counted already. If v counts more than
3¸ values it stops counting.

2. If the super-node v has counted 3¸ neighbors, via a consensus step, this information (v shall turn
black) is broadcasted to all inside v . I.e., edges incident to v learn this information, and v ’s neighbors
learn that v is black and belongs to Hi .

After the algorithm terminates, each edge knows to orient itself as was described earlier. Each node
now has at most ¸ outgoing edges (counting parallel edges as one). This procedure terminates in Õ(¸)
rounds. Note, the orientation of an edge can be decided locally by the two vertices in the communication
graph which simulate that edge.

Deactivate parallel edges. Assume edges are assigned unique Õ(1)-bit IDs in Õ(1) rounds. Having self-
loops deactivated, we now use the orientation to deactivate parallel edges. Each node deactivates its
outgoing parallel edges in O(¸) rounds. First, enumerate outgoing edges from 1 to 3¸, where all edges
that connect v to the same neighbor have the same number, this is done inO(¸) rounds, in an iterativeway
similar to that of counting neighbors. Then, for all i ∈ [3¸], for edges with number i (1) An aggregation
step over their weights is computed, (2) An edge is chosen to be the active edge by another aggregation
step (say the minimum ID one) and other edges deactivate themselves. This process terminates in O(¸)
rounds.

Note, each edge in G∗ can be identified by its primal endpoints IDs (as the primal graph is simple),
we consider this to be the edge’s ID and is known locally by the edge’s endpoints in the communication
graph Ĝ.

B.3 Weighted Girth

In this subsection we show how to compute the weighted girth (i.e. the minimum-weight cycle) of an
undirected weighted planar graph G. We do this by exploiting the result of the previous subsection for
simulating a minor-aggregate weighted minimum-cut algorithm on G∗, which (by Fact 3.1) gives the
weighted girth of G.

Recently, a universally optimal 15 algorithm for the exact weighted minimum cut problem was dis-
covered by Ghaffari and Zuzic [18], generalizing a breakthrough of Dory, Efron, Mukhopadhyay and
Nanongkai [5]. Their algorithm is formulated in the extended minor-aggregation model.

Theorem B.16 (Minor-aggregate exact min-cut, Theorems 12, 18 and 40 of [18]). Let G be an exp(Õ(1))
edge-weighted input graph. There is a randomized Õ(1)-round minor aggregation algorithm that computes
the weight of the minimum weight cut C of G w.h.p. Upon termination, the value of C is known to all vertices.

Notice, applying Theorem B.16 above on G∗ already allows us to find the weighted girth of our planar
network. In [18]’s work, the focus was on finding the weight of the minimum cut, but it can be easily
extended to find also the edges of the minimum cut. Let T be a spanning tree of G and C = (S; V (G)\S)
be a cut of G, then, C is, respectively, (one-) two-respecting of T if and only if there are exactly (one) two
edges of T that cross the cut. Given such a tree, where its edges that cross the cut are known, in O(1)
minor aggregation rounds, one can mark all edges of the cut.

15An algorithm that has an optimal round complexity (up to polylog n factor) on each specific network topology, conditioned
on an efficient construction of low-congestion shortcuts in that topology. For an extended discussion, see [18, 41, 42].
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Lemma B.17 (Mark Cut). Let G be any network, T a spanning tree of G and C any cut that one- (two-)
respects T , defined by edges e1; e2 ∈ T (possibly e1 = e2). Given G, assuming that edges of T and the edges
e1; e2 know themselves, there is an O(1) deterministic minor-aggregation algorithm that marks all C edges in
G.

Proof. Consider the tree T , we start by (a contraction step) contracting all T edges except for e1; e2, which
results in a minor G′ of G with at most three super nodes. Next, each super-node shall compute its cost -
defined as the number of edges from e1; e2 that are incident to it. That is done by an aggregation step, each
edge in G′ chooses a weight of zero, except for e1; e2, each chooses a weight of one, and an aggregation
step is performed with the sum operator, resulting with the sum of exiting edges which is the cost of
that super node. Now, the ID of the maximum-cost node is computed and broadcast to all the graph -
by contracting all the graph into a single super-node s , initiating the input of each v ∈ s to the ID and
cost of s ′ ∈ G′ s.t. v ∈ s ′, then computing the maximum by a consensus step (breaking ties arbitrarily).
Finally, we return to consider G′ as our graph (we undo the last contraction that we did). Notice, edges of
G′ know the ID of the maximum-cost node, so, they mark themselves if only if they are incident to it.

