Optimal Packed String Matching

O. Ben-Kiki, P. Bille, D. Breslauer, L. Gasieniec, R. Grossi, O. Weimann

String Matching Problem

* Knuth-Morris-Pratt
O(m+n) time solution

» Boyer-Moore [over 85 algs in Faro-Lecroq's survey]

» Karp-Rabin

String Matching Problem

INPUT:
pattern X of m symbols in X [pattern preprocessing]
text T of n symbols in X [text processing]
OUTPUT:

positions i s.1. X = T[i...i+m-1]

Caw we Sy duything new?

Model of computation vs commodity processors

Theory: word-RAM w bits per word

Your laptop:

- & characters perword [@ =w/ log, X]
- richer instruction set

Example: reading T is 2(n/ @) not «Xn) ...

Pattern X = X[1..m]

Text T = T[1.n]

a symbols packed in a word:
bulk comparison in O(1) time

Pattern X = X[1..m]

Text T = T[1.n]

O(1) worst-case time to
answer after reading the
text symbol

Pattern X = X[1..m] [|

Text T = T[1..n]

| e
" ve,o\«x'\m@cm 4 O(1) worst-case time to
. {{@F@“" fro \Nhex@% 4\ answer after reading the
D\weom"“g s'ﬁ:{re\y §ore™ text symbol
S e
y 0e

Pattern X = X[1.m]

Text T = T[1..n]

(] [

|) .
* L
*]

O(1) working space
apart from that
required by Xand T

w bits

More related work

* Galil '81: real-time string matching

» Galil, Seiferas '83: constant space

» Karp, Rabin '87: randomized constant space real-time

» Crochemore, Perrin '91: constant space

» Gasieniec, Plandowski, Rytter '95: constant space

» Gasienec, Kolpakov '04: real-time + sublinear space (extends GPR'95)
* » » more papers [Crochemore, Rytter '91,'95] [Crochemore '92] [...]

* Porat, Porat '09: randomized streaming, O(log m) space, no real-time

* Breslauer, Galil '10: randomized real-time streaming, O(log m) space

History of packed string matching

- mentioned in KMP & BM
- several practical approaches (not discussed here)

Time Space Reference
0, luh|z ~ 4 nm + occ) O(n"m) Fredriksson |24, 25|
O(i"— uh|g -~ 4 m + occ) O(n® +m) Bille [10]
O(% + 2 +m + occ) O(m) Belazzougui (8]
O(% + = + occ) O(1 using WSSM and WSLM

) veal-Lime

Use two special AC° instructions

WSM: word-size string matching [text processing]

find x iny x| <w, |yl < 2w
y = 10010101 10010101
x = 1010 1010
2 = 00010101 i 1010
e L 11010
bt b1
L-{- ----------------- b :
S !

WSL: word-size lex-max suffix [pattern preprocessing]

O(1)-time WSM black box:

y = 10010101 —> v— z = 00010101
x = 1010 —»

find x iny Ix] <w, |yl < 2w
y = 10010101 10010101
x = 1010 }Oig 0
z = 00010101 11010
i T i
e it L b
S !

Emulation in the word-RAM

Time Space Emulation
(J(m% occ) O(1) bit-parallel WSSM no pre-processing

O(% +a Nocc) Ofa) bit-parallel WSSM pre-processing
O(lug“lr; . O(n¢) four Russian WSLM table lookup

sCrwdown feo*o\z QQSJO\

Focus on: TEXT SCANNING + WSM

RECALL: acharacters per word

SHORT pattern X iff its length m <« @ (LONG o.w.)

IDEA:
- split text T into overlapping blocks of x+m-1< 2 a chars

T"‘ — P

—n

Xf'\m—f

- each occurrence of X fits one block
- run the WSM black box on each block
- TOTAL COST: O(n/ a) time and O(1) space (real-time)

LONG pattern X iff its length m > a (SHORT o.w.)

IDEA for CASE1: m> a > m(x):

- write X = prp', where p = period(X) and |p| = m(x)
- split text T into words of & chars each

- GOAL: find maximal runs of consecutive ps

™ ¥

- L'> Rasy +°\f Q{' xpvom H’)EMZ

LONG pattern X iff its length m > @ (SHORT o.w.)

