
Optimal Packed String Matching

O. Ben-Kiki, P. Bille, D. Breslauer, L. Gasieniec, R. Grossi, O. Weimann

String Matching Problem

Knuth-Morris-Pratt

Boyer-Moore

Karp-Rabin

O(m+n) time solution
[over 85 algs in Faro-Lecroq's survey]

String Matching Problem

INPUT:

OUTPUT:

pattern X of m symbols in Σ
text T of n symbols in Σ

[pattern preprocessing]
[text processing]

positions i s.t. X = T[i...i+m-1]

Model of computation vs commodity processors

Theory: word-RAM w bits per word

Your laptop:
- α characters per word [α = w / log2 Σ]
- richer instruction set

Example: reading T is ΩΩ(n/α) not ΩΩ(n) ...

Packed string matching

Pattern X ≡ X[1..m]

Text T ≡ T[1..n]

αsymbols packed in a word:
bulk comparison in O(1) time

Real-time string matching

Pattern X ≡ X[1..m]

Text T ≡ T[1..n]

O(1) worst-case time to
answer after reading the
text symbol

Real-time string matching

Pattern X ≡ X[1..m]

Text T ≡ T[1..n]

O(1) worst-case time to
answer after reading the
text symbolDifferent from real-time

streaming s.m., where X and T

cannot be entirely stored!

Constant-space string matching

Pattern X ≡ X[1..m]

Text T ≡ T[1..n]

O(1) working space
apart from that
required by X and T

w bits

More related work
Galil '81: real-time string matching

Galil, Seiferas '83: constant space

Karp, Rabin '87: randomized constant space real-time

Crochemore, Perrin '91: constant space

Gasieniec, Plandowski, Rytter '95: constant space

Gasienec, Kolpakov '04: real-time + sublinear space (extends GPR'95)

 more papers [Crochemore, Rytter '91,'95] [Crochemore '92] [...]

Porat, Porat '09: randomized streaming, O(log m) space, no real-time

Breslauer, Galil '10: randomized real-time streaming, O(log m) space

History of packed string matching
- mentioned in KMP & BM
- several practical approaches (not discussed here)

Use two special AC0 instructions

WSM: word-size string matching [text processing]

find x in y |x| ≤ w, |y| ≤ 2w

WSL: word-size lex-max suffix [pattern preprocessing]

y = 10010101
x = 1010
z = 00010101

10010101
1010

1010
1010

O(1)-time WSM black box:

find x in y |x| ≤ w, |y| ≤ 2w

y = 10010101
x = 1010
z = 00010101

10010101
1010

1010
1010

y = 10010101
 x = 1010

z = 00010101

Emulation in the word-RAM

Focus on: TEXT SCANNING + WSM

RECALL: αcharacters per word

SHORT pattern X iff its length m ≤ α (LONG o.w.)

IDEA:
· split text T into overlapping blocks ofα+m-1 < 2α chars

· each occurrence of X fits one block
· run the WSM black box on each block
· TOTAL COST: O(n/α) time and O(1) space (real-time)

T

X

LONG pattern X iff its length m > α (SHORT o.w.)

IDEA for CASE 1: m > α > π(x):
· write X = pr p', where p = period(X) and |p| = π(x)
· split text T into words ofα chars each
· GOAL: find maximal runs of consecutive ps

LONG pattern X iff its length m > α (SHORT o.w.)

IDEA for CASE 1: m > α > π(x):
· GOAL: find maximal runs of consecutive ps
· let max k s.t. string pk fits into a word (k ≤ r)
· run the WSM black box for pk on each word
· combine the occs of pk to find maximal runs

TOTAL COST: O(n/α) time and O(1) space (real-time)

extend run start a new run

LONG pattern X iff its length m > α (SHORT o.w.)

IDEA for CASE 2: m ≥ π(x) ≥ α:

· Take a simple version of the constant-space Crochemore-Perrin (CP) algorithm

· Make CP also real-time by running

two instances simultaneously

· Use WSM black box

LONG pattern X iff its length m > α (SHORT o.w.)

IDEA for CASE 2: m ≥ π(x) ≥ α:

· Take a simple version of the constant-space Crochemore-Perrin (CP) algorithm

· Make CP also real-time by running

two instances simultaneously

· Use WSM black box

Simple version of the Crochemore-Perrin (CP) algorithm

Consider a non-empty prefix-suffix factorization X = u v

The local period is the shortest z such that
 z is suffix of u or vice versa
 and
 z is a prefix of v or vice versa

μ(u,v) ≡ length |z| of the local period

z

u v

z

a baaaba aba aabaab aaaba
aaab aaabba ba

Example:

a a
z = ba local period

X = u v

Critical factorization ifμ(u,v) = π(X) [len. of the period of X]

a baaaba aba aabaab aaaba
aaab aaabba ba

Example:

a a
z = aaab local period

X = u v

Critical factorization ifμ(u,v) = π(X) [len. of the period of X]

a baaaba aba aabaab aaaba
aaab aaabba ba

Example:

a a
z

X = u v = (abaa) aba = p p'

local period z is as long as period p = abaa

Critical factorization ifμ(u,v) = π(X) [len. of the period of X]

a baaaba aba aabaab aaaba
aaab aaabba ba

Example:

a a

Critical Factorization Theorem (Cesari and Vincent):