The round complexity is clear. The correctness is as follows. G′ is a graph that is composed of two
or three super-nodes, each super-node corresponds to a connected component of T \ C, each induces a
connected subgraph of G, such that, one of which is incident to all edges e1; e2 in G, that subgraph defines
one side of the cut (denoted S) and the other (at most two) subgraphs define the other side of the cut.
Since S is incident to e1; e2 it has the highest cost, thus, all edges exiting S in G get marked, these are
exactly the edges of G that cross the cut, hence, all edges of C.

The algorithm of [18] (Theorem B.16), like manymin-cut algorithms (both centralized and distributed,
see [5, 11, 12, 14, 23, 24, 32, 43]) consists of three main steps: (1) pack spanning trees of G, (2) compute a
minimum 1-respecting cut of each packed tree and (3) compute a minimum 2-respecting cut of each
packed tree, the final output is the overall minimum. As said, upon termination the value of C is known
to all nodes, in addition, it is implied in [18] that the edges of a spanning tree T of G that C (1-) 2-respects
know themselves, in particular, edges in T ∩ C know themselves as such. Using Theorem B.14 on G∗ in
order to apply the exact min-cut algorithm (Theorem B.16) and to apply the procedure for marking cut
edges (Lemma B.17), we get an undirected planar weighted girth algorithm:

Theorem 1.7 (Planar Weighted Girth). There is a randomized distributed algorithm that given an n-vertex
undirected weighted planar network G with hop-diameterD, computes the weighted girth and finds the edges
of a shortest cycle w.h.p. in Õ(D) rounds.

Proof. First we make G∗ simple by applying Lemma B.15 for deactivating parallel edges, the (only) active
edge left between any two nodes u; v , gets assigned a weight equal to the sum of weights of edges with
the same endpoints in G∗. Then, we compute the minimum cut C of the dual network G∗ by applying
Theorem B.14 to simulate [18]’s minor-aggregate exact min-cut algorithm (Theorem B.16) on G∗. After-
which, we can assume that we have the min-cut C value, that C is (1-) 2-respecting to some tree T , and
that each edge in T along with T ’s edges e1; e2 that cross the cut know themselves (e1 = e2 in case C is
1-respecting). Now we use Theorem B.14 for applying Lemma B.17 in order to mark the edges of C in G∗.
By the cycle-cut duality (Fact 3.1), the weight of C is the weight of G’s minimum cycle and the edges of
C constitute a minimum weight cycle in G.

We clarify a low-level detail regarding marking the edges of C. Recall, the minor-aggregation model
simulation on G∗ is done via the face-disjoint graph Ĝ. Since the edges of C are edges of G∗, each edge
e∗ of them maps to exactly one edge ê of Ĝ (Property 5), which itself maps to the edge e ∈ G (the dual of
e∗), that is, indeed, marking edges of G∗ marks the corresponding edges of G. Notice, the marked edges
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ê ∈ Ĝ might not form a cut nor a cycle in Ĝ but that is fine as it is only a communication tool and not
our input graph for the problem.

C Deferred Details and Proofs from Section 5.1.3

To implement our labeling algorithm, each vertex should know the IDs of all faces (face-parts) that contain
it in every bag X ∈ T (i.e., the list of nodes f ∈ X∗ it participates in). After (distributively) learning
the nodes of X∗, we also learn its edges. That is, for each edge (u; v), its endpoints should know the
corresponding edge in the dual bagX∗ (if exists). I.e., the IDs of the two faces (face-parts) inX containing
the edge, as well as the weight and direction (if any) of the edge in X∗. We next explain how all vertices
learn this information by keeping track of the edges of G along the decomposition. As before, it will be
convenient to think of an edge as having two copies (one for each face containing it). To simplify, in this
section we refer to these as edge copies (rather than darts) since there is no need to maintain the dart
orientation (every vertex that stores an incident edge e = (u; v) stores both its copies e1; e2). We identify
e1 as the first copy of e relative to v , and e2 as the second copy of e relative to v (for the other endpoint
u, e2 is its first copy).