IDEA for CASE 1: m> a > m(x):

- GOAL: find maximal runs of consecutive ps
- let max k s.t. string p*fits into a word (k < r)
- run the WSM black box for p* on each word

- combine the occs of p¥to find maximal runs

NN/ AN
AN/ AN/
extend run start a new run

TOTAL COST: O(n/ a¢) time and O(1) space (real-time)

LONG pattern X iff its lengthm > a (SHORT o.w.)
IDEA for CASE2: m 2> m(x) 2> a:

LONG pattern X iff its lengthm > a (SHORT o.w.)
IDEA for CASE 2: m > m(x) 2 «:

P/e Ver'Sion Of .,_he ETO UR o
O -

Simple version of the Crochemore-Perrin (CP) algorithm

Consider a non-empty prefix-suffix factorization X =uv

The local period is the shortest z such that

Z is suffix of u or vice versa u v

| 2

and

. : . z z
z is a prefix of v or vice versa

1 (u,v) = length |z| of the local period

Example:

X=u v
a pqaaba ab aaaba aba aaba

bg ba aaab aaab a a
z = ba local period

Critical factorization if 1 (u,v) = m(X) [len. of the period of X]

Example:

X=u v
a baaaba ab gaaba aba aaba
ba ba aaab aaab a a

lllll

z = aaab local period

Critical factorization if £ (u,v) = m(X) [len. of the period of X]

Example:
X=u v=(abaa)aba=pp'

a baaaba ab aaaba aba aaba
ba ba aaab aaab a a
Z

évibical !

local period z is as long as period p = abaa

Critical factorization if 1 (u,v) = @ (X) [len. of the period of X]

Example:

a baaaba ab aaaba aba aaba
ba ba aaab aaab a a

Critical Factorization Theorem (Cesari and Vincent):

Among 7 (X) - 1 consecutive factorizations:

at least one is a critical factorization

Example:

a baaaba ab aaaba aba aaba
ba ba aaab aaab a a

Critical Factorization Theorem (Cesari and Vincent):

Among 7 (X) - 1 consecutive factorizations:

at least one is a critical factorization

. There always exists a critical fac:’rorlzahon
X u v such that (@p=emx)

Crochemore-Perrin (CP) Algorithm:

Take such a critical factorization of the pattern X = u v

Crochemore-Perrin (CP) Algorithm:

Take such a critical factorization of the pattern X =uv

Forward scan: match v left-to-right with the
current aligned portion of the text

Crochemore-Perrin (CP) Algorithm:

Take such a critical factorization of the pattern X ={lwv

Forward scan: match v left-to-right with the
current aligned portion of the text

Back fill’match u left-to-right with the current
alignhed portion of the text [originally right-to-left]

Crochemore-Perrin (CP) Algorithm:

Take such a critical factorization of the pattern X =uv

Forward scan: match v left-to-right with the
current aligned portion of the text

Back fill’match u left-to-right with the current
alignhed portion of the text [originally right-to-left]

ll
. L J
“ ..

v
llllllll

Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan |
with O(1) comparisons from theback fill :

X = ab aaaba critical factorization

abaaaba

abaabaaabaa

Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan |
with O(1) comparisons from theback fill :

X = ab aaaba critical factorization

abaaaba

abaabaaabaa

Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan |
with O(1) comparisons from theback fill :

X = ab aaaba critical factorization

abaaaba

abaabaaabaa

Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan |
with O(1) comparisons from theback fill :

X = ab aaaba critical factorization
z

~

abaaaba

#
abaabaaabaa

t.
mts‘”]e,\,drv

Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan |
with O(1) comparisons from thelback filh :

- n
e e e e mmmmmm,mm,,rmT,,,,,,rm,m Ty T T T T -

X = ab aaaba critical factorization

Z, |2(+1
@baaaba «~—> abaaaba
'S
@baabaaabaa abaabaaabaa

shift by 121+ positiows

(and charge the O(|z|+1) cost to the symbols in z in real time)

Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan
with O(1) comparisons from the back fill

Output an occurrence when the forward scan
terminates (and interrupt the back fill if needed)

Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan
with O(1) comparisons from the back fill :

Output an occurrence when the forward scan
terminates (and interrupt the back fill if needed)

Let z be the matched prefix of v, where X = u v is c.f.:

if z# v = shift by |z|+1 positions and reset z = empty
if z=v = shift by n(X) positions and update z

Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan
with O(1) comparisons from the back fill :

Output an occurrence when the forward scan
terminates (and interrupt the back fill if needed)

Let z be the matched prefix of v, where X = u v is c.f.:

if z# v = shift by |z|+1 positions and reset z = empty
if z=v = shift by n(X) positions and update z

Total cost is O(1) worst-case per symbol:
the algorithm is real-time

Q: What if |u] > |v]?
back ?fp

interupled -
heve... mﬁ:%m

vw

7

]

“MOLE” NOT ¢HECKED

Real-Time Variation of CP

Consider a 3-way hon-empty factorizaton X = u v w such that

X = (uv) w is a critical factorization with |uv| < |w|
OR

X = (uv) wis a critical factorization, and
X' = u(vv') is a critical factorization for a prefix X' of X
with |u] < |vw'|

Real-Time Variation of the CP Algorithm

Interleave O(1) steps of two instances of the Basic
Real-Time Algorithms, one looking for X and the
other for X', aligned with |X|-|X"| positions apart.