Among π(X) - 1 consecutive factorizations:
at least one is a critical factorization

a baaaba aba aabaab aaaba
aaab aaabba ba

Example:

a a

Critical Factorization Theorem (Cesari and Vincent):

Among π(X) - 1 consecutive factorizations:
at least one is a critical factorization

There always exists a critical factorization
X = u v such that |u| < π(X)

Crochemore-Perrin (CP) Algorithm:

Take such a critical factorization of the pattern X = u v

Crochemore-Perrin (CP) Algorithm:

Take such a critical factorization of the pattern X = u v

Forward scan: match v left-to-right with the
current aligned portion of the text

Crochemore-Perrin (CP) Algorithm:

Take such a critical factorization of the pattern X = u v

Forward scan: match v left-to-right with the
current aligned portion of the text

Back fill: match u left-to-right with the current
aligned portion of the text [originally right-to-left]

Crochemore-Perrin (CP) Algorithm:

Take such a critical factorization of the pattern X = u v

Forward scan: match v left-to-right with the
current aligned portion of the text

Back fill: match u left-to-right with the current
aligned portion of the text [originally right-to-left]

Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan
with O(1) comparisons from the back fill

X = ab aaaba critical factorization

abaaaba

abaabaaabaa

Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan
with O(1) comparisons from the back fill

X = ab aaaba critical factorization

abaaaba

abaabaaabaa

Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan
with O(1) comparisons from the back fill

X = ab aaaba critical factorization

abaaaba

abaabaaabaa

Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan
with O(1) comparisons from the back fill

X = ab aaaba critical factorization

abaaaba

abaabaaabaa

Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan
with O(1) comparisons from the back fill

X = ab aaaba critical factorization

abaaaba abaaaba

abaabaaabaaabaabaaabaa

(and charge the O(|z|+1) cost to the symbols in z in real time)

Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan
with O(1) comparisons from the back fill

Output an occurrence when the forward scan
terminates (and interrupt the back fill if needed)

Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan
with O(1) comparisons from the back fill

Let z be the matched prefix of v, where X = u v is c.f.:

 if z ≠ v ⇒ shift by |z|+1 positions and reset z = empty
 if z = v ⇒ shift by π(X) positions and update z

Output an occurrence when the forward scan
terminates (and interrupt the back fill if needed)

Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan
with O(1) comparisons from the back fill

Let z be the matched prefix of v, where X = u v is c.f.:

 if z ≠ v ⇒ shift by |z|+1 positions and reset z = empty
 if z = v ⇒ shift by π(X) positions and update z

Output an occurrence when the forward scan
terminates (and interrupt the back fill if needed)

Total cost is O(1) worst-case per symbol:
the algorithm is real-time

Q: What if |u| > |v|?

u v

Real-Time Variation of CP

Consider a 3-way non-empty factorizaton X = u v w such that

X = (uv) w is a critical factorization with |uv| ≤ |w|

OR

X = (uv) w is a critical factorization, and
X' = u (vv') is a critical factorization for a prefix X' of X
with |u| ≤ |vv'|

u v w

v'u v
X

Real-Time Variation of the CP Algorithm

Interleave O(1) steps of two instances of the Basic
Real-Time Algorithms, one looking for X and the
other for X', aligned with |X|-|X'| positions apart.

Simple pseudocode

Total cost is O(1) worst-case per symbol:
the algorithm is real-time and reports
correctly all the occurrences

LONG pattern X iff its length m > α (SHORT o.w.)

IDEA for CASE 2: m ≥ π(x) ≥ α:

· Take a simple version of the constant-space Crochemore-Perrin (CP) algorithm

· Make CP also real-time by running

two instances simultaneously

· Use WSM black box

Recap the goal for CASE 2: m ≥ π(x) ≥ α:

HP:αcharacters packed per word
GIVEN: pattern X = u v (critical factorization)

- HAVE-TO: perform forward scan of v
 (the rest of the cost is covered using CP)

COST: O(n/α) time and O(1) space (real-time)

IDEA for forward scan in X = u v:

· let v' be the α-long prefix of v (if v is shorter, easy)
· for each text word, use WSM black box on v'
· take the leftmost occurrence of v' (derives from c.f.)
· extend v' to v by bulk comparisons (and check u):

TOTAL COST: O(n/α) time and O(1) space (real-time)

Simulating the WSM black box on the word-RAM

y = 10010101
 x = 1010

z = 00010101

· reduce the problem to binary convolution (AC0)
· simulate the convolution using int. multiplication (not AC0)
 and padding each bit by log α bits
· use deterministic sampling to reduce each padding to log log α

COST:
· O(α) preprocessing time
· O(1) time on w/log log α bits

Example

Preliminaries experiments
Intel Sandy Bridge, SSE (Streaming SIMD Extension), AVX (Advanced Vector Extension)

SMART (String MAtching Research Tool) by Faro and Lecroq [library of > 85 algorithms]

- SSECP our implementation, performs well for a wide range of parameters
- algorithms that skips characters are faster than SSECP for long patterns

Conclusions and further work

· Improve WSM blackbox simulation
· Have WSM-based algorithm that can skip words
· Extend our WSM-based approach to other SM algorithms

Theoretical models have a restricted set of operations
compared to commodity processors in modern computers:
design algorithms that exploit the latter and are theoretical