Lemma 5.10. In a single round, each vertex v ∈ G can learn, for each incident edge copy, a list of the bags
X ∈ T that contain it.

Proof. We wish to learn, for each copy of an edge the ID of the single bag in each level of T that contains
it. For the root G of T , all vertices know that all their incident edges belong to G. For a general bag X , we
assume each vertex v ∈ X knows which of its incident copies of edges belong to X , and we show how to
learn this for every child bag of X that contains v . If v is in only one child bag Xi of X (v knows it is in
Xi ), then v ’s incident edges in Xi are the same as in X . Otherwise, v must be a vertex of SX (and by the
BDD properties, v knows this). For each child bag Xi that contains v , v knows two incident edges a; b,
such that, its incident edges in Xi are exactly a; b and all edges Ev (Xi ) strictly between a and b in v ’s
clockwise order. Thus, each child bag that contains v is identified with a pair of ordered edges incident
to v . Observe that one of those edges might be the virtual edge eX (if v is an endpoint of eX ). Though eX
is not an actual edge of X , it (and its embedding) is known to its endpoints by the BDD construction. To
conclude, for any copy e ′ of an edge e incident to v , v can learn if that copy is inXi by checking if e ′ = a2
(second copy of a), or e ′ = b1 (first copy of b), or e ′ ∈ Ev (Xi ).

We next show how for all bags X , every vertex v ∈ X learns the IDs of faces (face-parts) that contain
it and for each of its edge copies e ′ in X the ID of the face (face-part) in X containing e ′. We begin by
showing this for X = G and then for a general bag X .

Lemma 5.11. There is a Õ(D)-round distributed algorithm that assigns unique IDs to all faces of G. By the
end of the algorithm, each vertex v ∈ G learns a list (of IDs) of faces that contain it. Moreover, v learns for
each incident copy e ′ of an edge e in G the face ID of the face of G that contains e ′.

Proof. We first assign unique O(log n)-bit IDs to the faces of the graph G and let all vertices learn the
IDs of all the faces of G that contain them. We can do so in Õ(D) rounds by using Property 4 of the
face-disjoint graph (Section 3). Once a vertex v knows all faces containing it, it remains only to assign
those faces to the copies of edges incident to v (which is done locally).

Recall, each edge e of G has two copies e1; e2 in the set of edges ER of Ĝ, and each vertex v of G has
deg(v) many copies vi in Ĝ \ VS . Moreover, Ĝ[ER] is a collection of disjoint cycles, each corresponding
to a face of G. Let e = (u; v) ∈ E(G) be the i ’th and j ’th edge in u’s and v ’s local embedding (in G),
respectively. Then, the copies ui+1; vj are connected by an edge in ER identified with the copy e1 of e ,
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and the copies ui ; vj+1 are connected an edge in ER identified with the copy e2 of e (relative to v ). It is
important that e1 is the first copy of e relative to v (breaking symmetry between the two copies of an
edge), as copies vi of v are ordered according to v ’s local embedding, this way, the first copy of e and the
second copy of its predecessor edge in the ordering of v participate in the same face. This is the same
order we keep in other algorithms (lemmas) for consistency. We assign e1 (e2) the component (face) ID
that contains them in Ĝ[ER]. Since u; v in G simulate all their copies in Ĝ, each of them knows for each of
e1; e2 the connected component ID in Ĝ[ER] it participates in. This is the ID of the face that corresponds
to that component. Thus, for each of e1; e2, both u and v learn the correspondence to faces of G.

Lemma 5.12 (Distributed Knowledge of Faces). There is a Õ(D)-round distributed algorithm that assigns
unique Õ(1)-bit IDs to all faces and face-parts in all bags X ∈ T . By the end of the algorithm, each vertex
v ∈ G learns a list (of IDs) of the faces and face-parts it lies on for each bag X that contains it. Moreover, v
learns for each incident copy of an edge e ′ the (ID of) the face or face-part that e ′ participates in for each bag
X that contains e ′. The ID of a face (face-part) f of X is contained in the ID of face-parts f ′ resulting from
partitioning f in child bags of X .