Total cost is O(1) worst-case per symbol:
the algorithm is real-time and reports
correctly all the occurrences

Simple pseudocode

WLOGC: X:u\/ V\’)d’\'&‘/\\/”-

LONG pattern X iff its lengthm > a (SHORT o.w.)
IDEA for CASE 2: m > m(x) 2 «:

Recap the goal for CASE2: m > n(x) > a:

HP: a characters packed per word
GIVEN: pattern X =uv (critical factorization)

- HAVE-TO: perform forward scan of v
(the rest of the cost is covered using CP)

COST: O(n/ «¢) time and O(1) space (real-time)

IDEA for forward scanin X = u v:

- let v' be the a-long prefix of v (if v is shorter, easy)
- for each text word, use WSM black box on V'

- take the leftmost occurrence of v' (derives from c.f.)
- extend V' to v by bulk comparisons (and check u):

l_v mismatchv = ..SIM-H' JD?' @TQQAS{'O\ Poscf\\o"f
meteh D shuft by [TOI[5 & positons
TOTAL COST: O(n/ a) time and O(1) space (real-time)

Simulating the WSM black box on the word-RAM

- reduce the problem to binary convolution (AC°)

- simulate the convolution using int. multiplication (not AC°)
and padding each bit by log a bits

- use deterministic sampling to reduce each padding to log log «

COST:
- O(a) preprocessing time
- O(1) time on w/log log a bits

y = 10010101 — +—3 z = 00010101
x = 1010 —

Example
Padding the pattern 101 and the text 01101010 (padding bits are in gray)

p = 010001, ¢ = 0001010001000100

D= 000100,¢ = 0100000100010001

Doing standard integer multiplication on these vectors we get that:
p x t=1000101001000100001

p x t=0000101000100010000

Adding these we get the mismatch vector:

(pxt)+ (pxt)=100 10 10 00 11 00 11 00 01

Replacing each field (two bits) by the number it holds gives:
(p x 1) + (p x t) = 1022030301

Taking the n = 8 least significant bits gives the mismatch vector 22030301

Preliminaries experiments

Intel Sandy Bridge, SSE (Streaming SIMD Extension), AVX (Advanced Vector Extension)
SMART (String MAtching Research Tool) by Faro and Lecrogq [library of > 85 algorithms]

2 4] 16 32 64 128

SSECP 4.44 SSECP 4.57 UFNDMQ4 4.99 BENDMQ4 4.23 BNDMQ4 3.83 LENDM 3.91 ENDMQ4 3.71
SKIP 4.80 RF 5.07 SSECPF 5.00 SENDMQ4 4.31 BNDMQG 3.86 ENDMOQ4 3.94 HASHS 3.83

S0 4.84 EM 5.33 FSENDM 5.05 UFNDMQ4 4.31 SENDMQ4 3.95 SENDMQ4 3.96 HASHE 3.93
FNDM 4.94 BNDMQ2 5.46 SENDMQ2 5.08 UFNDMQ6E 4.47 SENDMQ& 3.97 ENDMQG6 3.97 HASH3 3.94
FSBNDM 5.03 BF 5.58 ENDMOQ2 5.13 SBENDMQE 4.57 UFNDMQ4 4.00 HASHS 3.98 BENDMQ6 3.97
23 SSECP 5.00 27 SSECP 5.29 30 SSECP 4.8R% 42 SSECP 4.73

SSECP 4.28 SSECP 4.49 ENDMQ2 4.42 SBENDMQ2 4.08 UFNDMQ2 3.75 SENDMQ4 3.67 ENDMQ4 3.70
FFS 4.88 SVMI1 4.84 SBENDMQ2 4.48 UFNDMQ2 4.08 BNDMQ4 3.79 ENDMOQ4 3.72 SENDMQ4 3.71
GRASPM 4.93 SENDMQ4 4.85 SENDM 4.59 SENDMQ4 4.10 SENDMQ4 3.80 UFNDMQ4 3.80 HASHS5 3.75
ER 5.14 BOM2 4.95 SBENDM?2 4.59 SBNDM?2 4.13 UFNDMQ4 3.80 ENDMQ2 3.89 UFNDMQ4 3.77
BWW 5.14 EBOM 5.25 UFNDMQ2 4.69 BENDMQ2 4.14 BNDMQ2 3.89 SENDM?2 3.96 HASHE 3.80

13 SSECP 5.00 22 SSECP 5.08 35 SSECP 4.77 30 SSECP 4.77 45 SSECP 4.76

- SSECP our implementation, performs well for a wide range of parameters
- algorithms that skips characters are faster than SSECP for long patterns

Conclusions and further work

Theoretical models have a restricted set of operations
compared to commodity processors in modern computers:
design algorithms that exploit the latter and are theoretical

- Improve WSM blackbox simulation
- Have WSM-based algorithm that can skip words
- Extend our WSM-based approach to other SM algorithms