Algorithm 2: Distributed Knowledge of Faces
Input: A BDD T of a D-diameter network G and a BFS tree TX for each X ∈ T .
Result: Each vertex v of G learns for each incident edge copy the list of faces and face-parts that

contains it in each bag X ∈ T that contains it.
1 Each vertex learns for each of its incident edge copies the list of bags that contains it

(Lemma 5.10);
2 Each vertex learns for each of its incident edge copies the list of faces that contain it in bag

X = G (Lemma 5.11);
3 forall bags X of level ‘ ∈ [2;Depth(T )], in parallel, do

/* Global step */
4 Detect the critical face (face-part) of X if exists and broadcast a message on T notifying all

vertices that it shall be partitioned;
5 For each edge that participates in a face-part of X , broadcast the ID of the face-part and the

child bag that contains it to the root of T ;
6 The root of T broadcasts to all vertices of X the IDs of face(-parts) that shall be partitioned in

between child bags of X∗;
/* Local Step */

7 Each vertex of X learns locally for each incident edge copy the new ID of each face(-part)
that contains it in each child bag of X∗ that contains it (if any);

8 end

Proof. Throughout, we assume that for each X ∈ T we already computed a BFS tree Tx of X rooted at
an arbitrary vertex of X . The subscript is dropped when X is not ambiguous. This can be done in Õ(D)
rounds using the properties of the BDD. The algorithm described in the proof is given in a high-level
pseudocode by Algorithm 2.

First, we apply Lemma 5.10 in order for each vertex to learn for each incident edge copy the bags that
contain it in the decomposition. Then, for X = G we apply Lemma 5.11 assigning each copy of an edge a
face in G. For a general bag X , we assume we have the required information and show how to maintain
it for child bags of X . For a face or face-part f that is contained in X and is entirely contained in one of
its child bags Xi , endpoints of edge copies in f inherent the ID of f from X . However, in the case where f
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gets partitioned between child bags of X , we need to identify each new face-part and assign it a unique
ID.

We work in two steps. First, a global broadcast over X is performed in order to detect the faces and
face-parts ofX that shall be partitioned. Then, a local step of assigning IDs to the new resulting face-parts
in the child bags of X .

1. Global step. In this step we detect the face of G and all face-parts f in X to be partitioned (if any). We
start with the unique (by Lemma 5.3) critical face (or face-part) of G inX . The endpoints of eX lie on f , are
on SX and know if eX is virtual or not (if it is, then f gets partitioned). Therefore, f can be detected by the
endpoints u; v of eX by the BDD construction (i.e., using the algorithm of [17] that [26] use for computing
a separator). More concretely, the edge eX is embedded between two consecutive incident edges a; b in
the clockwise embedding of v . Copies a2; b1 (in that order) of those edges define the face f s.t. a; eX ; b
appear in that order in the embedding of v (analogously for u). Additionally, an arbitrary endpoint of eX
broadcasts the ID of the critical face (face-part) on T saying it shall be partitioned as well (if it does).

After identifying the critical face, we move on to identifying the other face-parts that shall be par-
titioned. We exploit the small (logarithmic) number of face-parts in X (Lemma 5.3) for performing the
following broadcast. Each vertex v on a face-part f of X knows (its incident edge copies in) f . Then, v
upcasts ID(f ); ID(Xi ) to the root of the BFS tree T ofX , whereXi is a child bag that contains edge copies
of f incident to v (the correspondence between copies of edges and child bags is known from Lemma 5.10).
We need to be careful in this upcast not to suffer unnecessary congestion, as a face-part might contain
many vertices and more than one connected component. So, if some vertex of X receives more than one
child bag ID for the same face-part f , it stops passing messages of f , and upcasts only one special message
saying that f shall be partitioned. The upcast is performed in a pipelined method. Finally, after the root
stops receiving messages, it broadcasts the IDs of all face-parts that shall be partitioned.

2. Local step. For each face or a face-part f that is not partitioned, the vertices lying on f consider the ID
of f to be the same as from the parent level and remember that it also exists as a whole in the child bag
it is contained in. For a face or a face-part f that is partitioned, the vertices v of f know for each incident
copy e ′ of an edge that belongs to f in which child bag Xi is it contained (Lemma 5.10). Thus, v locally
learns (ID(f ); ID(Xi )) as the ID of the face-part that contains e ′ in Xi . We get that all vertices on a part
of f in some child bag of X know the same ID for that part.

We claim that this terminates within Õ(D) rounds. First, the IDs of face-parts are of size Õ(1) since
(1) by Lemma 5.11 the faces in G are assigned IDs of size O(log n), (2) by the construction of the BDD in
[26], the ID of a child bag is of size Õ(1) (and there are O(log n) levels of T ), and (3) a face-part in a level
‘ is assigned the ID of a face (or face-part) of level ‘− 1 after appending O(log n) additional bits. Second,
by Lemma 5.3 the number of face-parts in X is at most O(log n) and there is at most one critical face (or
face-part). Meaning, any vertex shall pass at most O(log n) messages of size Õ(1) throughout the course
of the procedure (one message for the critical face and one per face-part of X). Finally, the BFS tree used
for broadcast has a diameter of O(D log n) (Property 5 of the BDD), and all bags X can run the procedure
in parallel with a constant factor overhead (Property 7 of the BDD).

Lemma 5.14. Let e = (u; v) be an edge in a bag X . In one round after applying Lemma 5.12, the endpoints
of e learn the corresponding dual edge e∗ in X∗ (if exists).

Proof. Recall that by the definition of the dual bag, there is a dual edge e∗ between two faces or face-parts
f1; f2 ofX (on both sides of e) iff the two copies of e are contained inX (i.e., none of them is on a hole). By
invoking Lemma 5.12 and Lemma 5.10 v can know which of its incident edges e has both copies inX , and
the ID of the face (face-part) each copy participates in. The endpoints of such edges e can compute the
correspondence locally as follows. Consider such an edge e incident to a vertex v ∈ X and let f1; f2 be the
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faces containing the first and second copies of e (relative to v ), respectively. Then, the corresponding dual
edge is directed from f1 to f2 when e’s direction in G is outwards v . Notice, this definition is consistent
(independent from v ) and relies only on the direction of e and on faces it participate in. I.e., the first copy
of e relative to v is the second copy of e relative to u (and vice versa). If G is undirected, then dual edges
are undirected as well. If G is weighted, then, e∗ has the same weight as e .

D Deferred Details and Proofs from Section 6

D.1 Deferred Details and Proofs from Section 6.1

Theorem 1.2 (Exact Maximum st-Flow in Directed Planar Graphs). There is a randomized distributed
algorithm that given an n-vertex directed planar network G with hop-diameterD and integral edge-capacities,
and two vertices s; t , computes the maximum st-flow value and assignment w.h.p. in Õ(D2) rounds.

Proof. The algorithm follows the centralized algorithm of Miller and Naor [30]. It works by performing a
binary search on the value – of the maximum st-flow. In each iteration, – units of flow are pushed along a
(not necessarily shortest) s-to-t path of darts P . If this does not violate the capacity of any dart in P then
it is a feasible flow and we conclude that the maximum st-flow is at least –. Otherwise, a residual graph
is defined by subtracting – from the capacity of every dart in P and adding – to their reverse dart (in the
beginning every edge e of capacity c(e) corresponds to two darts - one in the direction of e with capacity
c(e), and its reverse with capacity zero). Notice that residual capacities may be negative for the darts
of P . To fix this, an arbitrary face f of G is chosen and SSSP (with positive and negative edge lengths)
in G∗ is computed from f . Miller and Naor [30] showed that if a negative cycle is detected then we can
conclude that the maximum st-flow in G is smaller than –, and otherwise it is at least –. Moreover, in the
latter case, the following is a feasible st-flow assignment of value –. For every dart d ∈ G that maps to
d∗ = (g; h) ∈ G∗: the flow on d is set to dist(f ; h)− dist(f ; g) + – if d ∈ P , to dist(f ; h)− dist(f ; g)− –
if rev(d) ∈ P , and to dist(f ; h)− dist(f ; g) otherwise.

The path P can be found inO(D) rounds (notice that P is a directed path of darts but does not need to
be a directed path of edges in G), and the dual SSSP computation is done in Õ(D2) rounds as we showed
in Section 5 (with a slight modification that we show next). Since – is assumed to be polynomial, all
iterations of the binary search are done in Õ(D2) rounds. The flow assignment on the edges of G is given
by the assignment to its darts, that can be deduced locally from its endpoint vertices by Property 14 of
the BDD (since for a dart d = (u; v) ∈ G with d∗ = (f ; g) ∈ G∗ the endpoints u; v belong to both faces
f and g in G).

Notice however, the SSSP algorithm on G∗ from Section 5 uses darts for gaining the necessary dis-
tributed knowledge for it to work, however, its output is an SSSP tree of edges and not darts. Thus, we
need to show that it can output an SSSP of darts, i.e., to consider the two darts of an edge (with weights as
described earlier) when computing the labeling and the shortest paths tree. To do that, we slightly modify
the input network and use the algorithm as a black-box on it. We work with the network G′ obtained from
G by adding the reversal of each edge to the graph, such that, the two copies of an edge are ordered one
after another in the embedding. The reversal of an edge gets assigned a capacity of zero. It is not hard to
see that G′ can be constructed and embedded in the plane (assuming G is embedded) without any need
for communication, and that each CONGEST round on G′ is simulated within two rounds on G.

The algorithm runs as follows, G′ is constructed, an s-to-t path P in G′ is found in O(D) rounds via
a breadth first search starting at s , then, – = 1 (at first) units of flow are pushed on P , capacities of P
edges and their reversals are (locally) changed as explained earlier, then the algorithm for an SSSP tree
of G′∗ from Lemma 2.2 is activated with the source f being the minimum ID face of G′ (f can be known
in O(D) rounds by aggregating on G′ the IDs of its faces, which are known by Property 13 of the BDD),
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thus, each node v in G′ knows the distance from f to each of the (dual nodes mapped to) faces it lies on,
thus, v can learn the flow value for each of its incident edges. Notice, in each iteration, each vertex in G′

knows locally the current value of –, depending on whether or not it has received a message reporting
a dual negative cycle from the Dual SSSP algorithm. Finally, indeed by the end of the algorithm, each
vertex v of G knows the st-flow value in G and (locally) a corresponding flow assignment to its incident
edges (the assignment induced by G′).

D.2 Deferred Details and Proofs from Section 6.2

Theorem 6.1 (Distributed Exact Planar Directed Minimum st-Cut). Given a directed planar graph G with
non-negative edge weights and two vertices s; t , there is a Õ(D2) round randomized algorithm that finds the
minimum st-cut w.h.p.

Proof. At first, we use Theorem 1.2 to compute a maximum st-flow f in G in Õ(D2) rounds. To mark
the minimum st-cut edges we work in the residual graph of G with respect to f . The residual graph R
w.r.t. a flow assignment f of a network G, is the network where each edge has a weight equivalent to
its capacity minus the flow sent on it by f . By [7], a minimum st-cut is a cut consisting of the s-most
saturated edges, i.e, the saturated edges which have no other saturated edge that precedes them in any
s-to-t path that contains them. In R, those are zero weighted edges. We denote this cut by

−→
‹ (S; V \ S),

where S (respectively, V \ S) is the side of the cut containing s (t). To find those edges, we compute an
SSSP tree from s inR′, where we modify the edge weights ofR′ as follows: A saturated edge gets assigned
a weight of one and all other edges, a weight of zero. Note, finding the saturated edges in G is equivalent
to finding the s-most edges whose weight is zero in R, which is equivalent to finding the s-most edges
whose weight is one in R′, thus, we work in R′. After computing an SSSP tree from s in R′, we decide that
an edge (u; v) is in the cut, iff its weight is one in R′, dist(s; u) = 0 and dist(s; v) = 1. Those are exactly
the saturated s-most edges, for the following reasons: (1) (u; v) is saturated since its weight is one in R′,
(2) it is the s-most saturated edges on any path starting at s that contains it, for otherwise dist(s; u) > 0.
Notice, the same method allows to compute the vertices of S (equivalently, V \ S). Namely, a vertex u is
in S, if and only if u has dist(s; u) = 0. For otherwise, dist(s; u) > 0 which means it is further from a
saturated edge that lies on some path starting at s , meaning it is on the other side of the cut (otherwise,
it would contradict that the cut computed is composed of s-most saturated edges).

The endpoints of an edge know if it is saturated or not, since they know its weight and flow value, thus,
R′ can be constructed in one round. To compute a directed SSSP tree from s , we borrow an exact SSSP
algorithm of Li and Parter’s [26] for planar graphs, which runs in Õ(D2) rounds (Theorem 1.6, Lemma 5.3
in their paper). Although it is stated for the undirected case in their paper, it can be easily adapted for the
weighted case as noted by Parter in [35].
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